tick-sched.c 29.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24 25
#include <linux/posix-timers.h>
#include <linux/perf_event.h>
26
#include <linux/context_tracking.h>
27

28 29
#include <asm/irq_regs.h>

30 31
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
32 33
#include <trace/events/timer.h>

34 35 36
/*
 * Per cpu nohz control structure
 */
37
DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 39

/*
40
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 42 43
 */
static ktime_t last_jiffies_update;

44 45 46 47 48
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60 61 62 63
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

64 65
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87
	}
88
	write_sequnlock(&jiffies_lock);
89 90 91 92 93 94 95 96 97
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

98
	write_seqlock(&jiffies_lock);
99 100 101 102
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
103
	write_sequnlock(&jiffies_lock);
104 105 106
	return period;
}

107 108 109 110 111

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

112
#ifdef CONFIG_NO_HZ_COMMON
113 114 115 116 117
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
118
	 * jiffies_lock.
119
	 */
120
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
121
	    && !tick_nohz_full_cpu(cpu))
122 123 124 125 126 127 128 129
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

130 131
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
132
#ifdef CONFIG_NO_HZ_COMMON
133 134 135 136 137 138 139 140 141 142 143 144 145
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
146
#endif
147 148 149 150
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

151
#ifdef CONFIG_NO_HZ_FULL
152 153
static cpumask_var_t tick_nohz_full_mask;
bool tick_nohz_full_running;
154

155 156 157 158
static bool can_stop_full_tick(void)
{
	WARN_ON_ONCE(!irqs_disabled());

F
Frederic Weisbecker 已提交
159 160
	if (!sched_can_stop_tick()) {
		trace_tick_stop(0, "more than 1 task in runqueue\n");
161
		return false;
F
Frederic Weisbecker 已提交
162
	}
163

F
Frederic Weisbecker 已提交
164 165
	if (!posix_cpu_timers_can_stop_tick(current)) {
		trace_tick_stop(0, "posix timers running\n");
166
		return false;
F
Frederic Weisbecker 已提交
167
	}
168

F
Frederic Weisbecker 已提交
169 170
	if (!perf_event_can_stop_tick()) {
		trace_tick_stop(0, "perf events running\n");
171
		return false;
F
Frederic Weisbecker 已提交
172
	}
173 174 175 176 177 178 179

	/* sched_clock_tick() needs us? */
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
	/*
	 * TODO: kick full dynticks CPUs when
	 * sched_clock_stable is set.
	 */
F
Frederic Weisbecker 已提交
180 181
	if (!sched_clock_stable) {
		trace_tick_stop(0, "unstable sched clock\n");
182 183 184 185
		/*
		 * Don't allow the user to think they can get
		 * full NO_HZ with this machine.
		 */
186
		WARN_ONCE(tick_nohz_full_running,
187
			  "NO_HZ FULL will not work with unstable sched clock");
188
		return false;
F
Frederic Weisbecker 已提交
189
	}
190 191 192 193 194 195 196
#endif

	return true;
}

static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);

197 198 199 200
/*
 * Re-evaluate the need for the tick on the current CPU
 * and restart it if necessary.
 */
201
void tick_nohz_full_check(void)
202
{
203 204 205 206 207 208 209 210
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (tick_nohz_full_cpu(smp_processor_id())) {
		if (ts->tick_stopped && !is_idle_task(current)) {
			if (!can_stop_full_tick())
				tick_nohz_restart_sched_tick(ts, ktime_get());
		}
	}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

static void nohz_full_kick_work_func(struct irq_work *work)
{
	tick_nohz_full_check();
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
	.func = nohz_full_kick_work_func,
};

/*
 * Kick the current CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick(void)
{
	if (tick_nohz_full_cpu(smp_processor_id()))
		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
}

static void nohz_full_kick_ipi(void *info)
{
	tick_nohz_full_check();
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
243
	if (!tick_nohz_full_running)
244 245 246
		return;

	preempt_disable();
247
	smp_call_function_many(tick_nohz_full_mask,
248 249 250 251
			       nohz_full_kick_ipi, NULL, false);
	preempt_enable();
}

252 253 254 255 256 257 258 259 260 261 262
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
void tick_nohz_task_switch(struct task_struct *tsk)
{
	unsigned long flags;

	local_irq_save(flags);

263 264 265
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

266 267 268
	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
		tick_nohz_full_kick();

269
out:
270 271 272
	local_irq_restore(flags);
}

273
int tick_nohz_full_cpu(int cpu)
274
{
275
	if (!tick_nohz_full_running)
276 277
		return 0;

278
	return cpumask_test_cpu(cpu, tick_nohz_full_mask);
279 280 281
}

/* Parse the boot-time nohz CPU list from the kernel parameters. */
282
static int __init tick_nohz_full_setup(char *str)
283
{
284 285
	int cpu;

286 287
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
288
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
289 290 291 292
		return 1;
	}

	cpu = smp_processor_id();
293
	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
294
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
295
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
296
	}
297
	tick_nohz_full_running = true;
298

299 300
	return 1;
}
301
__setup("nohz_full=", tick_nohz_full_setup);
302

303
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
304 305 306 307 308 309 310 311 312 313 314
						 unsigned long action,
						 void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
		 * If we handle the timekeeping duty for full dynticks CPUs,
		 * we can't safely shutdown that CPU.
		 */
315
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
316
			return NOTIFY_BAD;
317 318 319 320 321
		break;
	}
	return NOTIFY_OK;
}

322 323 324 325 326
/*
 * Worst case string length in chunks of CPU range seems 2 steps
 * separations: 0,2,4,6,...
 * This is NR_CPUS + sizeof('\0')
 */
327
static char __initdata nohz_full_buf[NR_CPUS + 1];
328

329 330 331 332 333
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
334
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
335 336 337 338
		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
		return err;
	}
	err = 0;
339 340 341
	cpumask_setall(tick_nohz_full_mask);
	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
	tick_nohz_full_running = true;
342 343 344 345
#endif
	return err;
}

346
void __init tick_nohz_init(void)
347
{
348 349
	int cpu;

350
	if (!tick_nohz_full_running) {
351 352 353
		if (tick_nohz_init_all() < 0)
			return;
	}
354

355
	for_each_cpu(cpu, tick_nohz_full_mask)
356 357
		context_tracking_cpu_set(cpu);

358
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
359
	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
360
	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
361 362
}
#else
363
#define tick_nohz_full_running (0)
364 365
#endif

366 367 368
/*
 * NOHZ - aka dynamic tick functionality
 */
369
#ifdef CONFIG_NO_HZ_COMMON
370 371 372
/*
 * NO HZ enabled ?
 */
373
int tick_nohz_enabled __read_mostly  = 1;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
401
static void tick_nohz_update_jiffies(ktime_t now)
402 403 404 405 406
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

407
	ts->idle_waketime = now;
408 409 410 411

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
412 413

	touch_softlockup_watchdog();
414 415
}

416 417 418
/*
 * Updates the per cpu time idle statistics counters
 */
419
static void
420
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
421
{
422
	ktime_t delta;
423

424 425
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
426
		if (nr_iowait_cpu(cpu) > 0)
427
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
428 429
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
430
		ts->idle_entrytime = now;
431
	}
432

433
	if (last_update_time)
434 435
		*last_update_time = ktime_to_us(now);

436 437 438 439 440 441
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

442
	update_ts_time_stats(cpu, ts, now, NULL);
443
	ts->idle_active = 0;
444

445
	sched_clock_idle_wakeup_event(0);
446 447
}

448
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
449
{
450
	ktime_t now = ktime_get();
451

452 453
	ts->idle_entrytime = now;
	ts->idle_active = 1;
454
	sched_clock_idle_sleep_event();
455 456 457
	return now;
}

458 459 460
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
461 462
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
463 464
 *
 * Return the cummulative idle time (since boot) for a given
465
 * CPU, in microseconds.
466 467 468 469 470 471
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
472 473 474
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
475
	ktime_t now, idle;
476

477 478 479
	if (!tick_nohz_enabled)
		return -1;

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
495

496
}
497
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
498

499
/**
500 501
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
502 503
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
504 505 506 507 508 509 510 511 512 513 514 515
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
516
	ktime_t now, iowait;
517 518 519 520

	if (!tick_nohz_enabled)
		return -1;

521 522 523 524 525 526 527
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
528

529 530 531 532 533
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
534

535
	return ktime_to_us(iowait);
536 537 538
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

539 540
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
541
{
542
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
543
	ktime_t last_update, expires, ret = { .tv64 = 0 };
544
	unsigned long rcu_delta_jiffies;
545
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
546
	u64 time_delta;
547 548 549

	/* Read jiffies and the time when jiffies were updated last */
	do {
550
		seq = read_seqbegin(&jiffies_lock);
551 552
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
553
		time_delta = timekeeping_max_deferment();
554
	} while (read_seqretry(&jiffies_lock, seq));
555

556
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
557
	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
558
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
559
		delta_jiffies = 1;
560 561 562 563
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
564 565 566 567
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
568
	}
569

570
	/*
571 572
	 * Do not stop the tick, if we are only one off (or less)
	 * or if the cpu is required for RCU:
573
	 */
574
	if (!ts->tick_stopped && delta_jiffies <= 1)
575 576 577 578 579
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

580 581 582 583 584 585
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
586 587 588 589 590 591
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
592
		 */
T
Thomas Gleixner 已提交
593
		if (cpu == tick_do_timer_cpu) {
594
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
595 596 597 598 599 600 601 602
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

603 604 605 606 607 608 609
#ifdef CONFIG_NO_HZ_FULL
		if (!ts->inidle) {
			time_delta = min(time_delta,
					 scheduler_tick_max_deferment());
		}
#endif

610
		/*
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
628

T
Thomas Gleixner 已提交
629 630 631 632
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
633 634 635 636 637

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

638 639
		ret = expires;

640 641 642 643 644 645 646 647
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
648
			nohz_balance_enter_idle(cpu);
649
			calc_load_enter_idle();
650

651
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
652
			ts->tick_stopped = 1;
F
Frederic Weisbecker 已提交
653
			trace_tick_stop(1, " ");
654
		}
655

656
		/*
657 658
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
659
		 */
660
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
661 662 663 664 665
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

666 667
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
668
				      HRTIMER_MODE_ABS_PINNED);
669 670 671
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
672
		} else if (!tick_program_event(expires, 0))
673 674 675 676 677 678 679 680 681 682 683 684
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
685
	ts->sleep_length = ktime_sub(dev->next_event, now);
686 687

	return ret;
688 689
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static void tick_nohz_full_stop_tick(struct tick_sched *ts)
{
#ifdef CONFIG_NO_HZ_FULL
       int cpu = smp_processor_id();

       if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
               return;

       if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
	       return;

       if (!can_stop_full_tick())
               return;

       tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
#endif
}

708 709 710 711 712 713 714 715 716 717 718 719
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
720
		return false;
721 722 723 724 725 726 727 728 729 730 731
	}

	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		return false;

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

732 733
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
734 735
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
736 737 738 739 740
			ratelimit++;
		}
		return false;
	}

741
	if (tick_nohz_full_running) {
742 743 744 745 746 747 748 749 750 751 752 753 754 755
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

756 757 758
	return true;
}

759 760
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
761
	ktime_t now, expires;
762
	int cpu = smp_processor_id();
763

764
	now = tick_nohz_start_idle(cpu, ts);
765

766 767 768 769
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
770 771 772 773 774 775

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
776 777 778 779

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
780 781 782 783 784 785 786
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
787
 *
788
 * The arch is responsible of calling:
789 790 791 792
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
793
 */
794
void tick_nohz_idle_enter(void)
795 796 797
{
	struct tick_sched *ts;

798 799
	WARN_ON_ONCE(irqs_disabled());

800 801 802 803 804 805 806 807
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

808 809
	local_irq_disable();

810 811 812 813 814 815 816
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
817
	__tick_nohz_idle_enter(ts);
818 819

	local_irq_enable();
820
}
821
EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
822 823 824 825 826 827 828 829 830 831 832 833 834

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

835 836 837 838 839 840 841
	if (ts->inidle) {
		/* Cancel the timer because CPU already waken up from the C-states*/
		menu_hrtimer_cancel();
		__tick_nohz_idle_enter(ts);
	} else {
		tick_nohz_full_stop_tick(ts);
	}
842 843
}

844 845 846 847 848 849 850 851 852 853 854 855
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

856 857 858
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
859
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
860 861 862 863 864 865

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
866
			hrtimer_start_expires(&ts->sched_timer,
867
					      HRTIMER_MODE_ABS_PINNED);
868 869 870 871
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
872 873
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
874 875
				break;
		}
876
		/* Reread time and update jiffies */
877
		now = ktime_get();
878
		tick_do_update_jiffies64(now);
879 880 881
	}
}

882
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
883 884 885
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
886
	update_cpu_load_nohz();
887

888
	calc_load_exit_idle();
889 890 891 892 893 894 895 896 897 898 899 900
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
901
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
902
	unsigned long ticks;
903 904 905

	if (vtime_accounting_enabled())
		return;
906 907 908 909 910 911 912 913 914
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
915 916 917
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
918 919
}

920
/**
921
 * tick_nohz_idle_exit - restart the idle tick from the idle task
922 923
 *
 * Restart the idle tick when the CPU is woken up from idle
924 925
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
926
 */
927
void tick_nohz_idle_exit(void)
928 929 930
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
931
	ktime_t now;
932

933
	local_irq_disable();
934

935 936 937 938
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

939 940
	/* Cancel the timer because CPU already waken up from the C-states*/
	menu_hrtimer_cancel();
941
	if (ts->idle_active || ts->tick_stopped)
942 943 944 945
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
946

947
	if (ts->tick_stopped) {
948
		tick_nohz_restart_sched_tick(ts, now);
949
		tick_nohz_account_idle_ticks(ts);
950
	}
951 952 953

	local_irq_enable();
}
954
EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
955 956 957 958

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
959
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
960 961 962 963 964 965 966 967 968 969 970 971 972
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

973
	tick_sched_do_timer(now);
974
	tick_sched_handle(ts, regs);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
1010
		hrtimer_set_expires(&ts->sched_timer, next);
1011 1012 1013 1014 1015 1016 1017
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1029
static void tick_nohz_kick_tick(int cpu, ktime_t now)
1030
{
1031 1032 1033
#if 0
	/* Switch back to 2.6.27 behaviour */

1034
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1035
	ktime_t delta;
1036

1037 1038 1039 1040
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1041
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1042 1043 1044 1045
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1046
#endif
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

1065 1066 1067
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1068
static inline void tick_check_nohz(int cpu) { }
1069

1070
#endif /* CONFIG_NO_HZ_COMMON */
1071

1072 1073 1074 1075 1076
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
1077
	tick_check_oneshot_broadcast(cpu);
1078
	tick_check_nohz(cpu);
1079 1080
}

1081 1082 1083 1084 1085
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1086
 * We rearm the timer until we get disabled by the idle code.
1087
 * Called with interrupts disabled.
1088 1089 1090 1091 1092 1093 1094
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1095

1096
	tick_sched_do_timer(now);
1097 1098 1099 1100 1101

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1102 1103
	if (regs)
		tick_sched_handle(ts, regs);
1104 1105 1106 1107 1108 1109

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1110 1111
static int sched_skew_tick;

1112 1113 1114 1115 1116 1117 1118 1119
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1134
	/* Get the next period (per cpu) */
1135
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1136

1137
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1138 1139 1140 1141 1142 1143 1144
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1145 1146
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
1147 1148
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
1149 1150 1151 1152 1153 1154
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

1155
#ifdef CONFIG_NO_HZ_COMMON
1156
	if (tick_nohz_enabled)
1157 1158 1159
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
1160
#endif /* HIGH_RES_TIMERS */
1161

1162
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1163 1164 1165 1166
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1167
# ifdef CONFIG_HIGH_RES_TIMERS
1168 1169
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1170
# endif
1171

1172
	memset(ts, 0, sizeof(*ts));
1173
}
1174
#endif
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1215
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1216 1217 1218 1219 1220 1221 1222 1223
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}