tick-sched.c 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23

24 25
#include <asm/irq_regs.h>

26 27 28 29 30 31 32 33 34 35 36 37
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

38 39 40 41 42
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

43 44 45 46 47 48 49 50
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

51 52 53 54 55 56 57
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
78 79 80

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

123 124
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
125
#ifdef CONFIG_NO_HZ
126 127 128 129 130 131 132 133 134 135 136 137 138
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
139
#endif
140 141 142 143
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

144 145 146 147 148 149 150
/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
151
int tick_nohz_enabled __read_mostly  = 1;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
179
static void tick_nohz_update_jiffies(ktime_t now)
180 181 182 183 184
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

185
	ts->idle_waketime = now;
186 187 188 189

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
190 191

	touch_softlockup_watchdog();
192 193
}

194 195 196
/*
 * Updates the per cpu time idle statistics counters
 */
197
static void
198
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
199
{
200
	ktime_t delta;
201

202 203
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
204
		if (nr_iowait_cpu(cpu) > 0)
205
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
206 207
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
208
		ts->idle_entrytime = now;
209
	}
210

211
	if (last_update_time)
212 213
		*last_update_time = ktime_to_us(now);

214 215 216 217 218 219
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

220
	update_ts_time_stats(cpu, ts, now, NULL);
221
	ts->idle_active = 0;
222

223
	sched_clock_idle_wakeup_event(0);
224 225
}

226
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
227
{
228
	ktime_t now = ktime_get();
229

230 231
	ts->idle_entrytime = now;
	ts->idle_active = 1;
232
	sched_clock_idle_sleep_event();
233 234 235
	return now;
}

236 237 238
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
239 240
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
241 242
 *
 * Return the cummulative idle time (since boot) for a given
243
 * CPU, in microseconds.
244 245 246 247 248 249
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
250 251 252
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
253
	ktime_t now, idle;
254

255 256 257
	if (!tick_nohz_enabled)
		return -1;

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
273

274
}
275
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
276

277
/**
278 279
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
280 281
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
282 283 284 285 286 287 288 289 290 291 292 293
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
294
	ktime_t now, iowait;
295 296 297 298

	if (!tick_nohz_enabled)
		return -1;

299 300 301 302 303 304 305
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
306

307 308 309 310 311
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
312

313
	return ktime_to_us(iowait);
314 315 316
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

317 318
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
319
{
320
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
321
	ktime_t last_update, expires, ret = { .tv64 = 0 };
322
	unsigned long rcu_delta_jiffies;
323
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
324
	u64 time_delta;
325 326 327 328 329 330

	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
331
		time_delta = timekeeping_max_deferment();
332 333
	} while (read_seqretry(&xtime_lock, seq));

334
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
335
	    arch_needs_cpu(cpu)) {
336
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
337
		delta_jiffies = 1;
338 339 340 341
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
342 343 344 345
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
346
	}
347 348 349 350
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
351
	if (!ts->tick_stopped && delta_jiffies == 1)
352 353 354 355 356
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

357 358 359 360 361 362
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
363 364 365 366 367 368
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
369
		 */
T
Thomas Gleixner 已提交
370
		if (cpu == tick_do_timer_cpu) {
371
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
372 373 374 375 376 377 378 379
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

380
		/*
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
398

T
Thomas Gleixner 已提交
399 400 401 402
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
403 404 405 406 407

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

408 409
		ret = expires;

410 411 412 413 414 415 416 417
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
418
			nohz_balance_enter_idle(cpu);
419
			calc_load_enter_idle();
420

421
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
422 423
			ts->tick_stopped = 1;
		}
424

425
		/*
426 427
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
428
		 */
429
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
430 431 432 433 434
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

435 436
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
437
				      HRTIMER_MODE_ABS_PINNED);
438 439 440
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
441
		} else if (!tick_program_event(expires, 0))
442 443 444 445 446 447 448 449 450 451 452 453
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
454
	ts->sleep_length = ktime_sub(dev->next_event, now);
455 456

	return ret;
457 458
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
	}

	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		return false;

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

482 483
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
484 485 486 487 488 489 490 491 492 493
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
			       (unsigned int) local_softirq_pending());
			ratelimit++;
		}
		return false;
	}

	return true;
}

494 495
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
496
	ktime_t now, expires;
497
	int cpu = smp_processor_id();
498

499
	now = tick_nohz_start_idle(cpu, ts);
500

501 502 503 504
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
505 506 507 508 509 510

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
511 512 513 514

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
515 516 517 518 519 520 521
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
522
 *
523
 * The arch is responsible of calling:
524 525 526 527
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
528
 */
529
void tick_nohz_idle_enter(void)
530 531 532
{
	struct tick_sched *ts;

533 534
	WARN_ON_ONCE(irqs_disabled());

535 536 537 538 539 540 541 542
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

543 544
	local_irq_disable();

545 546 547 548 549 550 551
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
552
	__tick_nohz_idle_enter(ts);
553 554

	local_irq_enable();
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

572
	__tick_nohz_idle_enter(ts);
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

587 588 589
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
590
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
591 592 593 594 595 596

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
597
			hrtimer_start_expires(&ts->sched_timer,
598
					      HRTIMER_MODE_ABS_PINNED);
599 600 601 602
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
603 604
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
605 606
				break;
		}
607
		/* Reread time and update jiffies */
608
		now = ktime_get();
609
		tick_do_update_jiffies64(now);
610 611 612
	}
}

613
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
614 615 616
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
617
	update_cpu_load_nohz();
618

619
	calc_load_exit_idle();
620 621 622 623 624 625 626 627 628 629 630 631
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
632
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
633
	unsigned long ticks;
634 635 636 637 638 639 640 641 642
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
643 644 645
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
646 647
}

648
/**
649
 * tick_nohz_idle_exit - restart the idle tick from the idle task
650 651
 *
 * Restart the idle tick when the CPU is woken up from idle
652 653
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
654
 */
655
void tick_nohz_idle_exit(void)
656 657 658
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
659
	ktime_t now;
660

661
	local_irq_disable();
662

663 664 665 666 667
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
668 669 670 671
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
672

673
	if (ts->tick_stopped) {
674
		tick_nohz_restart_sched_tick(ts, now);
675
		tick_nohz_account_idle_ticks(ts);
676
	}
677 678 679 680 681 682 683

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
684
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
685 686 687 688 689 690 691 692 693 694 695 696 697
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

698
	tick_sched_do_timer(now);
699
	tick_sched_handle(ts, regs);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
735
		hrtimer_set_expires(&ts->sched_timer, next);
736 737 738 739 740 741 742
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

743 744 745 746 747 748 749 750 751 752 753
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
754
static void tick_nohz_kick_tick(int cpu, ktime_t now)
755
{
756 757 758
#if 0
	/* Switch back to 2.6.27 behaviour */

759
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
760
	ktime_t delta;
761

762 763 764 765
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
766
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
767 768 769 770
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
771
#endif
772 773
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

790 791 792
#else

static inline void tick_nohz_switch_to_nohz(void) { }
793
static inline void tick_check_nohz(int cpu) { }
794 795 796

#endif /* NO_HZ */

797 798 799 800 801
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
802
	tick_check_oneshot_broadcast(cpu);
803
	tick_check_nohz(cpu);
804 805
}

806 807 808 809 810
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
811
 * We rearm the timer until we get disabled by the idle code.
812
 * Called with interrupts disabled.
813 814 815 816 817 818 819
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
820

821
	tick_sched_do_timer(now);
822 823 824 825 826

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
827 828
	if (regs)
		tick_sched_handle(ts, regs);
829 830 831 832 833 834

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
835 836
static int sched_skew_tick;

837 838 839 840 841 842 843 844
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

845 846 847 848 849 850 851 852 853 854 855 856 857 858
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

859
	/* Get the next period (per cpu) */
860
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
861

M
Mike Galbraith 已提交
862 863 864 865 866 867 868 869
	/* Offset the tick to avert xtime_lock contention. */
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

870 871
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
872 873
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
874 875 876 877 878 879 880
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
881
	if (tick_nohz_enabled)
882 883 884
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
885
#endif /* HIGH_RES_TIMERS */
886

887
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
888 889 890 891
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

892
# ifdef CONFIG_HIGH_RES_TIMERS
893 894
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
895
# endif
896

897 898
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
899
#endif
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

940
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
941 942 943 944 945 946 947 948
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}