tick-sched.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24 25
#include <linux/posix-timers.h>
#include <linux/perf_event.h>
26
#include <linux/context_tracking.h>
27

28 29
#include <asm/irq_regs.h>

30 31
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
32 33
#include <trace/events/timer.h>

34 35 36
/*
 * Per cpu nohz control structure
 */
37
DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 39

/*
40
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 42 43
 */
static ktime_t last_jiffies_update;

44 45 46 47 48
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

49 50 51 52 53 54 55 56
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

57
	/*
58
	 * Do a quick check without holding jiffies_lock:
59 60 61 62 63
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

64 65
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
84 85 86

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 88 89
	} else {
		write_sequnlock(&jiffies_lock);
		return;
90
	}
91
	write_sequnlock(&jiffies_lock);
92
	update_wall_time();
93 94 95 96 97 98 99 100 101
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

102
	write_seqlock(&jiffies_lock);
103 104 105 106
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
107
	write_sequnlock(&jiffies_lock);
108 109 110
	return period;
}

111 112 113 114 115

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

116
#ifdef CONFIG_NO_HZ_COMMON
117 118 119 120 121
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
122
	 * jiffies_lock.
123
	 */
124
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125
	    && !tick_nohz_full_cpu(cpu))
126 127 128 129 130 131 132 133
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

134 135
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
136
#ifdef CONFIG_NO_HZ_COMMON
137 138 139 140 141 142 143 144 145 146 147 148 149
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
150
#endif
151 152 153 154
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

155
#ifdef CONFIG_NO_HZ_FULL
156
cpumask_var_t tick_nohz_full_mask;
157
cpumask_var_t housekeeping_mask;
158
bool tick_nohz_full_running;
159

160 161 162 163
static bool can_stop_full_tick(void)
{
	WARN_ON_ONCE(!irqs_disabled());

F
Frederic Weisbecker 已提交
164 165
	if (!sched_can_stop_tick()) {
		trace_tick_stop(0, "more than 1 task in runqueue\n");
166
		return false;
F
Frederic Weisbecker 已提交
167
	}
168

F
Frederic Weisbecker 已提交
169 170
	if (!posix_cpu_timers_can_stop_tick(current)) {
		trace_tick_stop(0, "posix timers running\n");
171
		return false;
F
Frederic Weisbecker 已提交
172
	}
173

F
Frederic Weisbecker 已提交
174 175
	if (!perf_event_can_stop_tick()) {
		trace_tick_stop(0, "perf events running\n");
176
		return false;
F
Frederic Weisbecker 已提交
177
	}
178 179 180 181 182 183 184

	/* sched_clock_tick() needs us? */
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
	/*
	 * TODO: kick full dynticks CPUs when
	 * sched_clock_stable is set.
	 */
185
	if (!sched_clock_stable()) {
F
Frederic Weisbecker 已提交
186
		trace_tick_stop(0, "unstable sched clock\n");
187 188 189 190
		/*
		 * Don't allow the user to think they can get
		 * full NO_HZ with this machine.
		 */
191
		WARN_ONCE(tick_nohz_full_running,
192
			  "NO_HZ FULL will not work with unstable sched clock");
193
		return false;
F
Frederic Weisbecker 已提交
194
	}
195 196 197 198 199 200 201
#endif

	return true;
}

static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);

202 203 204 205
/*
 * Re-evaluate the need for the tick on the current CPU
 * and restart it if necessary.
 */
206
void __tick_nohz_full_check(void)
207
{
208 209 210 211 212 213 214 215
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (tick_nohz_full_cpu(smp_processor_id())) {
		if (ts->tick_stopped && !is_idle_task(current)) {
			if (!can_stop_full_tick())
				tick_nohz_restart_sched_tick(ts, ktime_get());
		}
	}
216 217 218 219
}

static void nohz_full_kick_work_func(struct irq_work *work)
{
220
	__tick_nohz_full_check();
221 222 223 224 225 226 227
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
	.func = nohz_full_kick_work_func,
};

/*
228
 * Kick the CPU if it's full dynticks in order to force it to
229 230
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
231
void tick_nohz_full_kick_cpu(int cpu)
232
{
233 234 235 236
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
237 238 239 240
}

static void nohz_full_kick_ipi(void *info)
{
241
	__tick_nohz_full_check();
242 243 244 245 246 247 248 249
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
250
	if (!tick_nohz_full_running)
251 252 253
		return;

	preempt_disable();
254
	smp_call_function_many(tick_nohz_full_mask,
255
			       nohz_full_kick_ipi, NULL, false);
256
	tick_nohz_full_kick();
257 258 259
	preempt_enable();
}

260 261 262 263 264
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix cpu timers, ...
 */
265
void __tick_nohz_task_switch(struct task_struct *tsk)
266 267 268 269 270
{
	unsigned long flags;

	local_irq_save(flags);

271 272 273
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

274 275 276
	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
		tick_nohz_full_kick();

277
out:
278 279 280
	local_irq_restore(flags);
}

281
/* Parse the boot-time nohz CPU list from the kernel parameters. */
282
static int __init tick_nohz_full_setup(char *str)
283
{
284 285
	int cpu;

286
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
287
	alloc_bootmem_cpumask_var(&housekeeping_mask);
288
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
289
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
290 291 292 293
		return 1;
	}

	cpu = smp_processor_id();
294
	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
295
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
296
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
297
	}
298 299
	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);
300
	tick_nohz_full_running = true;
301

302 303
	return 1;
}
304
__setup("nohz_full=", tick_nohz_full_setup);
305

306
static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
307 308 309 310 311 312 313 314 315 316 317
						 unsigned long action,
						 void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
		 * If we handle the timekeeping duty for full dynticks CPUs,
		 * we can't safely shutdown that CPU.
		 */
318
		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
319
			return NOTIFY_BAD;
320 321 322 323 324
		break;
	}
	return NOTIFY_OK;
}

325 326 327 328 329
/*
 * Worst case string length in chunks of CPU range seems 2 steps
 * separations: 0,2,4,6,...
 * This is NR_CPUS + sizeof('\0')
 */
330
static char __initdata nohz_full_buf[NR_CPUS + 1];
331

332 333 334 335 336
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
337
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
338 339 340
		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
		return err;
	}
341 342 343 344
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		pr_err("NO_HZ: Can't allocate not-full dynticks cpumask\n");
		return err;
	}
345
	err = 0;
346 347
	cpumask_setall(tick_nohz_full_mask);
	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
348 349
	cpumask_clear(housekeeping_mask);
	cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
350
	tick_nohz_full_running = true;
351 352 353 354
#endif
	return err;
}

355
void __init tick_nohz_init(void)
356
{
357 358
	int cpu;

359
	if (!tick_nohz_full_running) {
360 361 362
		if (tick_nohz_init_all() < 0)
			return;
	}
363

364
	for_each_cpu(cpu, tick_nohz_full_mask)
365 366
		context_tracking_cpu_set(cpu);

367
	cpu_notifier(tick_nohz_cpu_down_callback, 0);
368
	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
369
	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
370 371 372
}
#endif

373 374 375
/*
 * NOHZ - aka dynamic tick functionality
 */
376
#ifdef CONFIG_NO_HZ_COMMON
377 378 379
/*
 * NO HZ enabled ?
 */
380 381
static int tick_nohz_enabled __read_mostly  = 1;
int tick_nohz_active  __read_mostly;
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
408
static void tick_nohz_update_jiffies(ktime_t now)
409 410 411
{
	unsigned long flags;

412
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
413 414 415 416

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
417 418

	touch_softlockup_watchdog();
419 420
}

421 422 423
/*
 * Updates the per cpu time idle statistics counters
 */
424
static void
425
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
426
{
427
	ktime_t delta;
428

429 430
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
431
		if (nr_iowait_cpu(cpu) > 0)
432
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
433 434
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
435
		ts->idle_entrytime = now;
436
	}
437

438
	if (last_update_time)
439 440
		*last_update_time = ktime_to_us(now);

441 442
}

443
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
444
{
445
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
446
	ts->idle_active = 0;
447

448
	sched_clock_idle_wakeup_event(0);
449 450
}

451
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
452
{
453
	ktime_t now = ktime_get();
454

455 456
	ts->idle_entrytime = now;
	ts->idle_active = 1;
457
	sched_clock_idle_sleep_event();
458 459 460
	return now;
}

461 462 463
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
464 465
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
466 467
 *
 * Return the cummulative idle time (since boot) for a given
468
 * CPU, in microseconds.
469 470 471 472 473 474
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
475 476 477
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
478
	ktime_t now, idle;
479

480
	if (!tick_nohz_active)
481 482
		return -1;

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
498

499
}
500
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
501

502
/**
503 504
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
505 506
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
507 508 509 510 511 512 513 514 515 516 517 518
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
519
	ktime_t now, iowait;
520

521
	if (!tick_nohz_active)
522 523
		return -1;

524 525 526 527 528 529 530
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
531

532 533 534 535 536
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
537

538
	return ktime_to_us(iowait);
539 540 541
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

542 543
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
544
{
545
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
546
	ktime_t last_update, expires, ret = { .tv64 = 0 };
547
	unsigned long rcu_delta_jiffies;
548
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
549
	u64 time_delta;
550

551 552
	time_delta = timekeeping_max_deferment();

553 554
	/* Read jiffies and the time when jiffies were updated last */
	do {
555
		seq = read_seqbegin(&jiffies_lock);
556 557
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
558
	} while (read_seqretry(&jiffies_lock, seq));
559

560
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
561
	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
562
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
563
		delta_jiffies = 1;
564 565 566 567
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
568 569 570 571
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
572
	}
573

574
	/*
575 576
	 * Do not stop the tick, if we are only one off (or less)
	 * or if the cpu is required for RCU:
577
	 */
578
	if (!ts->tick_stopped && delta_jiffies <= 1)
579 580 581 582 583
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

584 585 586 587 588 589
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
590 591 592 593 594 595
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
596
		 */
T
Thomas Gleixner 已提交
597
		if (cpu == tick_do_timer_cpu) {
598
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
599 600 601 602 603 604 605 606
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

607 608 609 610 611 612 613
#ifdef CONFIG_NO_HZ_FULL
		if (!ts->inidle) {
			time_delta = min(time_delta,
					 scheduler_tick_max_deferment());
		}
#endif

614
		/*
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
632

T
Thomas Gleixner 已提交
633 634 635 636
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
637 638 639 640 641

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

642 643
		ret = expires;

644 645 646 647 648 649 650 651
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
652
			nohz_balance_enter_idle(cpu);
653
			calc_load_enter_idle();
654

655
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
656
			ts->tick_stopped = 1;
F
Frederic Weisbecker 已提交
657
			trace_tick_stop(1, " ");
658
		}
659

660
		/*
661 662
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
663
		 */
664
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
665 666 667 668 669
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

670 671
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
672
				      HRTIMER_MODE_ABS_PINNED);
673 674 675
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
676
		} else if (!tick_program_event(expires, 0))
677 678 679 680 681 682 683 684 685 686 687 688
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
689
	ts->sleep_length = ktime_sub(dev->next_event, now);
690 691

	return ret;
692 693
}

694 695 696
static void tick_nohz_full_stop_tick(struct tick_sched *ts)
{
#ifdef CONFIG_NO_HZ_FULL
697
	int cpu = smp_processor_id();
698

699 700
	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
		return;
701

702 703
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
704

705 706
	if (!can_stop_full_tick())
		return;
707

708
	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
709 710 711
#endif
}

712 713 714 715 716 717 718 719 720 721 722 723
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
724
		return false;
725 726
	}

727 728
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
729
		return false;
730
	}
731 732 733 734 735 736 737

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

738 739
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
740 741
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
742 743 744 745 746
			ratelimit++;
		}
		return false;
	}

747
	if (tick_nohz_full_enabled()) {
748 749 750 751 752 753 754 755 756 757 758 759 760 761
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

762 763 764
	return true;
}

765 766
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
767
	ktime_t now, expires;
768
	int cpu = smp_processor_id();
769

770
	now = tick_nohz_start_idle(ts);
771

772 773 774 775
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
776 777 778 779 780 781

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
782 783 784 785

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
786 787 788 789 790 791 792
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
793
 *
794
 * The arch is responsible of calling:
795 796 797 798
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
799
 */
800
void tick_nohz_idle_enter(void)
801 802 803
{
	struct tick_sched *ts;

804 805
	WARN_ON_ONCE(irqs_disabled());

806 807 808 809 810 811 812 813
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

814 815
	local_irq_disable();

816 817
	ts = &__get_cpu_var(tick_cpu_sched);
	ts->inidle = 1;
818
	__tick_nohz_idle_enter(ts);
819 820

	local_irq_enable();
821
}
822
EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
823 824 825 826 827 828 829 830 831 832 833 834 835

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

836
	if (ts->inidle)
837
		__tick_nohz_idle_enter(ts);
838
	else
839
		tick_nohz_full_stop_tick(ts);
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

854 855 856
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
857
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
858 859 860 861 862 863

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
864
			hrtimer_start_expires(&ts->sched_timer,
865
					      HRTIMER_MODE_ABS_PINNED);
866 867 868 869
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
870 871
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
872 873
				break;
		}
874
		/* Reread time and update jiffies */
875
		now = ktime_get();
876
		tick_do_update_jiffies64(now);
877 878 879
	}
}

880
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
881 882 883
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
884
	update_cpu_load_nohz();
885

886
	calc_load_exit_idle();
887 888 889 890 891 892 893 894 895 896 897 898
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
899
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
900
	unsigned long ticks;
901 902 903

	if (vtime_accounting_enabled())
		return;
904 905 906 907 908 909 910 911 912
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
913 914 915
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
916 917
}

918
/**
919
 * tick_nohz_idle_exit - restart the idle tick from the idle task
920 921
 *
 * Restart the idle tick when the CPU is woken up from idle
922 923
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
924
 */
925
void tick_nohz_idle_exit(void)
926
{
927
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
928
	ktime_t now;
929

930
	local_irq_disable();
931

932 933 934 935 936
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
937 938 939
		now = ktime_get();

	if (ts->idle_active)
940
		tick_nohz_stop_idle(ts, now);
941

942
	if (ts->tick_stopped) {
943
		tick_nohz_restart_sched_tick(ts, now);
944
		tick_nohz_account_idle_ticks(ts);
945
	}
946 947 948

	local_irq_enable();
}
949
EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
950 951 952 953

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
954
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
955 956 957 958 959 960 961 962 963 964 965 966 967
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

968
	tick_sched_do_timer(now);
969
	tick_sched_handle(ts, regs);
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

985
	if (!tick_nohz_enabled)
986 987 988 989 990 991 992
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}
993
	tick_nohz_active = 1;
994 995 996 997 998 999 1000 1001 1002 1003 1004
	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
1005
		hrtimer_set_expires(&ts->sched_timer, next);
1006 1007 1008 1009 1010 1011 1012
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
1024
static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1025
{
1026 1027
#if 0
	/* Switch back to 2.6.27 behaviour */
1028
	ktime_t delta;
1029

1030 1031 1032 1033
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
1034
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1035 1036 1037 1038
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
1039
#endif
1040 1041
}

1042
static inline void tick_nohz_irq_enter(void)
1043
{
1044
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1045 1046 1047 1048 1049 1050
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1051
		tick_nohz_stop_idle(ts, now);
1052 1053
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
1054
		tick_nohz_kick_tick(ts, now);
1055 1056 1057
	}
}

1058 1059 1060
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1061
static inline void tick_nohz_irq_enter(void) { }
1062

1063
#endif /* CONFIG_NO_HZ_COMMON */
1064

1065 1066 1067
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1068
void tick_irq_enter(void)
1069
{
1070
	tick_check_oneshot_broadcast_this_cpu();
1071
	tick_nohz_irq_enter();
1072 1073
}

1074 1075 1076 1077 1078
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1079
 * We rearm the timer until we get disabled by the idle code.
1080
 * Called with interrupts disabled.
1081 1082 1083 1084 1085 1086 1087
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1088

1089
	tick_sched_do_timer(now);
1090 1091 1092 1093 1094

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1095 1096
	if (regs)
		tick_sched_handle(ts, regs);
1097 1098 1099 1100 1101 1102

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1103 1104
static int sched_skew_tick;

1105 1106 1107 1108 1109 1110 1111 1112
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1127
	/* Get the next period (per cpu) */
1128
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1129

1130
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1131 1132 1133 1134 1135 1136 1137
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1138 1139
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
1140 1141
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
1142 1143 1144 1145 1146 1147
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

1148
#ifdef CONFIG_NO_HZ_COMMON
1149
	if (tick_nohz_enabled) {
1150
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1151 1152
		tick_nohz_active = 1;
	}
1153 1154
#endif
}
1155
#endif /* HIGH_RES_TIMERS */
1156

1157
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1158 1159 1160 1161
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1162
# ifdef CONFIG_HIGH_RES_TIMERS
1163 1164
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1165
# endif
1166

1167
	memset(ts, 0, sizeof(*ts));
1168
}
1169
#endif
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1210
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1211 1212 1213 1214 1215 1216 1217 1218
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}