tick-sched.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21 22
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/tick.h>
23
#include <linux/module.h>
24

25 26
#include <asm/irq_regs.h>

27 28 29 30 31 32 33 34 35 36 37 38
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

/*
 * The time, when the last jiffy update happened. Protected by xtime_lock.
 */
static ktime_t last_jiffies_update;

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49 50 51
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

52 53 54 55 56 57 58
	/*
	 * Do a quick check without holding xtime_lock:
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
	/* Reevalute with xtime_lock held */
	write_seqlock(&xtime_lock);

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
79 80 81

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	}
	write_sequnlock(&xtime_lock);
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

	write_seqlock(&xtime_lock);
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
	write_sequnlock(&xtime_lock);
	return period;
}

/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
static int tick_nohz_enabled __read_mostly  = 1;

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
137
static void tick_nohz_update_jiffies(ktime_t now)
138 139 140 141 142
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

143
	cpumask_clear_cpu(cpu, nohz_cpu_mask);
144
	ts->idle_waketime = now;
145 146 147 148

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
149 150

	touch_softlockup_watchdog();
151 152
}

153 154 155
/*
 * Updates the per cpu time idle statistics counters
 */
156 157
static void
update_ts_time_stats(struct tick_sched *ts, ktime_t now, u64 *last_update_time)
158
{
159
	ktime_t delta;
160

161 162 163
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
164 165
		if (nr_iowait_cpu() > 0)
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
166
		ts->idle_entrytime = now;
167
	}
168

169
	if (last_update_time)
170 171
		*last_update_time = ktime_to_us(now);

172 173 174 175 176 177
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

178
	update_ts_time_stats(ts, now, NULL);
179
	ts->idle_active = 0;
180

181
	sched_clock_idle_wakeup_event(0);
182 183
}

184
static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
185
{
186
	ktime_t now;
187 188

	now = ktime_get();
189

190
	update_ts_time_stats(ts, now, NULL);
191

192 193
	ts->idle_entrytime = now;
	ts->idle_active = 1;
194
	sched_clock_idle_sleep_event();
195 196 197
	return now;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
 * @last_update_time: variable to store update time in
 *
 * Return the cummulative idle time (since boot) for a given
 * CPU, in microseconds. The idle time returned includes
 * the iowait time (unlike what "top" and co report).
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
212 213 214 215
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

216 217 218
	if (!tick_nohz_enabled)
		return -1;

219
	update_ts_time_stats(ts, ktime_get(), last_update_time);
220

221 222
	return ktime_to_us(ts->idle_sleeptime);
}
223
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
 * @last_update_time: variable to store update time in
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

	if (!tick_nohz_enabled)
		return -1;

	update_ts_time_stats(ts, ktime_get(), last_update_time);

	return ktime_to_us(ts->iowait_sleeptime);
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

251 252 253 254 255 256 257
/**
 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called either from the idle loop or from irq_exit() when an idle period was
 * just interrupted by an interrupt which did not cause a reschedule.
 */
258
void tick_nohz_stop_sched_tick(int inidle)
259 260 261
{
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
	struct tick_sched *ts;
262
	ktime_t last_update, expires, now;
263
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
264
	u64 time_delta;
265 266 267 268 269 270
	int cpu;

	local_irq_save(flags);

	cpu = smp_processor_id();
	ts = &per_cpu(tick_cpu_sched, cpu);
271 272 273 274 275 276 277 278 279

	/*
	 * Call to tick_nohz_start_idle stops the last_update_time from being
	 * updated. Thus, it must not be called in the event we are called from
	 * irq_exit() with the prior state different than idle.
	 */
	if (!inidle && !ts->inidle)
		goto end;

280 281 282 283 284 285 286
	/*
	 * Set ts->inidle unconditionally. Even if the system did not
	 * switch to NOHZ mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;

287
	now = tick_nohz_start_idle(ts);
288

289 290 291 292 293 294 295 296 297
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
298
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
299 300
	}

301 302 303 304 305 306
	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		goto end;

	if (need_resched())
		goto end;

307
	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
308 309 310 311
		static int ratelimit;

		if (ratelimit < 10) {
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
T
Thomas Gleixner 已提交
312
			       (unsigned int) local_softirq_pending());
313 314
			ratelimit++;
		}
315
		goto end;
316
	}
317

M
Mike Galbraith 已提交
318 319 320
	if (nohz_ratelimit(cpu))
		goto end;

321 322 323 324 325 326
	ts->idle_calls++;
	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
327
		time_delta = timekeeping_max_deferment();
328 329
	} while (read_seqretry(&xtime_lock, seq));

330 331 332
	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
	    arch_needs_cpu(cpu)) {
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
333
		delta_jiffies = 1;
334 335 336 337 338
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
	}
339 340 341 342
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
343
	if (!ts->tick_stopped && delta_jiffies == 1)
344 345 346 347 348
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

349 350 351 352 353 354
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
355 356 357 358 359 360
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
361
		 */
T
Thomas Gleixner 已提交
362
		if (cpu == tick_do_timer_cpu) {
363
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
364 365 366 367 368 369 370 371
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

372
		/*
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
390

T
Thomas Gleixner 已提交
391 392 393 394
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
395

I
Ingo Molnar 已提交
396
		if (delta_jiffies > 1)
397
			cpumask_set_cpu(cpu, nohz_cpu_mask);
398 399 400 401 402

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

403 404 405 406 407 408 409 410
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
411 412 413 414
			if (select_nohz_load_balancer(1)) {
				/*
				 * sched tick not stopped!
				 */
415
				cpumask_clear_cpu(cpu, nohz_cpu_mask);
416 417 418
				goto out;
			}

419
			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
420 421
			ts->tick_stopped = 1;
			ts->idle_jiffies = last_jiffies;
422
			rcu_enter_nohz();
423
		}
424

425 426
		ts->idle_sleeps++;

427 428 429
		/* Mark expires */
		ts->idle_expires = expires;

430
		/*
431 432
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
433
		 */
434
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
435 436 437 438 439
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

440 441
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
442
				      HRTIMER_MODE_ABS_PINNED);
443 444 445
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
446
		} else if (!tick_program_event(expires, 0))
447 448 449 450 451 452 453
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
454
		cpumask_clear_cpu(cpu, nohz_cpu_mask);
455 456 457 458 459
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
460
	ts->sleep_length = ktime_sub(dev->next_event, now);
461 462 463 464
end:
	local_irq_restore(flags);
}

465 466 467 468 469 470 471 472 473 474 475 476
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

477 478 479
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
480
	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
481 482 483 484 485 486

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
487
			hrtimer_start_expires(&ts->sched_timer,
488
					      HRTIMER_MODE_ABS_PINNED);
489 490 491 492
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
493 494
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
495 496 497 498 499 500 501 502
				break;
		}
		/* Update jiffies and reread time */
		tick_do_update_jiffies64(now);
		now = ktime_get();
	}
}

503
/**
504
 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
505 506 507 508 509 510 511
 *
 * Restart the idle tick when the CPU is woken up from idle
 */
void tick_nohz_restart_sched_tick(void)
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
512
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
513
	unsigned long ticks;
514
#endif
515
	ktime_t now;
516

517
	local_irq_disable();
518 519 520 521 522
	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
523

524 525
	if (!ts->inidle || !ts->tick_stopped) {
		ts->inidle = 0;
526
		local_irq_enable();
527
		return;
528
	}
529

530 531
	ts->inidle = 0;

532 533
	rcu_exit_nohz();

534
	/* Update jiffies first */
535
	select_nohz_load_balancer(0);
536
	tick_do_update_jiffies64(now);
537
	cpumask_clear_cpu(cpu, nohz_cpu_mask);
538

539
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
540 541 542 543 544 545 546 547 548
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
549 550 551
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
552

I
Ingo Molnar 已提交
553
	touch_softlockup_watchdog();
554 555 556 557
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
558
	ts->idle_exittime = now;
559

560
	tick_nohz_restart(ts, now);
561 562 563 564 565 566 567

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
568
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
569 570 571 572 573 574 575 576 577
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
578
	int cpu = smp_processor_id();
579 580 581 582
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

583 584 585 586 587 588 589
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
590
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
591 592
		tick_do_timer_cpu = cpu;

593
	/* Check, if the jiffies need an update */
594 595
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start
	 * of idle" jiffy stamp so the idle accounting adjustment we
	 * do when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		ts->idle_jiffies++;
	}

	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
647
		hrtimer_set_expires(&ts->sched_timer, next);
648 649 650 651 652 653 654 655 656 657
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();

	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
	       smp_processor_id());
}

658 659 660 661 662 663 664 665 666 667 668
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
669
static void tick_nohz_kick_tick(int cpu, ktime_t now)
670
{
671 672 673
#if 0
	/* Switch back to 2.6.27 behaviour */

674
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
675
	ktime_t delta;
676

677 678 679 680
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
681
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
682 683 684 685
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
686
#endif
687 688
}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

705 706 707
#else

static inline void tick_nohz_switch_to_nohz(void) { }
708
static inline void tick_check_nohz(int cpu) { }
709 710 711

#endif /* NO_HZ */

712 713 714 715 716
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
717
	tick_check_oneshot_broadcast(cpu);
718
	tick_check_nohz(cpu);
719 720
}

721 722 723 724 725
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
726
 * We rearm the timer until we get disabled by the idle code.
727 728 729 730 731 732 733 734
 * Called with interrupts disabled and timer->base->cpu_base->lock held.
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
735 736 737 738 739 740 741 742 743 744
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
	 * xtime_lock.
	 */
745
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
746 747
		tick_do_timer_cpu = cpu;
#endif
748 749

	/* Check, if the jiffies need an update */
750 751
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
	if (regs) {
		/*
		 * When we are idle and the tick is stopped, we have to touch
		 * the watchdog as we might not schedule for a really long
		 * time. This happens on complete idle SMP systems while
		 * waiting on the login prompt. We also increment the "start of
		 * idle" jiffy stamp so the idle accounting adjustment we do
		 * when we go busy again does not account too much ticks.
		 */
		if (ts->tick_stopped) {
			touch_softlockup_watchdog();
			ts->idle_jiffies++;
		}
		update_process_times(user_mode(regs));
		profile_tick(CPU_PROFILING);
	}

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();
786
	u64 offset;
787 788 789 790 791 792 793

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

794
	/* Get the next period (per cpu) */
795
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
796
	offset = ktime_to_ns(tick_period) >> 1;
797
	do_div(offset, num_possible_cpus());
798
	offset *= smp_processor_id();
799
	hrtimer_add_expires_ns(&ts->sched_timer, offset);
800 801 802

	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
803 804
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
805 806 807 808 809 810 811 812 813 814 815
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
	if (tick_nohz_enabled)
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
816
#endif /* HIGH_RES_TIMERS */
817

818
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
819 820 821 822
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

823
# ifdef CONFIG_HIGH_RES_TIMERS
824 825
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
826
# endif
827

828 829
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
830
#endif
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

871
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
872 873 874 875 876 877 878 879
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}