tick-sched.c 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
20
#include <linux/nmi.h>
21
#include <linux/profile.h>
22
#include <linux/sched/signal.h>
23
#include <linux/sched/clock.h>
24
#include <linux/sched/stat.h>
25
#include <linux/sched/nohz.h>
26
#include <linux/module.h>
27
#include <linux/irq_work.h>
28
#include <linux/posix-timers.h>
29
#include <linux/context_tracking.h>
30

31 32
#include <asm/irq_regs.h>

33 34
#include "tick-internal.h"

F
Frederic Weisbecker 已提交
35 36
#include <trace/events/timer.h>

37
/*
38
 * Per-CPU nohz control structure
39
 */
40
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41

42 43 44 45 46
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

47 48 49 50 51 52
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 */
static ktime_t last_jiffies_update;

53 54 55 56 57 58 59 60
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

61
	/*
62
	 * Do a quick check without holding jiffies_lock:
63 64
	 */
	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
65
	if (delta < tick_period)
66 67
		return;

W
Wei Jiangang 已提交
68
	/* Reevaluate with jiffies_lock held */
69
	write_seqlock(&jiffies_lock);
70 71

	delta = ktime_sub(now, last_jiffies_update);
T
Thomas Gleixner 已提交
72
	if (delta >= tick_period) {
73 74 75 76 77 78

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
T
Thomas Gleixner 已提交
79
		if (unlikely(delta >= tick_period)) {
80 81 82 83 84 85 86 87
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
88 89 90

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
91 92 93
	} else {
		write_sequnlock(&jiffies_lock);
		return;
94
	}
95
	write_sequnlock(&jiffies_lock);
96
	update_wall_time();
97 98 99 100 101 102 103 104 105
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

106
	write_seqlock(&jiffies_lock);
107
	/* Did we start the jiffies update yet ? */
T
Thomas Gleixner 已提交
108
	if (last_jiffies_update == 0)
109 110
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
111
	write_sequnlock(&jiffies_lock);
112 113 114
	return period;
}

115 116 117 118 119

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

120
#ifdef CONFIG_NO_HZ_COMMON
121 122
	/*
	 * Check if the do_timer duty was dropped. We don't care about
123 124
	 * concurrency: This happens only when the CPU in charge went
	 * into a long sleep. If two CPUs happen to assign themselves to
125
	 * this duty, then the jiffies update is still serialized by
126
	 * jiffies_lock.
127
	 */
128
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
129
	    && !tick_nohz_full_cpu(cpu))
130 131 132 133 134 135 136 137
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

138 139
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
140
#ifdef CONFIG_NO_HZ_COMMON
141 142 143 144 145 146 147 148 149
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
150
		touch_softlockup_watchdog_sched();
151 152 153
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
154
#endif
155 156 157
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}
158
#endif
159

160
#ifdef CONFIG_NO_HZ_FULL
161
cpumask_var_t tick_nohz_full_mask;
162
cpumask_var_t housekeeping_mask;
163
bool tick_nohz_full_running;
164
static atomic_t tick_dep_mask;
165

166
static bool check_tick_dependency(atomic_t *dep)
167
{
168 169 170
	int val = atomic_read(dep);

	if (val & TICK_DEP_MASK_POSIX_TIMER) {
171
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
172
		return true;
173 174
	}

175
	if (val & TICK_DEP_MASK_PERF_EVENTS) {
176
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
177
		return true;
178 179
	}

180
	if (val & TICK_DEP_MASK_SCHED) {
181
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
182
		return true;
183 184
	}

185
	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
186
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
187 188 189 190
		return true;
	}

	return false;
191 192
}

193
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
194 195 196
{
	WARN_ON_ONCE(!irqs_disabled());

197 198 199
	if (unlikely(!cpu_online(cpu)))
		return false;

200
	if (check_tick_dependency(&tick_dep_mask))
201 202
		return false;

203
	if (check_tick_dependency(&ts->tick_dep_mask))
204 205
		return false;

206
	if (check_tick_dependency(&current->tick_dep_mask))
207 208
		return false;

209
	if (check_tick_dependency(&current->signal->tick_dep_mask))
210 211
		return false;

212 213 214
	return true;
}

215
static void nohz_full_kick_func(struct irq_work *work)
216
{
217
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
218 219 220
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
221
	.func = nohz_full_kick_func,
222 223
};

224 225 226 227 228 229
/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
230
static void tick_nohz_full_kick(void)
231 232 233 234
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

235
	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
236 237
}

238
/*
239
 * Kick the CPU if it's full dynticks in order to force it to
240 241
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
242
void tick_nohz_full_kick_cpu(int cpu)
243
{
244 245 246 247
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
248 249 250 251 252 253
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
254
static void tick_nohz_full_kick_all(void)
255
{
256 257
	int cpu;

258
	if (!tick_nohz_full_running)
259 260 261
		return;

	preempt_disable();
262 263
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
264 265 266
	preempt_enable();
}

267
static void tick_nohz_dep_set_all(atomic_t *dep,
268 269
				  enum tick_dep_bits bit)
{
270
	int prev;
271

272
	prev = atomic_fetch_or(BIT(bit), dep);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * by unstable clock.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
288
	atomic_andnot(BIT(bit), &tick_dep_mask);
289 290 291 292 293 294 295 296
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage events throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
297
	int prev;
298 299 300 301
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

302
	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote irq work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

321
	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
}

/*
 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 * per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	/*
	 * We could optimize this with just kicking the target running the task
	 * if that noise matters for nohz full users.
	 */
	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
339
	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
340 341 342 343 344 345 346 347 348 349 350 351 352
}

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
353
	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
354 355
}

356 357 358
/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
359
 * perf events, posix CPU timers, ...
360
 */
361
void __tick_nohz_task_switch(void)
362 363
{
	unsigned long flags;
364
	struct tick_sched *ts;
365 366 367

	local_irq_save(flags);

368 369 370
	if (!tick_nohz_full_cpu(smp_processor_id()))
		goto out;

371
	ts = this_cpu_ptr(&tick_cpu_sched);
372

373
	if (ts->tick_stopped) {
374 375
		if (atomic_read(&current->tick_dep_mask) ||
		    atomic_read(&current->signal->tick_dep_mask))
376 377
			tick_nohz_full_kick();
	}
378
out:
379 380 381
	local_irq_restore(flags);
}

382
/* Parse the boot-time nohz CPU list from the kernel parameters. */
383
static int __init tick_nohz_full_setup(char *str)
384
{
385 386
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
387
		pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
388
		free_bootmem_cpumask_var(tick_nohz_full_mask);
389 390
		return 1;
	}
391
	tick_nohz_full_running = true;
392

393 394
	return 1;
}
395
__setup("nohz_full=", tick_nohz_full_setup);
396

397
static int tick_nohz_cpu_down(unsigned int cpu)
398
{
399 400 401 402 403 404 405 406
	/*
	 * The boot CPU handles housekeeping duty (unbound timers,
	 * workqueues, timekeeping, ...) on behalf of full dynticks
	 * CPUs. It must remain online when nohz full is enabled.
	 */
	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
		return -EBUSY;
	return 0;
407 408
}

409 410 411 412 413
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
414
	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
415
		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
416 417
		return err;
	}
418
	err = 0;
419 420
	cpumask_setall(tick_nohz_full_mask);
	tick_nohz_full_running = true;
421 422 423 424
#endif
	return err;
}

425
void __init tick_nohz_init(void)
426
{
427
	int cpu, ret;
428

429
	if (!tick_nohz_full_running) {
430 431 432
		if (tick_nohz_init_all() < 0)
			return;
	}
433

434 435 436 437 438 439 440
	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

441 442 443 444 445 446
	/*
	 * Full dynticks uses irq work to drive the tick rescheduling on safe
	 * locking contexts. But then we need irq work to raise its own
	 * interrupts to avoid circular dependency on the tick
	 */
	if (!arch_irq_work_has_interrupt()) {
447
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
448 449 450 451 452 453
		cpumask_clear(tick_nohz_full_mask);
		cpumask_copy(housekeeping_mask, cpu_possible_mask);
		tick_nohz_full_running = false;
		return;
	}

454 455 456
	cpu = smp_processor_id();

	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
457 458
		pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
			cpu);
459 460 461 462 463 464
		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
	}

	cpumask_andnot(housekeeping_mask,
		       cpu_possible_mask, tick_nohz_full_mask);

465
	for_each_cpu(cpu, tick_nohz_full_mask)
466 467
		context_tracking_cpu_set(cpu);

468 469 470 471
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"kernel/nohz:predown", NULL,
					tick_nohz_cpu_down);
	WARN_ON(ret < 0);
472 473
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
474 475 476 477 478 479

	/*
	 * We need at least one CPU to handle housekeeping work such
	 * as timekeeping, unbound timers, workqueues, ...
	 */
	WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
480 481 482
}
#endif

483 484 485
/*
 * NOHZ - aka dynamic tick functionality
 */
486
#ifdef CONFIG_NO_HZ_COMMON
487 488 489
/*
 * NO HZ enabled ?
 */
490
bool tick_nohz_enabled __read_mostly  = true;
491
unsigned long tick_nohz_active  __read_mostly;
492 493 494 495 496
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
497
	return (kstrtobool(str, &tick_nohz_enabled) == 0);
498 499 500 501
}

__setup("nohz=", setup_tick_nohz);

502 503 504 505 506
int tick_nohz_tick_stopped(void)
{
	return __this_cpu_read(tick_cpu_sched.tick_stopped);
}

507 508 509 510 511 512 513
/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
514 515
 * value. We do this unconditionally on any CPU, as we don't know whether the
 * CPU, which has the update task assigned is in a long sleep.
516
 */
517
static void tick_nohz_update_jiffies(ktime_t now)
518 519 520
{
	unsigned long flags;

521
	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
522 523 524 525

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
526

527
	touch_softlockup_watchdog_sched();
528 529
}

530
/*
531
 * Updates the per-CPU time idle statistics counters
532
 */
533
static void
534
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
535
{
536
	ktime_t delta;
537

538 539
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
540
		if (nr_iowait_cpu(cpu) > 0)
541
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
542 543
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
544
		ts->idle_entrytime = now;
545
	}
546

547
	if (last_update_time)
548 549
		*last_update_time = ktime_to_us(now);

550 551
}

552
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
553
{
554
	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
555
	ts->idle_active = 0;
556

557
	sched_clock_idle_wakeup_event(0);
558 559
}

560
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
561
{
562
	ktime_t now = ktime_get();
563

564 565
	ts->idle_entrytime = now;
	ts->idle_active = 1;
566
	sched_clock_idle_sleep_event();
567 568 569
	return now;
}

570
/**
571
 * get_cpu_idle_time_us - get the total idle time of a CPU
572
 * @cpu: CPU number to query
573 574
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
575
 *
W
Wei Jiangang 已提交
576
 * Return the cumulative idle time (since boot) for a given
577
 * CPU, in microseconds.
578 579 580 581 582 583
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
584 585 586
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
587
	ktime_t now, idle;
588

589
	if (!tick_nohz_active)
590 591
		return -1;

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
607

608
}
609
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
610

611
/**
612
 * get_cpu_iowait_time_us - get the total iowait time of a CPU
613
 * @cpu: CPU number to query
614 615
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
616
 *
W
Wei Jiangang 已提交
617
 * Return the cumulative iowait time (since boot) for a given
618 619 620 621 622 623 624 625 626 627
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
628
	ktime_t now, iowait;
629

630
	if (!tick_nohz_active)
631 632
		return -1;

633 634 635 636 637 638 639
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
640

641 642 643 644 645
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
646

647
	return ktime_to_us(iowait);
648 649 650
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);

	/* Forward the time to expire in the future */
	hrtimer_forward(&ts->sched_timer, now, tick_period);

	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
	else
		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}

665 666
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
667
{
668
	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
669 670 671
	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
	unsigned long seq, basejiff;
	ktime_t	tick;
672

673 674
	/* Read jiffies and the time when jiffies were updated last */
	do {
675
		seq = read_seqbegin(&jiffies_lock);
T
Thomas Gleixner 已提交
676
		basemono = last_jiffies_update;
677
		basejiff = jiffies;
678
	} while (read_seqretry(&jiffies_lock, seq));
679
	ts->last_jiffies = basejiff;
680

681
	if (rcu_needs_cpu(basemono, &next_rcu) ||
682
	    arch_needs_cpu() || irq_work_needs_cpu()) {
683
		next_tick = basemono + TICK_NSEC;
684
	} else {
685 686 687 688 689 690 691 692 693 694 695
		/*
		 * Get the next pending timer. If high resolution
		 * timers are enabled this only takes the timer wheel
		 * timers into account. If high resolution timers are
		 * disabled this also looks at the next expiring
		 * hrtimer.
		 */
		next_tmr = get_next_timer_interrupt(basejiff, basemono);
		ts->next_timer = next_tmr;
		/* Take the next rcu event into account */
		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
696
	}
697

698 699
	/*
	 * If the tick is due in the next period, keep it ticking or
700
	 * force prod the timer.
701 702 703
	 */
	delta = next_tick - basemono;
	if (delta <= (u64)TICK_NSEC) {
T
Thomas Gleixner 已提交
704
		tick = 0;
705 706 707 708 709 710

		/*
		 * Tell the timer code that the base is not idle, i.e. undo
		 * the effect of get_next_timer_interrupt():
		 */
		timer_clear_idle();
711 712 713 714
		/*
		 * We've not stopped the tick yet, and there's a timer in the
		 * next period, so no point in stopping it either, bail.
		 */
T
Thomas Gleixner 已提交
715 716
		if (!ts->tick_stopped)
			goto out;
717 718 719 720 721 722 723 724 725 726 727 728 729

		/*
		 * If, OTOH, we did stop it, but there's a pending (expired)
		 * timer reprogram the timer hardware to fire now.
		 *
		 * We will not restart the tick proper, just prod the timer
		 * hardware into firing an interrupt to process the pending
		 * timers. Just like tick_irq_exit() will not restart the tick
		 * for 'normal' interrupts.
		 *
		 * Only once we exit the idle loop will we re-enable the tick,
		 * see tick_nohz_idle_exit().
		 */
730
		if (delta == 0) {
T
Thomas Gleixner 已提交
731 732 733 734 735
			tick_nohz_restart(ts, now);
			goto out;
		}
	}

736
	/*
737 738 739
	 * If this CPU is the one which updates jiffies, then give up
	 * the assignment and let it be taken by the CPU which runs
	 * the tick timer next, which might be this CPU as well. If we
T
Thomas Gleixner 已提交
740 741
	 * don't drop this here the jiffies might be stale and
	 * do_timer() never invoked. Keep track of the fact that it
742
	 * was the one which had the do_timer() duty last. If this CPU
T
Thomas Gleixner 已提交
743
	 * is the one which had the do_timer() duty last, we limit the
W
Wei Jiangang 已提交
744
	 * sleep time to the timekeeping max_deferment value.
745
	 * Otherwise we can sleep as long as we want.
746
	 */
747
	delta = timekeeping_max_deferment();
T
Thomas Gleixner 已提交
748 749 750 751
	if (cpu == tick_do_timer_cpu) {
		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
		ts->do_timer_last = 1;
	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
752
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
753 754
		ts->do_timer_last = 0;
	} else if (!ts->do_timer_last) {
755
		delta = KTIME_MAX;
T
Thomas Gleixner 已提交
756
	}
T
Thomas Gleixner 已提交
757

758
#ifdef CONFIG_NO_HZ_FULL
759
	/* Limit the tick delta to the maximum scheduler deferment */
T
Thomas Gleixner 已提交
760
	if (!ts->inidle)
761
		delta = min(delta, scheduler_tick_max_deferment());
762 763
#endif

764 765 766
	/* Calculate the next expiry time */
	if (delta < (KTIME_MAX - basemono))
		expires = basemono + delta;
T
Thomas Gleixner 已提交
767
	else
768 769 770
		expires = KTIME_MAX;

	expires = min_t(u64, expires, next_tick);
T
Thomas Gleixner 已提交
771
	tick = expires;
772

T
Thomas Gleixner 已提交
773
	/* Skip reprogram of event if its not changed */
774
	if (ts->tick_stopped && (expires == dev->next_event))
T
Thomas Gleixner 已提交
775
		goto out;
776

T
Thomas Gleixner 已提交
777 778 779 780 781 782 783 784 785 786
	/*
	 * nohz_stop_sched_tick can be called several times before
	 * the nohz_restart_sched_tick is called. This happens when
	 * interrupts arrive which do not cause a reschedule. In the
	 * first call we save the current tick time, so we can restart
	 * the scheduler tick in nohz_restart_sched_tick.
	 */
	if (!ts->tick_stopped) {
		nohz_balance_enter_idle(cpu);
		calc_load_enter_idle();
787
		cpu_load_update_nohz_start();
788

T
Thomas Gleixner 已提交
789 790
		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
		ts->tick_stopped = 1;
791
		trace_tick_stop(1, TICK_DEP_MASK_NONE);
T
Thomas Gleixner 已提交
792
	}
793

T
Thomas Gleixner 已提交
794
	/*
795 796
	 * If the expiration time == KTIME_MAX, then we simply stop
	 * the tick timer.
T
Thomas Gleixner 已提交
797
	 */
798
	if (unlikely(expires == KTIME_MAX)) {
T
Thomas Gleixner 已提交
799 800 801
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
			hrtimer_cancel(&ts->sched_timer);
		goto out;
802
	}
803

T
Thomas Gleixner 已提交
804
	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
805
		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
T
Thomas Gleixner 已提交
806
	else
807
		tick_program_event(tick, 1);
808
out:
809
	/* Update the estimated sleep length */
810
	ts->sleep_length = ktime_sub(dev->next_event, now);
811
	return tick;
812 813
}

814
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
815 816 817
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
818
	cpu_load_update_nohz_stop();
819

820 821 822 823 824 825
	/*
	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
	 * the clock forward checks in the enqueue path:
	 */
	timer_clear_idle();

826
	calc_load_exit_idle();
827
	touch_softlockup_watchdog_sched();
828 829 830 831 832 833 834 835
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}
836 837

static void tick_nohz_full_update_tick(struct tick_sched *ts)
838 839
{
#ifdef CONFIG_NO_HZ_FULL
840
	int cpu = smp_processor_id();
841

842
	if (!tick_nohz_full_cpu(cpu))
843
		return;
844

845 846
	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
		return;
847

848
	if (can_stop_full_tick(cpu, ts))
849 850
		tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
	else if (ts->tick_stopped)
851
		tick_nohz_restart_sched_tick(ts, ktime_get());
852 853 854
#endif
}

855 856 857
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
858
	 * If this CPU is offline and it is the one which updates
859
	 * jiffies, then give up the assignment and let it be taken by
860
	 * the CPU which runs the tick timer next. If we don't drop
861 862 863 864 865 866
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
867
		return false;
868 869
	}

870
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
T
Thomas Gleixner 已提交
871
		ts->sleep_length = NSEC_PER_SEC / HZ;
872
		return false;
873
	}
874 875 876 877 878 879 880

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

881 882
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
883 884
			pr_warn("NOHZ: local_softirq_pending %02x\n",
				(unsigned int) local_softirq_pending());
885 886 887 888 889
			ratelimit++;
		}
		return false;
	}

890
	if (tick_nohz_full_enabled()) {
891 892 893 894 895 896 897 898 899 900 901 902 903 904
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

905 906 907
	return true;
}

908 909
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
910
	ktime_t now, expires;
911
	int cpu = smp_processor_id();
912

913 914
	now = tick_nohz_start_idle(ts);

915 916 917 918
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
919 920

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
T
Thomas Gleixner 已提交
921
		if (expires > 0LL) {
922 923 924
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
925 926 927 928

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
929 930 931 932 933 934 935
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
936
 *
937
 * The arch is responsible of calling:
938 939 940 941
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
942
 */
943
void tick_nohz_idle_enter(void)
944 945 946
{
	struct tick_sched *ts;

947 948
	WARN_ON_ONCE(irqs_disabled());

949
	/*
950 951 952 953 954
	 * Update the idle state in the scheduler domain hierarchy
	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
	 * State will be updated to busy during the first busy tick after
	 * exiting idle.
	 */
955 956
	set_cpu_sd_state_idle();

957 958
	local_irq_disable();

959
	ts = this_cpu_ptr(&tick_cpu_sched);
960
	ts->inidle = 1;
961
	__tick_nohz_idle_enter(ts);
962 963

	local_irq_enable();
964 965 966 967 968 969 970 971 972 973 974 975
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
976
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
977

978
	if (ts->inidle)
979
		__tick_nohz_idle_enter(ts);
980
	else
981
		tick_nohz_full_update_tick(ts);
982 983
}

984 985 986 987 988 989 990
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
991
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
992 993 994 995

	return ts->sleep_length;
}

996 997
static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
998
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
999
	unsigned long ticks;
1000

1001
	if (vtime_accounting_cpu_enabled())
1002
		return;
1003 1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
1012 1013 1014
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
1015 1016
}

1017
/**
1018
 * tick_nohz_idle_exit - restart the idle tick from the idle task
1019 1020
 *
 * Restart the idle tick when the CPU is woken up from idle
1021 1022
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
1023
 */
1024
void tick_nohz_idle_exit(void)
1025
{
1026
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1027
	ktime_t now;
1028

1029
	local_irq_disable();
1030

1031 1032 1033 1034 1035
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

	if (ts->idle_active || ts->tick_stopped)
1036 1037 1038
		now = ktime_get();

	if (ts->idle_active)
1039
		tick_nohz_stop_idle(ts, now);
1040

1041
	if (ts->tick_stopped) {
1042
		tick_nohz_restart_sched_tick(ts, now);
1043
		tick_nohz_account_idle_ticks(ts);
1044
	}
1045 1046 1047 1048 1049 1050 1051 1052 1053

	local_irq_enable();
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
1054
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1055 1056 1057
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

T
Thomas Gleixner 已提交
1058
	dev->next_event = KTIME_MAX;
1059

1060
	tick_sched_do_timer(now);
1061
	tick_sched_handle(ts, regs);
1062

1063 1064 1065 1066
	/* No need to reprogram if we are running tickless  */
	if (unlikely(ts->tick_stopped))
		return;

1067 1068
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1069 1070
}

1071 1072 1073 1074 1075 1076 1077
static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
{
	if (!tick_nohz_enabled)
		return;
	ts->nohz_mode = mode;
	/* One update is enough */
	if (!test_and_set_bit(0, &tick_nohz_active))
1078
		timers_update_migration(true);
1079 1080
}

1081 1082 1083 1084 1085
/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
1086
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1087 1088
	ktime_t next;

1089
	if (!tick_nohz_enabled)
1090 1091
		return;

1092
	if (tick_switch_to_oneshot(tick_nohz_handler))
1093
		return;
1094

1095 1096 1097 1098 1099 1100 1101 1102
	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

1103
	hrtimer_set_expires(&ts->sched_timer, next);
1104 1105
	hrtimer_forward_now(&ts->sched_timer, tick_period);
	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1106
	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1107 1108
}

1109
static inline void tick_nohz_irq_enter(void)
1110
{
1111
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1112 1113 1114 1115 1116 1117
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
1118
		tick_nohz_stop_idle(ts, now);
1119
	if (ts->tick_stopped)
1120 1121 1122
		tick_nohz_update_jiffies(now);
}

1123 1124 1125
#else

static inline void tick_nohz_switch_to_nohz(void) { }
1126
static inline void tick_nohz_irq_enter(void) { }
1127
static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1128

1129
#endif /* CONFIG_NO_HZ_COMMON */
1130

1131 1132 1133
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
1134
void tick_irq_enter(void)
1135
{
1136
	tick_check_oneshot_broadcast_this_cpu();
1137
	tick_nohz_irq_enter();
1138 1139
}

1140 1141 1142 1143 1144
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
1145
 * We rearm the timer until we get disabled by the idle code.
1146
 * Called with interrupts disabled.
1147 1148 1149 1150 1151 1152 1153
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1154

1155
	tick_sched_do_timer(now);
1156 1157 1158 1159 1160

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1161 1162
	if (regs)
		tick_sched_handle(ts, regs);
1163

1164 1165 1166 1167
	/* No need to reprogram if we are in idle or full dynticks mode */
	if (unlikely(ts->tick_stopped))
		return HRTIMER_NORESTART;

1168 1169 1170 1171 1172
	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1173 1174
static int sched_skew_tick;

1175 1176 1177 1178 1179 1180 1181 1182
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1183 1184 1185 1186 1187
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
1188
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1189 1190 1191 1192 1193 1194 1195 1196
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1197
	/* Get the next period (per-CPU) */
1198
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1199

1200
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1201 1202 1203 1204 1205 1206 1207
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1208 1209
	hrtimer_forward(&ts->sched_timer, now, tick_period);
	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1210
	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1211
}
1212
#endif /* HIGH_RES_TIMERS */
1213

1214
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1215 1216 1217 1218
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1219
# ifdef CONFIG_HIGH_RES_TIMERS
1220 1221
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1222
# endif
1223

1224
	memset(ts, 0, sizeof(*ts));
1225
}
1226
#endif
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
1244
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
1255
 * or runtime). Called with interrupts disabled.
1256 1257 1258
 */
int tick_check_oneshot_change(int allow_nohz)
{
1259
	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1260 1261 1262 1263 1264 1265 1266

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1267
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1268 1269 1270 1271 1272 1273 1274 1275
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}