tick-sched.c 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24 25
#include <linux/posix-timers.h>
#include <linux/perf_event.h>
26
#include <linux/context_tracking.h>
27

28 29
#include <asm/irq_regs.h>

30 31
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
32 33
#include <trace/events/timer.h>

34 35 36
/*
 * Per cpu nohz control structure
 */
37
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

50 51 52 53 54 55 56 57
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

58
	/*
59
	 * Do a quick check without holding jiffies_lock:
60 61 62 63 64
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

65 66
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
85 86 87

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
88 89 90
	} else {
		write_sequnlock(&jiffies_lock);
		return;
91
	}
92
	write_sequnlock(&jiffies_lock);
93
	update_wall_time();
94 95 96 97 98 99 100 101 102
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

103
	write_seqlock(&jiffies_lock);
104 105 106 107
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
108
	write_sequnlock(&jiffies_lock);
109 110 111
	return period;
}

112 113 114 115 116

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

117
#ifdef CONFIG_NO_HZ_COMMON
118 119 120 121 122
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
123
	 * jiffies_lock.
124
	 */
125
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
126
	    && !tick_nohz_full_cpu(cpu))
127 128 129 130 131 132 133 134
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

135 136
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
137
#ifdef CONFIG_NO_HZ_COMMON
138 139 140 141 142 143 144 145 146
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
147
		touch_softlockup_watchdog_sched();
148 149 150
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
151
#endif
152 153 154
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
155
#endif
156

157
#ifdef CONFIG_NO_HZ_FULL
158
cpumask_var_t tick_nohz_full_mask;
159
cpumask_var_t housekeeping_mask;
160
bool tick_nohz_full_running;
161
static unsigned long tick_dep_mask;
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static void trace_tick_dependency(unsigned long dep)
{
	if (dep & TICK_DEP_MASK_POSIX_TIMER) {
		trace_tick_stop(0, "posix timers running\n");
		return;
	}

	if (dep & TICK_DEP_MASK_PERF_EVENTS) {
		trace_tick_stop(0, "perf events running\n");
		return;
	}

	if (dep & TICK_DEP_MASK_SCHED) {
		trace_tick_stop(0, "more than 1 task in runqueue\n");
		return;
	}

	if (dep & TICK_DEP_MASK_CLOCK_UNSTABLE)
		trace_tick_stop(0, "unstable sched clock\n");
}

static bool can_stop_full_tick(struct tick_sched *ts)
185 186 187
{
	WARN_ON_ONCE(!irqs_disabled());

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	if (tick_dep_mask) {
		trace_tick_dependency(tick_dep_mask);
		return false;
	}

	if (ts->tick_dep_mask) {
		trace_tick_dependency(ts->tick_dep_mask);
		return false;
	}

	if (current->tick_dep_mask) {
		trace_tick_dependency(current->tick_dep_mask);
		return false;
	}

	if (current->signal->tick_dep_mask) {
		trace_tick_dependency(current->signal->tick_dep_mask);
		return false;
	}

F
Frederic Weisbecker 已提交
208 209
	if (!sched_can_stop_tick()) {
		trace_tick_stop(0, "more than 1 task in runqueue\n");
210
		return false;
F
Frederic Weisbecker 已提交
211
	}
212

F
Frederic Weisbecker 已提交
213 214
	if (!posix_cpu_timers_can_stop_tick(current)) {
		trace_tick_stop(0, "posix timers running\n");
215
		return false;
F
Frederic Weisbecker 已提交
216
	}
217

F
Frederic Weisbecker 已提交
218 219
	if (!perf_event_can_stop_tick()) {
		trace_tick_stop(0, "perf events running\n");
220
		return false;
F
Frederic Weisbecker 已提交
221
	}
222 223 224

#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
	/*
225 226
	 * sched_clock_tick() needs us?
	 *
227 228 229
	 * TODO: kick full dynticks CPUs when
	 * sched_clock_stable is set.
	 */
230
	if (!sched_clock_stable()) {
F
Frederic Weisbecker 已提交
231
		trace_tick_stop(0, "unstable sched clock\n");
232 233 234 235
		/*
		 * Don't allow the user to think they can get
		 * full NO_HZ with this machine.
		 */
236
		WARN_ONCE(tick_nohz_full_running,
237
			  "NO_HZ FULL will not work with unstable sched clock");
238
		return false;
F
Frederic Weisbecker 已提交
239
	}
240 241 242 243 244
#endif

	return true;
}

245
static void nohz_full_kick_func(struct irq_work *work)
246
{
247
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
248 249 250
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
251
	.func = nohz_full_kick_func,
252 253
};

254 255 256 257 258 259 260 261 262 263 264
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
void tick_nohz_full_kick(void)
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

265
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
266 267
}

268
/*
269
 * Kick the CPU if it's full dynticks in order to force it to
270 271
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
272
void tick_nohz_full_kick_cpu(int cpu)
273
{
274 275 276 277
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
278 279 280 281 282 283 284 285
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
286 287
	int cpu;

288
	if (!tick_nohz_full_running)
289 290 291
		return;

	preempt_disable();
292 293
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
294 295 296
	preempt_enable();
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static void tick_nohz_dep_set_all(unsigned long *dep,
				  enum tick_dep_bits bit)
{
	unsigned long prev;

	prev = fetch_or(dep, BIT_MASK(bit));
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
	clear_bit(bit, &tick_dep_mask);
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
	unsigned long prev;
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	prev = fetch_or(&ts->tick_dep_mask, BIT_MASK(bit));
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	clear_bit(bit, &ts->tick_dep_mask);
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	clear_bit(bit, &tsk->tick_dep_mask);
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	clear_bit(bit, &sig->tick_dep_mask);
}

386 387 388 389 390
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
391
void __tick_nohz_task_switch(void)
392 393
{
	unsigned long flags;
394
	struct tick_sched *ts;
395 396 397

	local_irq_save(flags);

398 399 400
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

401
	ts = this_cpu_ptr(&tick_cpu_sched);
402

403 404 405 406
	if (ts->tick_stopped) {
		if (current->tick_dep_mask || current->signal->tick_dep_mask)
			tick_nohz_full_kick();
	}
407
out:
408 409 410
	local_irq_restore(flags);
}

411
/* Parse the boot-time nohz CPU list from the kernel parameters. */
412
static int __init tick_nohz_full_setup(char *str)
413
{
414 415
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
416
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
417
		free_bootmem_cpumask_var(tick_nohz_full_mask);
418 419
		return 1;
	}
420
	tick_nohz_full_running = true;
421

422 423
	return 1;
}
424
__setup("nohz_full=", tick_nohz_full_setup);
425

426
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
427 428
				       unsigned long action,
				       void *hcpu)
429 430 431 432 433 434
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
435 436 437
		 * The boot CPU handles housekeeping duty (unbound timers,
		 * workqueues, timekeeping, ...) on behalf of full dynticks
		 * CPUs. It must remain online when nohz full is enabled.
438
		 */
439
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
440
			return NOTIFY_BAD;
441 442 443 444 445
		break;
	}
	return NOTIFY_OK;
}

446 447 448 449 450
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
451
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
452
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
453 454
		return err;
	}
455
	err = 0;
456 457
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
458 459 460 461
#endif
	return err;
}

462
void __init tick_nohz_init(void)
463
{
464 465
	int cpu;

466
	if (!tick_nohz_full_running) {
467 468 469
		if (tick_nohz_init_all() < 0)
			return;
	}
470

471 472 473 474 475 476 477
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

478 479 480 481 482 483 484 485 486 487 488 489 490 491
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
			   "support irq work self-IPIs\n");
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

492 493 494 495 496 497 498 499 500 501
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

502
	for_each_cpu(cpu, tick_nohz_full_mask)
503 504
		context_tracking_cpu_set(cpu);

505
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
506 507
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
508 509 510 511 512 513

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
514 515 516
}
#endif

517 518 519
/*
 * NOHZ - aka dynamic tick functionality
 */
520
#ifdef CONFIG_NO_HZ_COMMON
521 522 523
/*
 * NO HZ enabled ?
 */
524
int tick_nohz_enabled __read_mostly = 1;
525
unsigned long tick_nohz_active  __read_mostly;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

542 543 544 545 546
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

547 548 549 550 551 552 553 554 555 556
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
557
static void tick_nohz_update_jiffies(ktime_t now)
558 559 560
{
	unsigned long flags;

561
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
562 563 564 565

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
566

567
	touch_softlockup_watchdog_sched();
568 569
}

570 571 572
/*
 * Updates the per cpu time idle statistics counters
 */
573
static void
574
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
575
{
576
	ktime_t delta;
577

578 579
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
580
		if (nr_iowait_cpu(cpu) > 0)
581
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
582 583
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
584
		ts->idle_entrytime = now;
585
	}
586

587
	if (last_update_time)
588 589
		*last_update_time = ktime_to_us(now);

590 591
}

592
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
593
{
594
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
595
	ts->idle_active = 0;
596

597
	sched_clock_idle_wakeup_event(0);
598 599
}

600
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
601
{
602
	ktime_t now = ktime_get();
603

604 605
	ts->idle_entrytime = now;
	ts->idle_active = 1;
606
	sched_clock_idle_sleep_event();
607 608 609
	return now;
}

610 611 612
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
613 614
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
615 616
 *
 * Return the cummulative idle time (since boot) for a given
617
 * CPU, in microseconds.
618 619 620 621 622 623
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
624 625 626
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
627
	ktime_t now, idle;
628

629
	if (!tick_nohz_active)
630 631
		return -1;

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
647

648
}
649
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
650

651
/**
652 653
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
654 655
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
656 657 658 659 660 661 662 663 664 665 666 667
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
668
	ktime_t now, iowait;
669

670
	if (!tick_nohz_active)
671 672
		return -1;

673 674 675 676 677 678 679
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
680

681 682 683 684 685
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
686

687
	return ktime_to_us(iowait);
688 689 690
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

691 692 693 694 695 696 697 698 699 700 701 702 703 704
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

705 706
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
707
{
708
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
709 710 711
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
712

713 714
	/* Read jiffies and the time when jiffies were updated last */
	do {
715
		seq = read_seqbegin(&jiffies_lock);
716 717
		basemono = last_jiffies_update.tv64;
		basejiff = jiffies;
718
	} while (read_seqretry(&jiffies_lock, seq));
719
	ts->last_jiffies = basejiff;
720

721
	if (rcu_needs_cpu(basemono, &next_rcu) ||
722
	    arch_needs_cpu() || irq_work_needs_cpu()) {
723
		next_tick = basemono + TICK_NSEC;
724
	} else {
725 726 727 728 729 730 731 732 733 734 735
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
736
	}
737

738 739
	/*
	 * If the tick is due in the next period, keep it ticking or
740
	 * force prod the timer.
741 742 743 744
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
		tick.tv64 = 0;
745 746 747 748
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
749 750
		if (!ts->tick_stopped)
			goto out;
751 752 753 754 755 756 757 758 759 760 761 762 763

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
764
		if (delta == 0) {
T
Thomas Gleixner 已提交
765 766 767 768 769
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

770
	/*
T
Thomas Gleixner 已提交
771 772 773 774 775 776 777
	 * If this cpu is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the cpu which runs
	 * the tick timer next, which might be this cpu as well. If we
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
	 * was the one which had the do_timer() duty last. If this cpu
	 * is the one which had the do_timer() duty last, we limit the
778 779
	 * sleep time to the timekeeping max_deferement value.
	 * Otherwise we can sleep as long as we want.
780
	 */
781
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
782 783 784 785
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
786
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
787 788
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
789
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
790
	}
T
Thomas Gleixner 已提交
791

792
#ifdef CONFIG_NO_HZ_FULL
793
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
794
	if (!ts->inidle)
795
		delta = min(delta, scheduler_tick_max_deferment());
796 797
#endif

798 799 800
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
801
	else
802 803 804 805
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
	tick.tv64 = expires;
806

T
Thomas Gleixner 已提交
807
	/* Skip reprogram of event if its not changed */
808
	if (ts->tick_stopped && (expires == dev->next_event.tv64))
T
Thomas Gleixner 已提交
809
		goto out;
810

T
Thomas Gleixner 已提交
811 812 813 814 815 816 817 818 819 820
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
821

T
Thomas Gleixner 已提交
822 823 824 825
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
		trace_tick_stop(1, " ");
	}
826

T
Thomas Gleixner 已提交
827
	/*
828 829
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
830
	 */
831
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
832 833 834
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
835
	}
836

T
Thomas Gleixner 已提交
837
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
838
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
839
	else
840
		tick_program_event(tick, 1);
841
out:
842
	/* Update the estimated sleep length */
843
	ts->sleep_length = ktime_sub(dev->next_event, now);
844
	return tick;
845 846
}

847
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
848 849 850
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
851
	update_cpu_load_nohz(active);
852 853

	calc_load_exit_idle();
854
	touch_softlockup_watchdog_sched();
855 856 857 858 859 860 861 862
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
863 864

static void tick_nohz_full_update_tick(struct tick_sched *ts)
865 866
{
#ifdef CONFIG_NO_HZ_FULL
867
	int cpu = smp_processor_id();
868

869
	if (!tick_nohz_full_cpu(cpu))
870
		return;
871

872 873
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
874

875
	if (can_stop_full_tick(ts))
876 877
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
878
		tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
879 880 881
#endif
}

882 883 884 885 886 887 888 889 890 891 892 893
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
894
		return false;
895 896
	}

897 898
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
899
		return false;
900
	}
901 902 903 904 905 906 907

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

908 909
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
910 911
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
912 913 914 915 916
			ratelimit++;
		}
		return false;
	}

917
	if (tick_nohz_full_enabled()) {
918 919 920 921 922 923 924 925 926 927 928 929 930 931
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

932 933 934
	return true;
}

935 936
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
937
	ktime_t now, expires;
938
	int cpu = smp_processor_id();
939

940
	now = tick_nohz_start_idle(ts);
941

942 943 944 945
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
946 947 948 949 950 951

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
952 953 954 955

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
956 957 958 959 960 961 962
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
963
 *
964
 * The arch is responsible of calling:
965 966 967 968
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
969
 */
970
void tick_nohz_idle_enter(void)
971 972 973
{
	struct tick_sched *ts;

974 975
	WARN_ON_ONCE(irqs_disabled());

976 977 978 979 980 981 982 983
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

984 985
	local_irq_disable();

986
	ts = this_cpu_ptr(&tick_cpu_sched);
987
	ts->inidle = 1;
988
	__tick_nohz_idle_enter(ts);
989 990

	local_irq_enable();
991 992 993 994 995 996 997 998 999 1000 1001 1002
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
1003
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1004

1005
	if (ts->inidle)
1006
		__tick_nohz_idle_enter(ts);
1007
	else
1008
		tick_nohz_full_update_tick(ts);
1009 1010
}

1011 1012 1013 1014 1015 1016 1017
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
1018
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1019 1020 1021 1022

	return ts->sleep_length;
}

1023 1024
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
1025
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1026
	unsigned long ticks;
1027

1028
	if (vtime_accounting_cpu_enabled())
1029
		return;
1030 1031 1032 1033 1034 1035 1036 1037 1038
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
1039 1040 1041
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1042 1043
}

1044
/**
1045
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1046 1047
 *
 * Restart the idle tick when the CPU is woken up from idle
1048 1049
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1050
 */
1051
void tick_nohz_idle_exit(void)
1052
{
1053
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1054
	ktime_t now;
1055

1056
	local_irq_disable();
1057

1058 1059 1060 1061 1062
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1063 1064 1065
		now = ktime_get();

	if (ts->idle_active)
1066
		tick_nohz_stop_idle(ts, now);
1067

1068
	if (ts->tick_stopped) {
1069
		tick_nohz_restart_sched_tick(ts, now, 0);
1070
		tick_nohz_account_idle_ticks(ts);
1071
	}
1072 1073 1074 1075 1076 1077 1078 1079 1080

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1081
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1082 1083 1084 1085 1086
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

1087
	tick_sched_do_timer(now);
1088
	tick_sched_handle(ts, regs);
1089

1090 1091 1092 1093
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1094 1095
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1096 1097
}

1098 1099 1100 1101 1102 1103 1104
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1105
		timers_update_migration(true);
1106 1107
}

1108 1109 1110 1111 1112
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1113
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1114 1115
	ktime_t next;

1116
	if (!tick_nohz_enabled)
1117 1118
		return;

1119
	if (tick_switch_to_oneshot(tick_nohz_handler))
1120
		return;
1121

1122 1123 1124 1125 1126 1127 1128 1129
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1130
	hrtimer_set_expires(&ts->sched_timer, next);
1131 1132
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1133
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1147
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1148
{
1149 1150
#if 0
	/* Switch back to 2.6.27 behaviour */
1151
	ktime_t delta;
1152

1153 1154 1155 1156
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1157
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1158 1159 1160 1161
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1162
#endif
1163 1164
}

1165
static inline void tick_nohz_irq_enter(void)
1166
{
1167
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1168 1169 1170 1171 1172 1173
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1174
		tick_nohz_stop_idle(ts, now);
1175 1176
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1177
		tick_nohz_kick_tick(ts, now);
1178 1179 1180
	}
}

1181 1182 1183
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1184
static inline void tick_nohz_irq_enter(void) { }
1185
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1186

1187
#endif /* CONFIG_NO_HZ_COMMON */
1188

1189 1190 1191
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1192
void tick_irq_enter(void)
1193
{
1194
	tick_check_oneshot_broadcast_this_cpu();
1195
	tick_nohz_irq_enter();
1196 1197
}

1198 1199 1200 1201 1202
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1203
 * We rearm the timer until we get disabled by the idle code.
1204
 * Called with interrupts disabled.
1205 1206 1207 1208 1209 1210 1211
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1212

1213
	tick_sched_do_timer(now);
1214 1215 1216 1217 1218

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1219 1220
	if (regs)
		tick_sched_handle(ts, regs);
1221

1222 1223 1224 1225
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1226 1227 1228 1229 1230
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1231 1232
static int sched_skew_tick;

1233 1234 1235 1236 1237 1238 1239 1240
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1241 1242 1243 1244 1245
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1246
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1247 1248 1249 1250 1251 1252 1253 1254
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1255
	/* Get the next period (per cpu) */
1256
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1257

1258
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1259 1260 1261 1262 1263 1264 1265
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1266 1267
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1268
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1269
}
1270
#endif /* HIGH_RES_TIMERS */
1271

1272
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1273 1274 1275 1276
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1277
# ifdef CONFIG_HIGH_RES_TIMERS
1278 1279
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1280
# endif
1281

1282
	memset(ts, 0, sizeof(*ts));
1283
}
1284
#endif
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1302
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1313
 * or runtime). Called with interrupts disabled.
1314 1315 1316
 */
int tick_check_oneshot_change(int allow_nohz)
{
1317
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1318 1319 1320 1321 1322 1323 1324

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1325
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1326 1327 1328 1329 1330 1331 1332 1333
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}