tick-sched.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23

24 25
#include <asm/irq_regs.h>

26 27 28 29 30 31 32 33 34 35 36 37
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48 49 50
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

51 52 53 54 55 56 57
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
78 79 80

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
static int tick_nohz_enabled __read_mostly  = 1;

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
136
static void tick_nohz_update_jiffies(ktime_t now)
137 138 139 140 141
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

142
	ts->idle_waketime = now;
143 144 145 146

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
147 148

	touch_softlockup_watchdog();
149 150
}

151 152 153
/*
 * Updates the per cpu time idle statistics counters
 */
154
static void
155
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156
{
157
	ktime_t delta;
158

159 160
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
161
		if (nr_iowait_cpu(cpu) > 0)
162
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 164
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165
		ts->idle_entrytime = now;
166
	}
167

168
	if (last_update_time)
169 170
		*last_update_time = ktime_to_us(now);

171 172 173 174 175 176
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

177
	update_ts_time_stats(cpu, ts, now, NULL);
178
	ts->idle_active = 0;
179

180
	sched_clock_idle_wakeup_event(0);
181 182
}

183
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184
{
185
	ktime_t now;
186 187

	now = ktime_get();
188

189
	update_ts_time_stats(cpu, ts, now, NULL);
190

191 192
	ts->idle_entrytime = now;
	ts->idle_active = 1;
193
	sched_clock_idle_sleep_event();
194 195 196
	return now;
}

197 198 199
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
200 201
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
202 203
 *
 * Return the cummulative idle time (since boot) for a given
204
 * CPU, in microseconds.
205 206 207 208 209 210
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
211 212 213
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
214
	ktime_t now, idle;
215

216 217 218
	if (!tick_nohz_enabled)
		return -1;

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
234

235
}
236
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
237

238
/**
239 240
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
241 242
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
243 244 245 246 247 248 249 250 251 252 253 254
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
255
	ktime_t now, iowait;
256 257 258 259

	if (!tick_nohz_enabled)
		return -1;

260 261 262 263 264 265 266
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
267

268 269 270 271 272
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
273

274
	return ktime_to_us(iowait);
275 276 277
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

278 279 280 281 282 283 284
/**
 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called either from the idle loop or from irq_exit() when an idle period was
 * just interrupted by an interrupt which did not cause a reschedule.
 */
285
void tick_nohz_stop_sched_tick(int inidle)
286 287 288
{
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
	struct tick_sched *ts;
289
	ktime_t last_update, expires, now;
290
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
291
	u64 time_delta;
292 293 294 295 296 297
	int cpu;

	local_irq_save(flags);

	cpu = smp_processor_id();
	ts = &per_cpu(tick_cpu_sched, cpu);
298 299 300 301 302 303 304 305 306

	/*
	 * Call to tick_nohz_start_idle stops the last_update_time from being
	 * updated. Thus, it must not be called in the event we are called from
	 * irq_exit() with the prior state different than idle.
	 */
	if (!inidle && !ts->inidle)
		goto end;

307 308 309 310 311 312 313
	/*
	 * Set ts->inidle unconditionally. Even if the system did not
	 * switch to NOHZ mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;

314
	now = tick_nohz_start_idle(cpu, ts);
315

316 317 318 319 320 321 322 323 324
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
325
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
326 327
	}

328 329 330 331 332 333
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		goto end;

	if (need_resched())
		goto end;

334
	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
335 336 337 338
		static int ratelimit;

		if (ratelimit < 10) {
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
T
Thomas Gleixner 已提交
339
			       (unsigned int) local_softirq_pending());
340 341
			ratelimit++;
		}
342
		goto end;
343
	}
344 345 346 347 348 349 350

	ts->idle_calls++;
	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
351
		time_delta = timekeeping_max_deferment();
352 353
	} while (read_seqretry(&xtime_lock, seq));

354
	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
355
	    arch_needs_cpu(cpu)) {
356
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
357
		delta_jiffies = 1;
358 359 360 361 362
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
	}
363 364 365 366
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
367
	if (!ts->tick_stopped && delta_jiffies == 1)
368 369 370 371 372
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

373 374 375 376 377 378
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
379 380 381 382 383 384
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
385
		 */
T
Thomas Gleixner 已提交
386
		if (cpu == tick_do_timer_cpu) {
387
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
388 389 390 391 392 393 394 395
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

396
		/*
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
414

T
Thomas Gleixner 已提交
415 416 417 418
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
419 420 421 422 423

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

424 425 426 427 428 429 430 431
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
432
			select_nohz_load_balancer(1);
433

434
			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
435 436 437
			ts->tick_stopped = 1;
			ts->idle_jiffies = last_jiffies;
		}
438

439 440
		ts->idle_sleeps++;

441 442 443
		/* Mark expires */
		ts->idle_expires = expires;

444
		/*
445 446
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
447
		 */
448
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
449 450 451 452 453
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

454 455
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
456
				      HRTIMER_MODE_ABS_PINNED);
457 458 459
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
460
		} else if (!tick_program_event(expires, 0))
461 462 463 464 465 466 467 468 469 470 471 472
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
473
	ts->sleep_length = ktime_sub(dev->next_event, now);
474
end:
475 476
	if (inidle)
		rcu_idle_enter();
477 478 479
	local_irq_restore(flags);
}

480 481 482 483 484 485 486 487 488 489 490 491
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

492 493 494
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
495
	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
496 497 498 499 500 501

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
502
			hrtimer_start_expires(&ts->sched_timer,
503
					      HRTIMER_MODE_ABS_PINNED);
504 505 506 507
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
508 509
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
510 511 512 513 514 515 516 517
				break;
		}
		/* Update jiffies and reread time */
		tick_do_update_jiffies64(now);
		now = ktime_get();
	}
}

518
/**
519
 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
520 521 522 523 524 525 526
 *
 * Restart the idle tick when the CPU is woken up from idle
 */
void tick_nohz_restart_sched_tick(void)
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
527
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
528
	unsigned long ticks;
529
#endif
530
	ktime_t now;
531

532
	local_irq_disable();
533
	rcu_idle_exit();
534 535 536 537 538
	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
539

540 541
	if (!ts->inidle || !ts->tick_stopped) {
		ts->inidle = 0;
542
		local_irq_enable();
543
		return;
544
	}
545

546 547
	ts->inidle = 0;

548
	/* Update jiffies first */
549
	select_nohz_load_balancer(0);
550 551
	tick_do_update_jiffies64(now);

552
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
553 554 555 556 557 558 559 560 561
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
562 563 564
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
565

I
Ingo Molnar 已提交
566
	touch_softlockup_watchdog();
567 568 569 570
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
571
	ts->idle_exittime = now;
572

573
	tick_nohz_restart(ts, now);
574 575 576 577 578 579 580

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
581
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
582 583 584 585 586 587 588 589 590
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
591
	int cpu = smp_processor_id();
592 593 594 595
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

596 597 598 599 600 601 602
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
603
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
604 605
		tick_do_timer_cpu = cpu;

606
	/* Check, if the jiffies need an update */
607 608
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start
	 * of idle" jiffy stamp so the idle accounting adjustment we
	 * do when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		ts->idle_jiffies++;
	}

	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
660
		hrtimer_set_expires(&ts->sched_timer, next);
661 662 663 664 665 666 667
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

668 669 670 671 672 673 674 675 676 677 678
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
679
static void tick_nohz_kick_tick(int cpu, ktime_t now)
680
{
681 682 683
#if 0
	/* Switch back to 2.6.27 behaviour */

684
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
685
	ktime_t delta;
686

687 688 689 690
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
691
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
692 693 694 695
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
696
#endif
697 698
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

715 716 717
#else

static inline void tick_nohz_switch_to_nohz(void) { }
718
static inline void tick_check_nohz(int cpu) { }
719 720 721

#endif /* NO_HZ */

722 723 724 725 726
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
727
	tick_check_oneshot_broadcast(cpu);
728
	tick_check_nohz(cpu);
729 730
}

731 732 733 734 735
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
736
 * We rearm the timer until we get disabled by the idle code.
737 738 739 740 741 742 743 744
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
745 746 747 748 749 750 751 752 753 754
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
755
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
756 757
		tick_do_timer_cpu = cpu;
#endif
758 759

	/* Check, if the jiffies need an update */
760 761
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
	if (regs) {
		/*
		 * When we are idle and the tick is stopped, we have to touch
		 * the watchdog as we might not schedule for a really long
		 * time. This happens on complete idle SMP systems while
		 * waiting on the login prompt. We also increment the "start of
		 * idle" jiffy stamp so the idle accounting adjustment we do
		 * when we go busy again does not account too much ticks.
		 */
		if (ts->tick_stopped) {
			touch_softlockup_watchdog();
			ts->idle_jiffies++;
		}
		update_process_times(user_mode(regs));
		profile_tick(CPU_PROFILING);
	}

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

803
	/* Get the next period (per cpu) */
804
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
805 806 807

	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
808 809
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
810 811 812 813 814 815 816
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
817
	if (tick_nohz_enabled)
818 819 820
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
821
#endif /* HIGH_RES_TIMERS */
822

823
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
824 825 826 827
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

828
# ifdef CONFIG_HIGH_RES_TIMERS
829 830
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
831
# endif
832

833 834
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
835
#endif
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

876
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
877 878 879 880 881 882 883 884
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}