sched.c 194.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
69

70
#include <asm/tlb.h>
71
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
80
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 82
}

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

138 139 140 141 142 143 144 145 146 147 148 149
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
150
/*
I
Ingo Molnar 已提交
151
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
152
 */
I
Ingo Molnar 已提交
153 154 155 156 157
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

158
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
159

160 161
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
162 163
struct cfs_rq;

P
Peter Zijlstra 已提交
164 165
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
166
/* task group related information */
167
struct task_group {
168
#ifdef CONFIG_CGROUP_SCHED
169 170
	struct cgroup_subsys_state css;
#endif
171 172

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
173 174 175 176 177
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
178 179 180 181 182 183 184 185
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	u64 rt_runtime;
#endif
186

187
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
188
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
189 190
};

191
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
192 193 194 195 196
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

197 198
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
199 200 201 202 203
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
204

P
Peter Zijlstra 已提交
205 206
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
207
#endif
P
Peter Zijlstra 已提交
208

209
/* task_group_lock serializes add/remove of task groups and also changes to
210 211
 * a task group's cpu shares.
 */
212
static DEFINE_SPINLOCK(task_group_lock);
213

214 215 216
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
227
/* Default task group.
I
Ingo Molnar 已提交
228
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
229
 */
230
struct task_group init_task_group = {
231
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
232
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
233
	.cfs_rq = init_cfs_rq_p,
234
#endif
P
Peter Zijlstra 已提交
235

236
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
237 238
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
239
#endif
240
};
S
Srivatsa Vaddagiri 已提交
241 242

/* return group to which a task belongs */
243
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
244
{
245
	struct task_group *tg;
246

247
#ifdef CONFIG_USER_SCHED
248
	tg = p->user->tg;
249
#elif defined(CONFIG_CGROUP_SCHED)
250 251
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
252
#else
I
Ingo Molnar 已提交
253
	tg = &init_task_group;
254
#endif
255
	return tg;
S
Srivatsa Vaddagiri 已提交
256 257 258
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
259
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
260
{
261
#ifdef CONFIG_FAIR_GROUP_SCHED
262 263
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
264
#endif
P
Peter Zijlstra 已提交
265

266
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
267 268
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
269
#endif
S
Srivatsa Vaddagiri 已提交
270 271
}

272 273 274 275 276 277 278 279 280 281
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
282 283
#else

P
Peter Zijlstra 已提交
284
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 286
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
287

288
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
289

I
Ingo Molnar 已提交
290 291 292 293 294 295
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
296
	u64 min_vruntime;
I
Ingo Molnar 已提交
297 298 299 300 301 302 303

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
304
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
305 306 307

	unsigned long nr_spread_over;

308
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
309 310
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
311 312
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
313 314 315 316 317 318
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
319 320
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
321 322
#endif
};
L
Linus Torvalds 已提交
323

I
Ingo Molnar 已提交
324 325 326
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
327
	unsigned long rt_nr_running;
328
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
329 330
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
331
#ifdef CONFIG_SMP
332
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
333
	int overloaded;
P
Peter Zijlstra 已提交
334
#endif
P
Peter Zijlstra 已提交
335
	int rt_throttled;
P
Peter Zijlstra 已提交
336
	u64 rt_time;
P
Peter Zijlstra 已提交
337

338
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
339 340
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
341 342 343 344 345
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
346 347
};

G
Gregory Haskins 已提交
348 349 350 351
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
352 353
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
354 355 356 357 358 359 360 361
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
362

I
Ingo Molnar 已提交
363
	/*
364 365 366 367
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
368
	atomic_t rto_count;
G
Gregory Haskins 已提交
369 370
};

371 372 373 374
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
375 376 377 378
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
379 380 381 382 383 384 385
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
386
struct rq {
387 388
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
389 390 391 392 393 394

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
395 396
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397
	unsigned char idle_at_tick;
398 399 400
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
401 402
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
403 404 405 406
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
407 408
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
409
	int rt_throttled;
P
Peter Zijlstra 已提交
410

I
Ingo Molnar 已提交
411
#ifdef CONFIG_FAIR_GROUP_SCHED
412 413
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
414 415
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
416
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

427
	struct task_struct *curr, *idle;
428
	unsigned long next_balance;
L
Linus Torvalds 已提交
429
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
430 431 432 433

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

434
	unsigned int clock_warps, clock_overflows, clock_underflows;
435 436
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
437
	u64 tick_timestamp;
I
Ingo Molnar 已提交
438

L
Linus Torvalds 已提交
439 440 441
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
442
	struct root_domain *rd;
L
Linus Torvalds 已提交
443 444 445 446 447
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
448 449
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
450

451
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
452 453 454
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
455 456 457 458 459 460
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
461 462 463 464 465
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
466 467 468 469
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
470 471

	/* schedule() stats */
472 473 474
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
475 476

	/* try_to_wake_up() stats */
477 478
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
479 480

	/* BKL stats */
481
	unsigned int bkl_count;
L
Linus Torvalds 已提交
482
#endif
483
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
484 485
};

486
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
487

I
Ingo Molnar 已提交
488 489 490 491 492
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

493 494 495 496 497 498 499 500 501
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
502
/*
I
Ingo Molnar 已提交
503 504
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
505
 */
I
Ingo Molnar 已提交
506
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
507 508 509 510 511 512
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
513 514 515
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
516 517 518 519 520 521 522 523 524 525
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
526 527 528 529 530
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
531 532 533 534 535 536 537 538 539 540
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
541
}
I
Ingo Molnar 已提交
542

I
Ingo Molnar 已提交
543 544 545 546
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
547 548
}

N
Nick Piggin 已提交
549 550
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
552 553 554 555
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
556 557
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
558 559 560 561 562 563

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
594
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
595 596
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
597 598
	SCHED_FEAT_HRTICK		= 8,
	SCHED_FEAT_DOUBLE_TICK		= 16,
I
Ingo Molnar 已提交
599 600 601
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
602
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
603
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
604
		SCHED_FEAT_START_DEBIT		* 1 |
P
Peter Zijlstra 已提交
605 606
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
607 608 609

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

610 611 612 613 614 615
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
616
/*
P
Peter Zijlstra 已提交
617
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
618 619
 * default: 1s
 */
P
Peter Zijlstra 已提交
620
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
621

622 623
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
624 625 626 627 628
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
629 630

/*
P
Peter Zijlstra 已提交
631
 * single value that denotes runtime == period, ie unlimited time.
P
Peter Zijlstra 已提交
632
 */
P
Peter Zijlstra 已提交
633
#define RUNTIME_INF	((u64)~0ULL)
P
Peter Zijlstra 已提交
634

635 636 637 638 639 640 641 642
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
643
	struct rq *rq;
644

645 646 647 648
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
649 650 651 652 653 654
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
655
	now = rq->clock;
656
	local_irq_restore(flags);
657 658 659

	return now;
}
P
Paul E. McKenney 已提交
660
EXPORT_SYMBOL_GPL(cpu_clock);
661

L
Linus Torvalds 已提交
662
#ifndef prepare_arch_switch
663 664 665 666 667 668
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

669 670 671 672 673
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

674
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
675
static inline int task_running(struct rq *rq, struct task_struct *p)
676
{
677
	return task_current(rq, p);
678 679
}

680
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
681 682 683
{
}

684
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
685
{
686 687 688 689
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
690 691 692 693 694 695 696
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

697 698 699 700
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
701
static inline int task_running(struct rq *rq, struct task_struct *p)
702 703 704 705
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
706
	return task_current(rq, p);
707 708 709
#endif
}

710
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

727
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
728 729 730 731 732 733 734 735 736 737 738 739
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
740
#endif
741 742
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
743

744 745 746 747
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
748
static inline struct rq *__task_rq_lock(struct task_struct *p)
749 750
	__acquires(rq->lock)
{
751 752 753 754 755
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
756 757 758 759
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
760 761
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
762
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
763 764
 * explicitly disabling preemption.
 */
765
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
766 767
	__acquires(rq->lock)
{
768
	struct rq *rq;
L
Linus Torvalds 已提交
769

770 771 772 773 774 775
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
776 777 778 779
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
780
static void __task_rq_unlock(struct rq *rq)
781 782 783 784 785
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

786
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
787 788 789 790 791 792
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
793
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
794
 */
A
Alexey Dobriyan 已提交
795
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
796 797
	__acquires(rq->lock)
{
798
	struct rq *rq;
L
Linus Torvalds 已提交
799 800 801 802 803 804 805 806

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

807
/*
808
 * We are going deep-idle (irqs are disabled):
809
 */
810
void sched_clock_idle_sleep_event(void)
811
{
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
828

829 830 831 832 833 834 835 836 837 838 839
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
840
	touch_softlockup_watchdog();
841
}
842
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
843

P
Peter Zijlstra 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1024
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1025 1026 1027 1028 1029
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1030
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1031 1032
		return;

P
Peter Zijlstra 已提交
1033
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
P
Peter Zijlstra 已提交
1056
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1057 1058
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1059
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1060 1061 1062
}
#endif

1063 1064 1065 1066 1067 1068 1069 1070
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1071 1072 1073
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1074
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1075

1076
static unsigned long
1077 1078 1079 1080 1081 1082
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1083
		lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1084 1085 1086 1087 1088

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1089
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1090
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1091 1092
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1093
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1094

1095
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1096 1097 1098 1099 1100 1101 1102 1103
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1104
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1105 1106
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1107
	lw->inv_weight = 0;
1108 1109
}

1110
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1111 1112
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1113
	lw->inv_weight = 0;
1114 1115
}

1116 1117 1118 1119
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1120
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1121 1122 1123 1124
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1136 1137 1138
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1139 1140
 */
static const int prio_to_weight[40] = {
1141 1142 1143 1144 1145 1146 1147 1148
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1149 1150
};

1151 1152 1153 1154 1155 1156 1157
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1158
static const u32 prio_to_wmult[40] = {
1159 1160 1161 1162 1163 1164 1165 1166
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1167
};
1168

I
Ingo Molnar 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1194

1195 1196 1197 1198 1199 1200
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1201 1202 1203 1204 1205 1206 1207
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1208 1209
#include "sched_stats.h"
#include "sched_idletask.c"
1210 1211
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1212 1213 1214 1215 1216 1217
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1229 1230
{
	rq->nr_running++;
1231
	inc_load(rq, p);
1232 1233
}

1234
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1235 1236
{
	rq->nr_running--;
1237
	dec_load(rq, p);
1238 1239
}

1240 1241 1242
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1243 1244 1245 1246
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1247

I
Ingo Molnar 已提交
1248 1249 1250 1251 1252 1253 1254 1255
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1256

I
Ingo Molnar 已提交
1257 1258
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1259 1260
}

1261
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1262
{
I
Ingo Molnar 已提交
1263
	sched_info_queued(p);
1264
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1265
	p->se.on_rq = 1;
1266 1267
}

1268
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1269
{
1270
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1271
	p->se.on_rq = 0;
1272 1273
}

1274
/*
I
Ingo Molnar 已提交
1275
 * __normal_prio - return the priority that is based on the static prio
1276 1277 1278
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1279
	return p->static_prio;
1280 1281
}

1282 1283 1284 1285 1286 1287 1288
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1289
static inline int normal_prio(struct task_struct *p)
1290 1291 1292
{
	int prio;

1293
	if (task_has_rt_policy(p))
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1307
static int effective_prio(struct task_struct *p)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1320
/*
I
Ingo Molnar 已提交
1321
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1322
 */
I
Ingo Molnar 已提交
1323
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1324
{
1325
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1326
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1327

1328
	enqueue_task(rq, p, wakeup);
1329
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1330 1331 1332 1333 1334
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1335
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1336
{
1337
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1338 1339
		rq->nr_uninterruptible++;

1340
	dequeue_task(rq, p, sleep);
1341
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346 1347
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1348
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1349 1350 1351 1352
{
	return cpu_curr(task_cpu(p)) == p;
}

1353 1354 1355
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1356
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1357 1358 1359 1360
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1361
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1362
#ifdef CONFIG_SMP
1363 1364 1365 1366 1367 1368
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1369 1370
	task_thread_info(p)->cpu = cpu;
#endif
1371 1372
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1385
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1386

1387 1388 1389
/*
 * Is this task likely cache-hot:
 */
1390
static int
1391 1392 1393 1394
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1395 1396 1397 1398 1399 1400
	/*
	 * Buddy candidates are cache hot:
	 */
	if (&p->se == cfs_rq_of(&p->se)->next)
		return 1;

1401 1402 1403
	if (p->sched_class != &fair_sched_class)
		return 0;

1404 1405 1406 1407 1408
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1409 1410 1411 1412 1413 1414
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1415
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1416
{
I
Ingo Molnar 已提交
1417 1418
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1419 1420
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1421
	u64 clock_offset;
I
Ingo Molnar 已提交
1422 1423

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1424 1425 1426 1427

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1428 1429 1430 1431
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1432 1433 1434 1435 1436
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1437
#endif
1438 1439
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1440 1441

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1442 1443
}

1444
struct migration_req {
L
Linus Torvalds 已提交
1445 1446
	struct list_head list;

1447
	struct task_struct *task;
L
Linus Torvalds 已提交
1448 1449 1450
	int dest_cpu;

	struct completion done;
1451
};
L
Linus Torvalds 已提交
1452 1453 1454 1455 1456

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1457
static int
1458
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1459
{
1460
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1466
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1467 1468 1469 1470 1471 1472 1473 1474
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1475

L
Linus Torvalds 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1488
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1489 1490
{
	unsigned long flags;
I
Ingo Molnar 已提交
1491
	int running, on_rq;
1492
	struct rq *rq;
L
Linus Torvalds 已提交
1493

1494 1495 1496 1497 1498 1499 1500 1501
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1551

1552 1553 1554 1555 1556 1557 1558
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1574
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1586 1587
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1588 1589 1590 1591
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1592
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1593
{
1594
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1595
	unsigned long total = weighted_cpuload(cpu);
1596

1597
	if (type == 0)
I
Ingo Molnar 已提交
1598
		return total;
1599

I
Ingo Molnar 已提交
1600
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1601 1602 1603
}

/*
1604 1605
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1606
 */
A
Alexey Dobriyan 已提交
1607
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1608
{
1609
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1610
	unsigned long total = weighted_cpuload(cpu);
1611

N
Nick Piggin 已提交
1612
	if (type == 0)
I
Ingo Molnar 已提交
1613
		return total;
1614

I
Ingo Molnar 已提交
1615
	return max(rq->cpu_load[type-1], total);
1616 1617 1618 1619 1620
}

/*
 * Return the average load per task on the cpu's run queue
 */
1621
static unsigned long cpu_avg_load_per_task(int cpu)
1622
{
1623
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1624
	unsigned long total = weighted_cpuload(cpu);
1625 1626
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1627
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1628 1629
}

N
Nick Piggin 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1647 1648
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1649
			continue;
1650

N
Nick Piggin 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1667 1668
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1669 1670 1671 1672 1673 1674 1675 1676

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1677
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1678 1679 1680 1681 1682 1683 1684

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1685
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1686
 */
I
Ingo Molnar 已提交
1687 1688
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1689
{
1690
	cpumask_t tmp;
N
Nick Piggin 已提交
1691 1692 1693 1694
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1695 1696 1697 1698
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1699
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1725

1726
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1727 1728 1729
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1730 1731
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1732 1733
		if (tmp->flags & flag)
			sd = tmp;
1734
	}
N
Nick Piggin 已提交
1735 1736 1737 1738

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1739 1740 1741 1742 1743 1744
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1745 1746 1747

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1748 1749 1750 1751
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1752

1753
		new_cpu = find_idlest_cpu(group, t, cpu);
1754 1755 1756 1757 1758
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1759

1760
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1792
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1793
{
1794
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1795 1796
	unsigned long flags;
	long old_state;
1797
	struct rq *rq;
L
Linus Torvalds 已提交
1798

1799
	smp_wmb();
L
Linus Torvalds 已提交
1800 1801 1802 1803 1804
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1805
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1806 1807 1808
		goto out_running;

	cpu = task_cpu(p);
1809
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1816 1817 1818
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1819 1820 1821 1822 1823 1824
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1825
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1826 1827 1828 1829 1830 1831
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1847 1848
out_activate:
#endif /* CONFIG_SMP */
1849 1850 1851 1852 1853 1854 1855 1856 1857
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1858
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1859
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1860 1861 1862
	success = 1;

out_running:
I
Ingo Molnar 已提交
1863 1864
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
1865
	p->state = TASK_RUNNING;
1866 1867 1868 1869
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1876
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1877
{
1878
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1879 1880 1881
}
EXPORT_SYMBOL(wake_up_process);

1882
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888 1889
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1890 1891 1892 1893 1894 1895 1896
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1897
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1898 1899
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
1900 1901 1902

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1903 1904 1905 1906 1907 1908
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1909
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1910
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1911
#endif
N
Nick Piggin 已提交
1912

P
Peter Zijlstra 已提交
1913
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1914
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1915

1916 1917 1918 1919
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1941
	set_task_cpu(p, cpu);
1942 1943 1944 1945 1946

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1947 1948
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1949

1950
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1951
	if (likely(sched_info_on()))
1952
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1953
#endif
1954
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1955 1956
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1957
#ifdef CONFIG_PREEMPT
1958
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1959
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1960
#endif
N
Nick Piggin 已提交
1961
	put_cpu();
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1971
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1972 1973
{
	unsigned long flags;
I
Ingo Molnar 已提交
1974
	struct rq *rq;
L
Linus Torvalds 已提交
1975 1976

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1977
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1978
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1979 1980 1981

	p->prio = effective_prio(p);

1982
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1983
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1984 1985
	} else {
		/*
I
Ingo Molnar 已提交
1986 1987
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1988
		 */
1989
		p->sched_class->task_new(rq, p);
1990
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1991
	}
I
Ingo Molnar 已提交
1992
	check_preempt_curr(rq, p);
1993 1994 1995 1996
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
1997
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1998 1999
}

2000 2001 2002
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2003 2004
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2005 2006 2007 2008 2009 2010 2011 2012 2013
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2014
 * @notifier: notifier struct to unregister
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2058 2059 2060
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2061
 * @prev: the current task that is being switched out
2062 2063 2064 2065 2066 2067 2068 2069 2070
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2071 2072 2073
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2074
{
2075
	fire_sched_out_preempt_notifiers(prev, next);
2076 2077 2078 2079
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2080 2081
/**
 * finish_task_switch - clean up after a task-switch
2082
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2083 2084
 * @prev: the thread we just switched away from.
 *
2085 2086 2087 2088
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2089 2090
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2091
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2092 2093 2094
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2095
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2096 2097 2098
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2099
	long prev_state;
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2105
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2106 2107
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2108
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2114
	prev_state = prev->state;
2115 2116
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2117 2118 2119 2120
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2121

2122
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2123 2124
	if (mm)
		mmdrop(mm);
2125
	if (unlikely(prev_state == TASK_DEAD)) {
2126 2127 2128
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2129
		 */
2130
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2131
		put_task_struct(prev);
2132
	}
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2139
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2140 2141
	__releases(rq->lock)
{
2142 2143
	struct rq *rq = this_rq();

2144 2145 2146 2147 2148
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2149
	if (current->set_child_tid)
2150
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2157
static inline void
2158
context_switch(struct rq *rq, struct task_struct *prev,
2159
	       struct task_struct *next)
L
Linus Torvalds 已提交
2160
{
I
Ingo Molnar 已提交
2161
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2162

2163
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2164 2165
	mm = next->mm;
	oldmm = prev->active_mm;
2166 2167 2168 2169 2170 2171 2172
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2173
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178 2179
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2180
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2181 2182 2183
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2184 2185 2186 2187 2188 2189 2190
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2191
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2192
#endif
L
Linus Torvalds 已提交
2193 2194 2195 2196

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2197 2198 2199 2200 2201 2202 2203
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2227
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2242 2243
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2244

2245
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2255
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2276
/*
I
Ingo Molnar 已提交
2277 2278
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2279
 */
I
Ingo Molnar 已提交
2280
static void update_cpu_load(struct rq *this_rq)
2281
{
2282
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2295 2296 2297 2298 2299 2300 2301
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2302 2303
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2304 2305
}

I
Ingo Molnar 已提交
2306 2307
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2314
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2315 2316 2317
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2318
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2319 2320 2321 2322
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2323
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2324 2325 2326 2327 2328 2329 2330
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2331 2332
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2333 2334 2335 2336 2337 2338 2339 2340
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2341
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2355
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2356 2357 2358 2359
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2360 2361
	int ret = 0;

2362 2363 2364 2365 2366
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2367
	if (unlikely(!spin_trylock(&busiest->lock))) {
2368
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2369 2370 2371
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2372
			ret = 1;
L
Linus Torvalds 已提交
2373 2374 2375
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2376
	return ret;
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2382
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2383 2384
 * the cpu_allowed mask is restored.
 */
2385
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2386
{
2387
	struct migration_req req;
L
Linus Torvalds 已提交
2388
	unsigned long flags;
2389
	struct rq *rq;
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2400

L
Linus Torvalds 已提交
2401 2402 2403 2404 2405
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2406

L
Linus Torvalds 已提交
2407 2408 2409 2410 2411 2412 2413
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2414 2415
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2416 2417 2418 2419
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2420
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2421
	put_cpu();
N
Nick Piggin 已提交
2422 2423
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2430 2431
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2432
{
2433
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2434
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2435
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2436 2437 2438 2439
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2440
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2441 2442 2443 2444 2445
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2446
static
2447
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2448
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2449
		     int *all_pinned)
L
Linus Torvalds 已提交
2450 2451 2452 2453 2454 2455 2456
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2457 2458
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2459
		return 0;
2460
	}
2461 2462
	*all_pinned = 0;

2463 2464
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2465
		return 0;
2466
	}
L
Linus Torvalds 已提交
2467

2468 2469 2470 2471 2472 2473
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2474 2475
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2476
#ifdef CONFIG_SCHEDSTATS
2477
		if (task_hot(p, rq->clock, sd)) {
2478
			schedstat_inc(sd, lb_hot_gained[idle]);
2479 2480
			schedstat_inc(p, se.nr_forced_migrations);
		}
2481 2482 2483 2484
#endif
		return 1;
	}

2485 2486
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2487
		return 0;
2488
	}
L
Linus Torvalds 已提交
2489 2490 2491
	return 1;
}

2492 2493 2494 2495 2496
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2497
{
2498
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2499 2500
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2501

2502
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2503 2504
		goto out;

2505 2506
	pinned = 1;

L
Linus Torvalds 已提交
2507
	/*
I
Ingo Molnar 已提交
2508
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2509
	 */
I
Ingo Molnar 已提交
2510 2511
	p = iterator->start(iterator->arg);
next:
2512
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2513
		goto out;
2514
	/*
2515
	 * To help distribute high priority tasks across CPUs we don't
2516 2517 2518
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2519 2520
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2521
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2522 2523 2524
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2525 2526
	}

I
Ingo Molnar 已提交
2527
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2528
	pulled++;
I
Ingo Molnar 已提交
2529
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2530

2531
	/*
2532
	 * We only want to steal up to the prescribed amount of weighted load.
2533
	 */
2534
	if (rem_load_move > 0) {
2535 2536
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2537 2538
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2539 2540 2541
	}
out:
	/*
2542
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2543 2544 2545 2546
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2547 2548 2549

	if (all_pinned)
		*all_pinned = pinned;
2550 2551

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2552 2553
}

I
Ingo Molnar 已提交
2554
/*
P
Peter Williams 已提交
2555 2556 2557
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2558 2559 2560 2561
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2562
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2563 2564 2565
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2566
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2567
	unsigned long total_load_moved = 0;
2568
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2569 2570

	do {
P
Peter Williams 已提交
2571 2572
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2573
				max_load_move - total_load_moved,
2574
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2575
		class = class->next;
P
Peter Williams 已提交
2576
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2577

P
Peter Williams 已提交
2578 2579 2580
	return total_load_moved > 0;
}

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2617
	const struct sched_class *class;
P
Peter Williams 已提交
2618 2619

	for (class = sched_class_highest; class; class = class->next)
2620
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2621 2622 2623
			return 1;

	return 0;
I
Ingo Molnar 已提交
2624 2625
}

L
Linus Torvalds 已提交
2626 2627
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2628 2629
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2630 2631 2632
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2633 2634
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2635 2636 2637
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2638
	unsigned long max_pull;
2639 2640
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2641
	int load_idx, group_imb = 0;
2642 2643 2644 2645 2646 2647
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2648 2649

	max_load = this_load = total_load = total_pwr = 0;
2650 2651
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2652
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2653
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2654
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2655 2656 2657
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2658 2659

	do {
2660
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2661 2662
		int local_group;
		int i;
2663
		int __group_imb = 0;
2664
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2665
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2666 2667 2668

		local_group = cpu_isset(this_cpu, group->cpumask);

2669 2670 2671
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2672
		/* Tally up the load of all CPUs in the group */
2673
		sum_weighted_load = sum_nr_running = avg_load = 0;
2674 2675
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2676 2677

		for_each_cpu_mask(i, group->cpumask) {
2678 2679 2680 2681 2682 2683
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2684

2685
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2686 2687
				*sd_idle = 0;

L
Linus Torvalds 已提交
2688
			/* Bias balancing toward cpus of our domain */
2689 2690 2691 2692 2693 2694
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2695
				load = target_load(i, load_idx);
2696
			} else {
N
Nick Piggin 已提交
2697
				load = source_load(i, load_idx);
2698 2699 2700 2701 2702
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2703 2704

			avg_load += load;
2705
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2706
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2707 2708
		}

2709 2710 2711
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2712 2713
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2714
		 */
2715 2716
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2717 2718 2719 2720
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2721
		total_load += avg_load;
2722
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2723 2724

		/* Adjust by relative CPU power of the group */
2725 2726
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2727

2728 2729 2730
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2731
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2732

L
Linus Torvalds 已提交
2733 2734 2735
		if (local_group) {
			this_load = avg_load;
			this = group;
2736 2737 2738
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2739
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2740 2741
			max_load = avg_load;
			busiest = group;
2742 2743
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2744
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2745
		}
2746 2747 2748 2749 2750 2751

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2752 2753 2754
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2755 2756 2757 2758 2759 2760 2761 2762 2763

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2764
		/*
2765 2766
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2767 2768
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2769
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2770
			goto group_next;
2771

I
Ingo Molnar 已提交
2772
		/*
2773
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2774 2775 2776 2777 2778
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2779 2780
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2781 2782
			group_min = group;
			min_nr_running = sum_nr_running;
2783 2784
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2785
		}
2786

I
Ingo Molnar 已提交
2787
		/*
2788
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2800
		}
2801 2802
group_next:
#endif
L
Linus Torvalds 已提交
2803 2804 2805
		group = group->next;
	} while (group != sd->groups);

2806
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2807 2808 2809 2810 2811 2812 2813 2814
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2815
	busiest_load_per_task /= busiest_nr_running;
2816 2817 2818
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2819 2820 2821 2822 2823 2824 2825 2826
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2827
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2828 2829
	 * appear as very large values with unsigned longs.
	 */
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2842 2843

	/* Don't want to pull so many tasks that a group would go idle */
2844
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2845

L
Linus Torvalds 已提交
2846
	/* How much load to actually move to equalise the imbalance */
2847 2848
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2849 2850
			/ SCHED_LOAD_SCALE;

2851 2852 2853 2854 2855 2856
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2857
	if (*imbalance < busiest_load_per_task) {
2858
		unsigned long tmp, pwr_now, pwr_move;
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2870

I
Ingo Molnar 已提交
2871 2872
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2873
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2883 2884 2885 2886
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2887 2888 2889
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2890 2891
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2892
		if (max_load > tmp)
2893
			pwr_move += busiest->__cpu_power *
2894
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2895 2896

		/* Amount of load we'd add */
2897
		if (max_load * busiest->__cpu_power <
2898
				busiest_load_per_task * SCHED_LOAD_SCALE)
2899 2900
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2901
		else
2902 2903 2904 2905
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2906 2907 2908
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2909 2910
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915
	}

	return busiest;

out_balanced:
2916
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2917
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2918
		goto ret;
L
Linus Torvalds 已提交
2919

2920 2921 2922 2923 2924
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2925
ret:
L
Linus Torvalds 已提交
2926 2927 2928 2929 2930 2931 2932
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2933
static struct rq *
I
Ingo Molnar 已提交
2934
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2935
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2936
{
2937
	struct rq *busiest = NULL, *rq;
2938
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2939 2940 2941
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2942
		unsigned long wl;
2943 2944 2945 2946

		if (!cpu_isset(i, *cpus))
			continue;

2947
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2948
		wl = weighted_cpuload(i);
2949

I
Ingo Molnar 已提交
2950
		if (rq->nr_running == 1 && wl > imbalance)
2951
			continue;
L
Linus Torvalds 已提交
2952

I
Ingo Molnar 已提交
2953 2954
		if (wl > max_load) {
			max_load = wl;
2955
			busiest = rq;
L
Linus Torvalds 已提交
2956 2957 2958 2959 2960 2961
		}
	}

	return busiest;
}

2962 2963 2964 2965 2966 2967
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2968 2969 2970 2971
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2972
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2973
			struct sched_domain *sd, enum cpu_idle_type idle,
2974
			int *balance)
L
Linus Torvalds 已提交
2975
{
P
Peter Williams 已提交
2976
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2977 2978
	struct sched_group *group;
	unsigned long imbalance;
2979
	struct rq *busiest;
2980
	cpumask_t cpus = CPU_MASK_ALL;
2981
	unsigned long flags;
N
Nick Piggin 已提交
2982

2983 2984 2985
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2986
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2987
	 * portraying it as CPU_NOT_IDLE.
2988
	 */
I
Ingo Molnar 已提交
2989
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2990
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2991
		sd_idle = 1;
L
Linus Torvalds 已提交
2992

2993
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2994

2995 2996
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2997 2998
				   &cpus, balance);

2999
	if (*balance == 0)
3000 3001
		goto out_balanced;

L
Linus Torvalds 已提交
3002 3003 3004 3005 3006
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3007
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3008 3009 3010 3011 3012
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3013
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3014 3015 3016

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3017
	ld_moved = 0;
L
Linus Torvalds 已提交
3018 3019 3020 3021
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3022
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3023 3024
		 * correctly treated as an imbalance.
		 */
3025
		local_irq_save(flags);
N
Nick Piggin 已提交
3026
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3027
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3028
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3029
		double_rq_unlock(this_rq, busiest);
3030
		local_irq_restore(flags);
3031

3032 3033 3034
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3035
		if (ld_moved && this_cpu != smp_processor_id())
3036 3037
			resched_cpu(this_cpu);

3038
		/* All tasks on this runqueue were pinned by CPU affinity */
3039 3040 3041 3042
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3043
			goto out_balanced;
3044
		}
L
Linus Torvalds 已提交
3045
	}
3046

P
Peter Williams 已提交
3047
	if (!ld_moved) {
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3053
			spin_lock_irqsave(&busiest->lock, flags);
3054 3055 3056 3057 3058

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3059
				spin_unlock_irqrestore(&busiest->lock, flags);
3060 3061 3062 3063
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3064 3065 3066
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3067
				active_balance = 1;
L
Linus Torvalds 已提交
3068
			}
3069
			spin_unlock_irqrestore(&busiest->lock, flags);
3070
			if (active_balance)
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3077
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3078
		}
3079
	} else
L
Linus Torvalds 已提交
3080 3081
		sd->nr_balance_failed = 0;

3082
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3083 3084
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3085 3086 3087 3088 3089 3090 3091 3092 3093
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3094 3095
	}

P
Peter Williams 已提交
3096
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3097
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3098
		return -1;
P
Peter Williams 已提交
3099
	return ld_moved;
L
Linus Torvalds 已提交
3100 3101 3102 3103

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3104
	sd->nr_balance_failed = 0;
3105 3106

out_one_pinned:
L
Linus Torvalds 已提交
3107
	/* tune up the balancing interval */
3108 3109
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3110 3111
		sd->balance_interval *= 2;

3112
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3113
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3114
		return -1;
L
Linus Torvalds 已提交
3115 3116 3117 3118 3119 3120 3121
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3122
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3123 3124
 * this_rq is locked.
 */
3125
static int
3126
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3127 3128
{
	struct sched_group *group;
3129
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3130
	unsigned long imbalance;
P
Peter Williams 已提交
3131
	int ld_moved = 0;
N
Nick Piggin 已提交
3132
	int sd_idle = 0;
3133
	int all_pinned = 0;
3134
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3135

3136 3137 3138 3139
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3140
	 * portraying it as CPU_NOT_IDLE.
3141 3142 3143
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3144
		sd_idle = 1;
L
Linus Torvalds 已提交
3145

3146
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3147
redo:
I
Ingo Molnar 已提交
3148
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3149
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3150
	if (!group) {
I
Ingo Molnar 已提交
3151
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3152
		goto out_balanced;
L
Linus Torvalds 已提交
3153 3154
	}

I
Ingo Molnar 已提交
3155
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3156
				&cpus);
N
Nick Piggin 已提交
3157
	if (!busiest) {
I
Ingo Molnar 已提交
3158
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3159
		goto out_balanced;
L
Linus Torvalds 已提交
3160 3161
	}

N
Nick Piggin 已提交
3162 3163
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3164
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3165

P
Peter Williams 已提交
3166
	ld_moved = 0;
3167 3168 3169
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3170 3171
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3172
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3173 3174
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3175
		spin_unlock(&busiest->lock);
3176

3177
		if (unlikely(all_pinned)) {
3178 3179 3180 3181
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3182 3183
	}

P
Peter Williams 已提交
3184
	if (!ld_moved) {
I
Ingo Molnar 已提交
3185
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3186 3187
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3188 3189
			return -1;
	} else
3190
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3191

P
Peter Williams 已提交
3192
	return ld_moved;
3193 3194

out_balanced:
I
Ingo Molnar 已提交
3195
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3196
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3197
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3198
		return -1;
3199
	sd->nr_balance_failed = 0;
3200

3201
	return 0;
L
Linus Torvalds 已提交
3202 3203 3204 3205 3206 3207
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3208
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3209 3210
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3211 3212
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3213 3214

	for_each_domain(this_cpu, sd) {
3215 3216 3217 3218 3219 3220
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3221
			/* If we've pulled tasks over stop searching: */
3222
			pulled_task = load_balance_newidle(this_cpu,
3223 3224 3225 3226 3227 3228 3229
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3230
	}
I
Ingo Molnar 已提交
3231
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3232 3233 3234 3235 3236
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3237
	}
L
Linus Torvalds 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3248
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3249
{
3250
	int target_cpu = busiest_rq->push_cpu;
3251 3252
	struct sched_domain *sd;
	struct rq *target_rq;
3253

3254
	/* Is there any task to move? */
3255 3256 3257 3258
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3259 3260

	/*
3261
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3262
	 * we need to fix it. Originally reported by
3263
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3264
	 */
3265
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3266

3267 3268
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3269 3270
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3271 3272

	/* Search for an sd spanning us and the target CPU. */
3273
	for_each_domain(target_cpu, sd) {
3274
		if ((sd->flags & SD_LOAD_BALANCE) &&
3275
		    cpu_isset(busiest_cpu, sd->span))
3276
				break;
3277
	}
3278

3279
	if (likely(sd)) {
3280
		schedstat_inc(sd, alb_count);
3281

P
Peter Williams 已提交
3282 3283
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3284 3285 3286 3287
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3288
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3289 3290
}

3291 3292 3293
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3294
	cpumask_t cpu_mask;
3295 3296 3297 3298 3299
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3300
/*
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3311
 *
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3368 3369 3370 3371 3372
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3373
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3374
{
3375 3376
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3377 3378
	unsigned long interval;
	struct sched_domain *sd;
3379
	/* Earliest time when we have to do rebalance again */
3380
	unsigned long next_balance = jiffies + 60*HZ;
3381
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3382

3383
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3384 3385 3386 3387
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3388
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3389 3390 3391 3392 3393 3394
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3395 3396 3397
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3398

3399 3400 3401 3402 3403
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3404
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3405
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3406 3407
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3408 3409 3410
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3411
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3412
			}
3413
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3414
		}
3415 3416 3417
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3418
		if (time_after(next_balance, sd->last_balance + interval)) {
3419
			next_balance = sd->last_balance + interval;
3420 3421
			update_next_balance = 1;
		}
3422 3423 3424 3425 3426 3427 3428 3429

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3430
	}
3431 3432 3433 3434 3435 3436 3437 3438

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3439 3440 3441 3442 3443 3444 3445 3446 3447
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3448 3449 3450 3451
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3452

I
Ingo Molnar 已提交
3453
	rebalance_domains(this_cpu, idle);
3454 3455 3456 3457 3458 3459 3460

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3461 3462
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3463 3464 3465 3466
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3467
		cpu_clear(this_cpu, cpus);
3468 3469 3470 3471 3472 3473 3474 3475 3476
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3477
			rebalance_domains(balance_cpu, CPU_IDLE);
3478 3479

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3480 3481
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3494
static inline void trigger_load_balance(struct rq *rq, int cpu)
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3546
}
I
Ingo Molnar 已提交
3547 3548 3549

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3550 3551 3552
/*
 * on UP we do not need to balance between CPUs:
 */
3553
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3554 3555
{
}
I
Ingo Molnar 已提交
3556

L
Linus Torvalds 已提交
3557 3558 3559 3560 3561 3562 3563
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3564 3565
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3566
 */
3567
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3568 3569
{
	unsigned long flags;
3570 3571
	u64 ns, delta_exec;
	struct rq *rq;
3572

3573 3574
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3575
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3576 3577
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3578 3579 3580 3581
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3582

L
Linus Torvalds 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3606 3607 3608 3609 3610
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3611
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3645
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3646 3647
	cputime64_t tmp;

3648 3649
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3650

L
Linus Torvalds 已提交
3651 3652 3653 3654 3655 3656 3657 3658
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3659
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3660
		cpustat->system = cputime64_add(cpustat->system, tmp);
3661
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3662 3663 3664 3665 3666 3667 3668
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3689
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3690 3691 3692 3693 3694 3695 3696

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3697
	} else
L
Linus Torvalds 已提交
3698 3699 3700
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3712
	struct task_struct *curr = rq->curr;
3713
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3714 3715

	spin_lock(&rq->lock);
3716
	__update_rq_clock(rq);
3717 3718 3719
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3720
	if (unlikely(rq->clock < next_tick)) {
3721
		rq->clock = next_tick;
3722 3723
		rq->clock_underflows++;
	}
3724
	rq->tick_timestamp = rq->clock;
3725
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3726 3727
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3728
	spin_unlock(&rq->lock);
3729

3730
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3731 3732
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3733
#endif
L
Linus Torvalds 已提交
3734 3735 3736 3737
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3738
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3739 3740 3741 3742
{
	/*
	 * Underflow?
	 */
3743 3744
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3745 3746 3747 3748
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3749 3750
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3751 3752 3753
}
EXPORT_SYMBOL(add_preempt_count);

3754
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3755 3756 3757 3758
{
	/*
	 * Underflow?
	 */
3759 3760
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3761 3762 3763
	/*
	 * Is the spinlock portion underflowing?
	 */
3764 3765 3766 3767
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773 3774
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3775
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3776
 */
I
Ingo Molnar 已提交
3777
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3778
{
3779 3780 3781 3782 3783
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3784 3785 3786
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3787 3788 3789 3790 3791

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3792
}
L
Linus Torvalds 已提交
3793

I
Ingo Molnar 已提交
3794 3795 3796 3797 3798
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3799
	/*
I
Ingo Molnar 已提交
3800
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3801 3802 3803
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3804 3805 3806
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3807 3808
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3809
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3810 3811
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3812 3813
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3814 3815
	}
#endif
I
Ingo Molnar 已提交
3816 3817 3818 3819 3820 3821
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3822
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3823
{
3824
	const struct sched_class *class;
I
Ingo Molnar 已提交
3825
	struct task_struct *p;
L
Linus Torvalds 已提交
3826 3827

	/*
I
Ingo Molnar 已提交
3828 3829
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3830
	 */
I
Ingo Molnar 已提交
3831
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3832
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3833 3834
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3835 3836
	}

I
Ingo Molnar 已提交
3837 3838
	class = sched_class_highest;
	for ( ; ; ) {
3839
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3840 3841 3842 3843 3844 3845 3846 3847 3848
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3849

I
Ingo Molnar 已提交
3850 3851 3852 3853 3854 3855
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
3856
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3872

P
Peter Zijlstra 已提交
3873 3874
	hrtick_clear(rq);

3875 3876 3877 3878
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3879
	__update_rq_clock(rq);
3880 3881
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3882 3883 3884

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3885
				signal_pending(prev))) {
L
Linus Torvalds 已提交
3886
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3887
		} else {
3888
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3889
		}
I
Ingo Molnar 已提交
3890
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3891 3892
	}

3893 3894 3895 3896
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3897

I
Ingo Molnar 已提交
3898
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3899 3900
		idle_balance(cpu, rq);

3901
	prev->sched_class->put_prev_task(rq, prev);
3902
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3903 3904

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3905

L
Linus Torvalds 已提交
3906 3907 3908 3909 3910
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3911
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3912 3913 3914 3915 3916 3917
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3918 3919 3920
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
3921 3922 3923
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
3924
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3925

L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3934
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3935
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3943

L
Linus Torvalds 已提交
3944 3945
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3946
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3947
	 */
N
Nick Piggin 已提交
3948
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3949 3950
		return;

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3964

3965 3966 3967 3968 3969 3970
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3971 3972 3973 3974
}
EXPORT_SYMBOL(preempt_schedule);

/*
3975
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3985

3986
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3987 3988
	BUG_ON(ti->preempt_count || !irqs_disabled());

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4004

4005 4006 4007 4008 4009 4010
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4011 4012 4013 4014
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4015 4016
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4017
{
4018
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4019 4020 4021 4022
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4023 4024
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4025 4026 4027
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4028
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4034
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4035

4036
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4037 4038
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4039
		if (curr->func(curr, mode, sync, key) &&
4040
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4050
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4051
 */
4052
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4053
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4066
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4067 4068 4069 4070 4071
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4072
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4084
void
I
Ingo Molnar 已提交
4085
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4102
void complete(struct completion *x)
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4108
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4109 4110 4111 4112
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4113
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4114 4115 4116 4117 4118
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4119
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4120 4121 4122 4123
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4124 4125
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130 4131 4132
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4133 4134 4135 4136
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4137 4138 4139 4140
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4141 4142 4143 4144 4145
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4146
				return timeout;
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4155 4156
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4157 4158 4159 4160
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4161
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4162
	spin_unlock_irq(&x->wait.lock);
4163 4164
	return timeout;
}
L
Linus Torvalds 已提交
4165

4166
void __sched wait_for_completion(struct completion *x)
4167 4168
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4169
}
4170
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4171

4172
unsigned long __sched
4173
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4174
{
4175
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4176
}
4177
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4178

4179
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4180
{
4181 4182 4183 4184
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4185
}
4186
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4187

4188
unsigned long __sched
4189 4190
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4191
{
4192
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4193
}
4194
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4195

M
Matthew Wilcox 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4205 4206
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4207
{
I
Ingo Molnar 已提交
4208 4209 4210 4211
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4212

4213
	__set_current_state(state);
L
Linus Torvalds 已提交
4214

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4229 4230 4231
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4232
long __sched
I
Ingo Molnar 已提交
4233
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4234
{
4235
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4236 4237 4238
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4239
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4240
{
4241
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4242 4243 4244
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4245
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4246
{
4247
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4248 4249 4250
}
EXPORT_SYMBOL(sleep_on_timeout);

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4263
void rt_mutex_setprio(struct task_struct *p, int prio)
4264 4265
{
	unsigned long flags;
4266
	int oldprio, on_rq, running;
4267
	struct rq *rq;
4268
	const struct sched_class *prev_class = p->sched_class;
4269 4270 4271 4272

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4273
	update_rq_clock(rq);
4274

4275
	oldprio = p->prio;
I
Ingo Molnar 已提交
4276
	on_rq = p->se.on_rq;
4277
	running = task_current(rq, p);
4278
	if (on_rq)
4279
		dequeue_task(rq, p, 0);
4280 4281
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4282 4283 4284 4285 4286 4287

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4288 4289
	p->prio = prio;

4290 4291
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4292
	if (on_rq) {
4293
		enqueue_task(rq, p, 0);
4294 4295

		check_class_changed(rq, p, prev_class, oldprio, running);
4296 4297 4298 4299 4300 4301
	}
	task_rq_unlock(rq, &flags);
}

#endif

4302
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4303
{
I
Ingo Molnar 已提交
4304
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4305
	unsigned long flags;
4306
	struct rq *rq;
L
Linus Torvalds 已提交
4307 4308 4309 4310 4311 4312 4313 4314

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4315
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4316 4317 4318 4319
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4320
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4321
	 */
4322
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4323 4324 4325
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4326
	on_rq = p->se.on_rq;
4327
	if (on_rq) {
4328
		dequeue_task(rq, p, 0);
4329 4330
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4331 4332

	p->static_prio = NICE_TO_PRIO(nice);
4333
	set_load_weight(p);
4334 4335 4336
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4337

I
Ingo Molnar 已提交
4338
	if (on_rq) {
4339
		enqueue_task(rq, p, 0);
4340
		inc_load(rq, p);
L
Linus Torvalds 已提交
4341
		/*
4342 4343
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4344
		 */
4345
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4346 4347 4348 4349 4350 4351 4352
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4353 4354 4355 4356 4357
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4358
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4359
{
4360 4361
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4362

M
Matt Mackall 已提交
4363 4364 4365 4366
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4378
	long nice, retval;
L
Linus Torvalds 已提交
4379 4380 4381 4382 4383 4384

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4385 4386
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4396 4397 4398
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4417
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423 4424 4425
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4426
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4427 4428 4429
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4430
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4445
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4446 4447 4448 4449 4450 4451 4452 4453
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4454
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4455
{
4456
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4457 4458 4459
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4460 4461
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4462
{
I
Ingo Molnar 已提交
4463
	BUG_ON(p->se.on_rq);
4464

L
Linus Torvalds 已提交
4465
	p->policy = policy;
I
Ingo Molnar 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4478
	p->rt_priority = prio;
4479 4480 4481
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4482
	set_load_weight(p);
L
Linus Torvalds 已提交
4483 4484 4485
}

/**
4486
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4487 4488 4489
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4490
 *
4491
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4492
 */
I
Ingo Molnar 已提交
4493 4494
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4495
{
4496
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4497
	unsigned long flags;
4498
	const struct sched_class *prev_class = p->sched_class;
4499
	struct rq *rq;
L
Linus Torvalds 已提交
4500

4501 4502
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4508 4509
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4510
		return -EINVAL;
L
Linus Torvalds 已提交
4511 4512
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4513 4514
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4515 4516
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4517
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4518
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4519
		return -EINVAL;
4520
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4521 4522
		return -EINVAL;

4523 4524 4525 4526
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4527
		if (rt_policy(policy)) {
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4544 4545 4546 4547 4548 4549
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4550

4551 4552 4553 4554 4555
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4556

4557 4558 4559 4560 4561 4562 4563 4564 4565
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
	if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4566 4567 4568
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4569 4570 4571 4572 4573
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4574 4575 4576 4577
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4578
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4579 4580 4581
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4582 4583
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4584 4585
		goto recheck;
	}
I
Ingo Molnar 已提交
4586
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4587
	on_rq = p->se.on_rq;
4588
	running = task_current(rq, p);
4589
	if (on_rq)
4590
		deactivate_task(rq, p, 0);
4591 4592
	if (running)
		p->sched_class->put_prev_task(rq, p);
4593

L
Linus Torvalds 已提交
4594
	oldprio = p->prio;
I
Ingo Molnar 已提交
4595
	__setscheduler(rq, p, policy, param->sched_priority);
4596

4597 4598
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4599 4600
	if (on_rq) {
		activate_task(rq, p, 0);
4601 4602

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4603
	}
4604 4605 4606
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4607 4608
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4609 4610 4611 4612
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4613 4614
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4615 4616 4617
{
	struct sched_param lparam;
	struct task_struct *p;
4618
	int retval;
L
Linus Torvalds 已提交
4619 4620 4621 4622 4623

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4624 4625 4626

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4627
	p = find_process_by_pid(pid);
4628 4629 4630
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4631

L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4641 4642
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4643
{
4644 4645 4646 4647
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4667
	struct task_struct *p;
4668
	int retval;
L
Linus Torvalds 已提交
4669 4670

	if (pid < 0)
4671
		return -EINVAL;
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4693
	struct task_struct *p;
4694
	int retval;
L
Linus Torvalds 已提交
4695 4696

	if (!param || pid < 0)
4697
		return -EINVAL;
L
Linus Torvalds 已提交
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4727 4728
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4729

4730
	get_online_cpus();
L
Linus Torvalds 已提交
4731 4732 4733 4734 4735
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4736
		put_online_cpus();
L
Linus Torvalds 已提交
4737 4738 4739 4740 4741
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4742
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4753 4754 4755 4756
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4757 4758
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4759
 again:
L
Linus Torvalds 已提交
4760 4761
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4774 4775
out_unlock:
	put_task_struct(p);
4776
	put_online_cpus();
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4817
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4818 4819 4820
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4821
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4822 4823
EXPORT_SYMBOL(cpu_online_map);

4824
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4825
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4826 4827 4828 4829
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4830
	struct task_struct *p;
L
Linus Torvalds 已提交
4831 4832
	int retval;

4833
	get_online_cpus();
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838 4839 4840
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4841 4842 4843 4844
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4845
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4846 4847 4848

out_unlock:
	read_unlock(&tasklist_lock);
4849
	put_online_cpus();
L
Linus Torvalds 已提交
4850

4851
	return retval;
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4882 4883
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4884 4885 4886
 */
asmlinkage long sys_sched_yield(void)
{
4887
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4888

4889
	schedstat_inc(rq, yld_count);
4890
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4891 4892 4893 4894 4895 4896

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4897
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4906
static void __cond_resched(void)
L
Linus Torvalds 已提交
4907
{
4908 4909 4910
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4911 4912 4913 4914 4915
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

4923 4924
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4925
{
4926 4927
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4928 4929 4930 4931 4932
		__cond_resched();
		return 1;
	}
	return 0;
}
4933 4934
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
4935 4936 4937 4938 4939

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4940
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4941 4942 4943
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4944
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4945
{
N
Nick Piggin 已提交
4946
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
4947 4948
	int ret = 0;

N
Nick Piggin 已提交
4949
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4950
		spin_unlock(lock);
N
Nick Piggin 已提交
4951 4952 4953 4954
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4955
		ret = 1;
L
Linus Torvalds 已提交
4956 4957
		spin_lock(lock);
	}
J
Jan Kara 已提交
4958
	return ret;
L
Linus Torvalds 已提交
4959 4960 4961 4962 4963 4964 4965
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4966
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4967
		local_bh_enable();
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4979
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4990
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4998
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4999

5000
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5001 5002 5003
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5004
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5010
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5011 5012
	long ret;

5013
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5014 5015 5016
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5017
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5038
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5039
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5063
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5064
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5081
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5082
	unsigned int time_slice;
5083
	int retval;
L
Linus Torvalds 已提交
5084 5085 5086
	struct timespec t;

	if (pid < 0)
5087
		return -EINVAL;
L
Linus Torvalds 已提交
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5099 5100 5101 5102 5103 5104
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5105
		time_slice = DEF_TIMESLICE;
5106
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5107 5108 5109 5110 5111
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5112 5113
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5114 5115
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5116
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5117
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5118 5119
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5120

L
Linus Torvalds 已提交
5121 5122 5123 5124 5125
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5126
static const char stat_nam[] = "RSDTtZX";
5127

5128
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5129 5130
{
	unsigned long free = 0;
5131
	unsigned state;
L
Linus Torvalds 已提交
5132 5133

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5134
	printk(KERN_INFO "%-13.13s %c", p->comm,
5135
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5136
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5137
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5138
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5139
	else
I
Ingo Molnar 已提交
5140
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5141 5142
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5143
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5144
	else
I
Ingo Molnar 已提交
5145
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5146 5147 5148
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5149
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5150 5151
		while (!*n)
			n++;
5152
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5153 5154
	}
#endif
5155
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5156
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5157

5158
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5159 5160
}

I
Ingo Molnar 已提交
5161
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5162
{
5163
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5164

5165 5166 5167
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5168
#else
5169 5170
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175 5176 5177 5178
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5179
		if (!state_filter || (p->state & state_filter))
5180
			sched_show_task(p);
L
Linus Torvalds 已提交
5181 5182
	} while_each_thread(g, p);

5183 5184
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5185 5186 5187
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5188
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5189 5190 5191 5192 5193
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5194 5195
}

I
Ingo Molnar 已提交
5196 5197
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5198
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5199 5200
}

5201 5202 5203 5204 5205 5206 5207 5208
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5209
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5210
{
5211
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5212 5213
	unsigned long flags;

I
Ingo Molnar 已提交
5214 5215 5216
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5217
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5218
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5219
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5220 5221 5222

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5223 5224 5225
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5226 5227 5228
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5229
	task_thread_info(idle)->preempt_count = 0;
5230

I
Ingo Molnar 已提交
5231 5232 5233 5234
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5272 5273 5274 5275
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5276
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5295
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5296 5297
 * call is not atomic; no spinlocks may be held.
 */
5298
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5299
{
5300
	struct migration_req req;
L
Linus Torvalds 已提交
5301
	unsigned long flags;
5302
	struct rq *rq;
5303
	int ret = 0;
L
Linus Torvalds 已提交
5304 5305 5306 5307 5308 5309 5310

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5311 5312 5313
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5314
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5315
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5316 5317
	}

L
Linus Torvalds 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5332

L
Linus Torvalds 已提交
5333 5334 5335 5336 5337
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5338
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343 5344
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5345 5346
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5347
 */
5348
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5349
{
5350
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5351
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5352 5353

	if (unlikely(cpu_is_offline(dest_cpu)))
5354
		return ret;
L
Linus Torvalds 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5367
	on_rq = p->se.on_rq;
5368
	if (on_rq)
5369
		deactivate_task(rq_src, p, 0);
5370

L
Linus Torvalds 已提交
5371
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5372 5373 5374
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5375
	}
5376
	ret = 1;
L
Linus Torvalds 已提交
5377 5378
out:
	double_rq_unlock(rq_src, rq_dest);
5379
	return ret;
L
Linus Torvalds 已提交
5380 5381 5382 5383 5384 5385 5386
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5387
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5388 5389
{
	int cpu = (long)data;
5390
	struct rq *rq;
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5397
		struct migration_req *req;
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5420
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5421 5422
		list_del_init(head->next);

N
Nick Piggin 已提交
5423 5424 5425
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5455
/*
5456
 * Figure out where task on dead CPU should go, use force if necessary.
5457 5458
 * NOTE: interrupts should be disabled by the caller
 */
5459
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5460
{
5461
	unsigned long flags;
L
Linus Torvalds 已提交
5462
	cpumask_t mask;
5463 5464
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5465

5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5478 5479 5480 5481 5482
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5483
			 * cpuset_cpus_allowed() will not block. It must be
5484 5485
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5486
			rq = task_rq_lock(p, &flags);
5487
			p->cpus_allowed = cpus_allowed;
5488 5489
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5490

5491 5492 5493 5494 5495
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5496
			if (p->mm && printk_ratelimit()) {
5497 5498
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5499 5500
					task_pid_nr(p), p->comm, dead_cpu);
			}
5501
		}
5502
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5512
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5513
{
5514
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5528
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5529

5530
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5531

5532 5533
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5534 5535
			continue;

5536 5537 5538
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5539

5540
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5541 5542
}

I
Ingo Molnar 已提交
5543 5544
/*
 * Schedules idle task to be the next runnable task on current CPU.
5545 5546
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5547 5548 5549
 */
void sched_idle_next(void)
{
5550
	int this_cpu = smp_processor_id();
5551
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5552 5553 5554 5555
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5556
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5557

5558 5559 5560
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5561 5562 5563
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5564
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5565

5566 5567
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5568 5569 5570 5571

	spin_unlock_irqrestore(&rq->lock, flags);
}

5572 5573
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5587
/* called under rq->lock with disabled interrupts */
5588
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5589
{
5590
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5591 5592

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5593
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5594 5595

	/* Cannot have done final schedule yet: would have vanished. */
5596
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5597

5598
	get_task_struct(p);
L
Linus Torvalds 已提交
5599 5600 5601

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5602
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5603 5604
	 * fine.
	 */
5605
	spin_unlock_irq(&rq->lock);
5606
	move_task_off_dead_cpu(dead_cpu, p);
5607
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5608

5609
	put_task_struct(p);
L
Linus Torvalds 已提交
5610 5611 5612 5613 5614
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5615
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5616
	struct task_struct *next;
5617

I
Ingo Molnar 已提交
5618 5619 5620
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5621
		update_rq_clock(rq);
5622
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5623 5624 5625
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5626

L
Linus Torvalds 已提交
5627 5628 5629 5630
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5631 5632 5633
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5634 5635
	{
		.procname	= "sched_domain",
5636
		.mode		= 0555,
5637
	},
I
Ingo Molnar 已提交
5638
	{0, },
5639 5640 5641
};

static struct ctl_table sd_ctl_root[] = {
5642
	{
5643
		.ctl_name	= CTL_KERN,
5644
		.procname	= "kernel",
5645
		.mode		= 0555,
5646 5647
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5648
	{0, },
5649 5650 5651 5652 5653
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5654
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5655 5656 5657 5658

	return entry;
}

5659 5660
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5661
	struct ctl_table *entry;
5662

5663 5664 5665
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5666
	 * will always be set. In the lowest directory the names are
5667 5668 5669
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5670 5671
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5672 5673 5674
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5675 5676 5677 5678 5679

	kfree(*tablep);
	*tablep = NULL;
}

5680
static void
5681
set_table_entry(struct ctl_table *entry,
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5695
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5696

5697 5698 5699
	if (table == NULL)
		return NULL;

5700
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5701
		sizeof(long), 0644, proc_doulongvec_minmax);
5702
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5703
		sizeof(long), 0644, proc_doulongvec_minmax);
5704
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5705
		sizeof(int), 0644, proc_dointvec_minmax);
5706
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5707
		sizeof(int), 0644, proc_dointvec_minmax);
5708
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5709
		sizeof(int), 0644, proc_dointvec_minmax);
5710
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5711
		sizeof(int), 0644, proc_dointvec_minmax);
5712
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5713
		sizeof(int), 0644, proc_dointvec_minmax);
5714
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5715
		sizeof(int), 0644, proc_dointvec_minmax);
5716
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5717
		sizeof(int), 0644, proc_dointvec_minmax);
5718
	set_table_entry(&table[9], "cache_nice_tries",
5719 5720
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5721
	set_table_entry(&table[10], "flags", &sd->flags,
5722
		sizeof(int), 0644, proc_dointvec_minmax);
5723
	/* &table[11] is terminator */
5724 5725 5726 5727

	return table;
}

5728
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5729 5730 5731 5732 5733 5734 5735 5736 5737
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5738 5739
	if (table == NULL)
		return NULL;
5740 5741 5742 5743 5744

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5745
		entry->mode = 0555;
5746 5747 5748 5749 5750 5751 5752 5753
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5754
static void register_sched_domain_sysctl(void)
5755 5756 5757 5758 5759
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5760 5761 5762
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5763 5764 5765
	if (entry == NULL)
		return;

5766
	for_each_online_cpu(i) {
5767 5768
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5769
		entry->mode = 0555;
5770
		entry->child = sd_alloc_ctl_cpu_table(i);
5771
		entry++;
5772
	}
5773 5774

	WARN_ON(sd_sysctl_header);
5775 5776
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5777

5778
/* may be called multiple times per register */
5779 5780
static void unregister_sched_domain_sysctl(void)
{
5781 5782
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5783
	sd_sysctl_header = NULL;
5784 5785
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5786
}
5787
#else
5788 5789 5790 5791
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5792 5793 5794 5795
{
}
#endif

L
Linus Torvalds 已提交
5796 5797 5798 5799
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5800 5801
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5802 5803
{
	struct task_struct *p;
5804
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5805
	unsigned long flags;
5806
	struct rq *rq;
L
Linus Torvalds 已提交
5807 5808

	switch (action) {
5809

L
Linus Torvalds 已提交
5810
	case CPU_UP_PREPARE:
5811
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5812
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5813 5814 5815 5816 5817
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5818
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5819 5820 5821
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5822

L
Linus Torvalds 已提交
5823
	case CPU_ONLINE:
5824
	case CPU_ONLINE_FROZEN:
5825
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5826
		wake_up_process(cpu_rq(cpu)->migration_thread);
5827 5828 5829 5830 5831 5832 5833 5834 5835

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5836
		break;
5837

L
Linus Torvalds 已提交
5838 5839
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5840
	case CPU_UP_CANCELED_FROZEN:
5841 5842
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5843
		/* Unbind it from offline cpu so it can run. Fall thru. */
5844 5845
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5846 5847 5848
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5849

L
Linus Torvalds 已提交
5850
	case CPU_DEAD:
5851
	case CPU_DEAD_FROZEN:
5852
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5853 5854 5855 5856 5857
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5858
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5859
		update_rq_clock(rq);
5860
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5861
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5862 5863
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5864
		migrate_dead_tasks(cpu);
5865
		spin_unlock_irq(&rq->lock);
5866
		cpuset_unlock();
L
Linus Torvalds 已提交
5867 5868 5869
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5870 5871 5872 5873 5874
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5875 5876
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5877 5878
			struct migration_req *req;

L
Linus Torvalds 已提交
5879
			req = list_entry(rq->migration_queue.next,
5880
					 struct migration_req, list);
L
Linus Torvalds 已提交
5881 5882 5883 5884 5885
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5886

5887 5888
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5889 5890 5891 5892 5893 5894 5895 5896 5897
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5898 5899 5900 5901 5902 5903 5904 5905
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5906
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5907 5908 5909 5910
	.notifier_call = migration_call,
	.priority = 10
};

5911
void __init migration_init(void)
L
Linus Torvalds 已提交
5912 5913
{
	void *cpu = (void *)(long)smp_processor_id();
5914
	int err;
5915 5916

	/* Start one for the boot CPU: */
5917 5918
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5919 5920 5921 5922 5923 5924
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5925 5926 5927 5928 5929

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5930
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5931 5932

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5933
{
I
Ingo Molnar 已提交
5934 5935 5936
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5937

I
Ingo Molnar 已提交
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5949 5950
	}

I
Ingo Molnar 已提交
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5961

I
Ingo Molnar 已提交
5962
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5963
	do {
I
Ingo Molnar 已提交
5964 5965 5966
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5967 5968 5969
			break;
		}

I
Ingo Molnar 已提交
5970 5971 5972 5973 5974 5975
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5976

I
Ingo Molnar 已提交
5977 5978 5979 5980 5981
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5982

I
Ingo Molnar 已提交
5983 5984 5985 5986 5987
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5988

I
Ingo Molnar 已提交
5989
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5990

I
Ingo Molnar 已提交
5991 5992
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5993

I
Ingo Molnar 已提交
5994 5995 5996
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5997

I
Ingo Molnar 已提交
5998 5999
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6000

I
Ingo Molnar 已提交
6001 6002 6003 6004 6005
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6006

I
Ingo Molnar 已提交
6007 6008 6009
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6010

I
Ingo Molnar 已提交
6011 6012 6013 6014
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6015

I
Ingo Molnar 已提交
6016 6017 6018 6019 6020
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6021 6022
		level++;
		sd = sd->parent;
6023
		if (!sd)
I
Ingo Molnar 已提交
6024 6025
			break;
	}
L
Linus Torvalds 已提交
6026 6027
}
#else
6028
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6029 6030
#endif

6031
static int sd_degenerate(struct sched_domain *sd)
6032 6033 6034 6035 6036 6037 6038 6039
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6040 6041 6042
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6056 6057
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6076 6077 6078
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6079 6080 6081 6082 6083 6084 6085
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6096
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6097 6098
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6099
		}
G
Gregory Haskins 已提交
6100

6101 6102 6103
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6104 6105 6106 6107 6108 6109 6110
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6111
	cpu_set(rq->cpu, rd->span);
6112 6113
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6114

I
Ingo Molnar 已提交
6115
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6116 6117
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6118
	}
G
Gregory Haskins 已提交
6119 6120 6121 6122

	spin_unlock_irqrestore(&rq->lock, flags);
}

6123
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6124 6125 6126
{
	memset(rd, 0, sizeof(*rd));

6127 6128
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6129 6130 6131 6132
}

static void init_defrootdomain(void)
{
6133
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6134 6135 6136
	atomic_set(&def_root_domain.refcount, 1);
}

6137
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6138 6139 6140 6141 6142 6143 6144
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6145
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6146 6147 6148 6149

	return rd;
}

L
Linus Torvalds 已提交
6150
/*
I
Ingo Molnar 已提交
6151
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6152 6153
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6154 6155
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6156
{
6157
	struct rq *rq = cpu_rq(cpu);
6158 6159 6160 6161 6162 6163 6164
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6165
		if (sd_parent_degenerate(tmp, parent)) {
6166
			tmp->parent = parent->parent;
6167 6168 6169
			if (parent->parent)
				parent->parent->child = tmp;
		}
6170 6171
	}

6172
	if (sd && sd_degenerate(sd)) {
6173
		sd = sd->parent;
6174 6175 6176
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6177 6178 6179

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6180
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6181
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6182 6183 6184
}

/* cpus with isolated domains */
6185
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6200
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6201 6202

/*
6203 6204 6205 6206
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6207 6208 6209 6210 6211
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6212
static void
6213 6214 6215
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6216 6217 6218 6219 6220 6221
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6222 6223
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6224 6225 6226 6227 6228 6229
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6230
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6231 6232

		for_each_cpu_mask(j, span) {
6233
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6248
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6249

6250
#ifdef CONFIG_NUMA
6251

6252 6253 6254 6255 6256
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6257
 * Find the next node to include in a given scheduling domain. Simply
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6297
 * Given a node, construct a good cpumask for its sched_domain to span. It
6298 6299 6300 6301 6302 6303
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6304 6305
	cpumask_t span, nodemask;
	int i;
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6316

6317 6318 6319 6320 6321 6322 6323 6324
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6325
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6326

6327
/*
6328
 * SMT sched-domains:
6329
 */
L
Linus Torvalds 已提交
6330 6331
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6332
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6333

I
Ingo Molnar 已提交
6334 6335
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6336
{
6337 6338
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6339 6340 6341 6342
	return cpu;
}
#endif

6343 6344 6345
/*
 * multi-core sched-domains:
 */
6346 6347
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6348
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6349 6350 6351
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6352 6353
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6354
{
6355
	int group;
6356
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6357
	cpus_and(mask, mask, *cpu_map);
6358 6359 6360 6361
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6362 6363
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6364 6365
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6366
{
6367 6368
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6369 6370 6371 6372
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6373
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6374
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6375

I
Ingo Molnar 已提交
6376 6377
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6378
{
6379
	int group;
6380
#ifdef CONFIG_SCHED_MC
6381
	cpumask_t mask = cpu_coregroup_map(cpu);
6382
	cpus_and(mask, mask, *cpu_map);
6383
	group = first_cpu(mask);
6384
#elif defined(CONFIG_SCHED_SMT)
6385
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6386
	cpus_and(mask, mask, *cpu_map);
6387
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6388
#else
6389
	group = cpu;
L
Linus Torvalds 已提交
6390
#endif
6391 6392 6393
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6394 6395 6396 6397
}

#ifdef CONFIG_NUMA
/*
6398 6399 6400
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6401
 */
6402
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6403
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6404

6405
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6406
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6407

6408 6409
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6410
{
6411 6412 6413 6414 6415 6416 6417 6418 6419
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6420
}
6421

6422 6423 6424 6425 6426 6427 6428
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6429 6430 6431
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6432

6433 6434 6435 6436 6437 6438 6439 6440
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6441

6442 6443 6444 6445
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6446
}
L
Linus Torvalds 已提交
6447 6448
#endif

6449
#ifdef CONFIG_NUMA
6450 6451 6452
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6453
	int cpu, i;
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6484 6485 6486 6487 6488
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6489

6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6516 6517
	sd->groups->__cpu_power = 0;

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6528
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6529 6530 6531 6532 6533 6534 6535 6536
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6537
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6538 6539 6540 6541
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6542
/*
6543 6544
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6545
 */
6546
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6547 6548
{
	int i;
G
Gregory Haskins 已提交
6549
	struct root_domain *rd;
6550 6551
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6552
	int sd_allnodes = 0;
6553 6554 6555 6556

	/*
	 * Allocate the per-node list of sched groups
	 */
6557
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6558
				    GFP_KERNEL);
6559 6560
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6561
		return -ENOMEM;
6562 6563 6564
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6565

6566
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6567 6568 6569 6570 6571
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6572
	/*
6573
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6574
	 */
6575
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6576 6577 6578
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6579
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6580 6581

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6582 6583
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6584 6585 6586
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6587
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6588
			p = sd;
6589
			sd_allnodes = 1;
6590 6591 6592
		} else
			p = NULL;

L
Linus Torvalds 已提交
6593 6594
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6595 6596
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6597 6598
		if (p)
			p->child = sd;
6599
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6600 6601 6602 6603 6604 6605 6606
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6607 6608
		if (p)
			p->child = sd;
6609
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6610

6611 6612 6613 6614 6615 6616 6617
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6618
		p->child = sd;
6619
		cpu_to_core_group(i, cpu_map, &sd->groups);
6620 6621
#endif

L
Linus Torvalds 已提交
6622 6623 6624 6625
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6626
		sd->span = per_cpu(cpu_sibling_map, i);
6627
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6628
		sd->parent = p;
6629
		p->child = sd;
6630
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6631 6632 6633 6634 6635
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6636
	for_each_cpu_mask(i, *cpu_map) {
6637
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6638
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6639 6640 6641
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6642 6643
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6644 6645 6646
	}
#endif

6647 6648 6649 6650 6651 6652 6653
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6654 6655
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6656 6657 6658
	}
#endif

L
Linus Torvalds 已提交
6659 6660 6661 6662
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6663
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6664 6665 6666
		if (cpus_empty(nodemask))
			continue;

6667
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6668 6669 6670 6671
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6672
	if (sd_allnodes)
I
Ingo Molnar 已提交
6673 6674
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6685 6686
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6687
			continue;
6688
		}
6689 6690 6691 6692

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6693
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6694 6695 6696 6697 6698
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6699 6700 6701
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6702

6703 6704 6705
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6706
		sg->__cpu_power = 0;
6707
		sg->cpumask = nodemask;
6708
		sg->next = sg;
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6727 6728
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6729 6730 6731
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6732
				goto error;
6733
			}
6734
			sg->__cpu_power = 0;
6735
			sg->cpumask = tmp;
6736
			sg->next = prev->next;
6737 6738 6739 6740 6741
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6742 6743 6744
#endif

	/* Calculate CPU power for physical packages and nodes */
6745
#ifdef CONFIG_SCHED_SMT
6746
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6747 6748
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6749
		init_sched_groups_power(i, sd);
6750
	}
L
Linus Torvalds 已提交
6751
#endif
6752
#ifdef CONFIG_SCHED_MC
6753
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6754 6755
		struct sched_domain *sd = &per_cpu(core_domains, i);

6756
		init_sched_groups_power(i, sd);
6757 6758
	}
#endif
6759

6760
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6761 6762
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6763
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6764 6765
	}

6766
#ifdef CONFIG_NUMA
6767 6768
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6769

6770 6771
	if (sd_allnodes) {
		struct sched_group *sg;
6772

6773
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6774 6775
		init_numa_sched_groups_power(sg);
	}
6776 6777
#endif

L
Linus Torvalds 已提交
6778
	/* Attach the domains */
6779
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6780 6781 6782
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6783 6784
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6785 6786 6787
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6788
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6789
	}
6790 6791 6792

	return 0;

6793
#ifdef CONFIG_NUMA
6794 6795 6796
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6797
#endif
L
Linus Torvalds 已提交
6798
}
P
Paul Jackson 已提交
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6810 6811 6812 6813
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

6814
/*
I
Ingo Molnar 已提交
6815
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6816 6817
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6818
 */
6819
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6820
{
6821 6822
	int err;

6823
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6824 6825 6826 6827 6828
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6829
	err = build_sched_domains(doms_cur);
6830
	register_sched_domain_sysctl();
6831 6832

	return err;
6833 6834 6835
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6836
{
6837
	free_sched_groups(cpu_map);
6838
}
L
Linus Torvalds 已提交
6839

6840 6841 6842 6843
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6844
static void detach_destroy_domains(const cpumask_t *cpu_map)
6845 6846 6847
{
	int i;

6848 6849
	unregister_sched_domain_sysctl();

6850
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6851
		cpu_attach_domain(NULL, &def_root_domain, i);
6852 6853 6854 6855
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6856 6857
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6858
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6859 6860 6861 6862
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6863 6864 6865
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6866 6867 6868
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6869 6870
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6881 6882
	lock_doms_cur();

6883 6884 6885
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6921 6922

	register_sched_domain_sysctl();
6923 6924

	unlock_doms_cur();
P
Paul Jackson 已提交
6925 6926
}

6927
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6928
int arch_reinit_sched_domains(void)
6929 6930 6931
{
	int err;

6932
	get_online_cpus();
6933 6934
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6935
	put_online_cpus();
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6962 6963
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6964 6965 6966
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6967 6968
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6969 6970 6971 6972 6973 6974 6975
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6976 6977
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6978 6979 6980
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7001 7002
#endif

L
Linus Torvalds 已提交
7003
/*
I
Ingo Molnar 已提交
7004
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7005
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7006
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7007 7008 7009 7010 7011 7012 7013
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7014
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7015
	case CPU_DOWN_PREPARE:
7016
	case CPU_DOWN_PREPARE_FROZEN:
7017
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7018 7019 7020
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7021
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7022
	case CPU_DOWN_FAILED:
7023
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7024
	case CPU_ONLINE:
7025
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7026
	case CPU_DEAD:
7027
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7028 7029 7030 7031 7032 7033 7034 7035 7036
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7037
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7038 7039 7040 7041 7042 7043

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7044 7045
	cpumask_t non_isolated_cpus;

7046
	get_online_cpus();
7047
	arch_init_sched_domains(&cpu_online_map);
7048
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7049 7050
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7051
	put_online_cpus();
L
Linus Torvalds 已提交
7052 7053
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7054 7055 7056 7057

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7058
	sched_init_granularity();
L
Linus Torvalds 已提交
7059 7060 7061 7062
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7063
	sched_init_granularity();
L
Linus Torvalds 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7074
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7075 7076 7077 7078 7079
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7080
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7081 7082
}

P
Peter Zijlstra 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7096
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7097 7098
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7099 7100 7101 7102 7103 7104 7105
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7106

7107
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7108
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7109 7110
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7111 7112
}

P
Peter Zijlstra 已提交
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7131
#endif
P
Peter Zijlstra 已提交
7132

7133
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7153 7154
void __init sched_init(void)
{
7155
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7156 7157
	int i, j;

G
Gregory Haskins 已提交
7158 7159 7160 7161
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7162
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7163 7164 7165
	list_add(&init_task_group.list, &task_groups);
#endif

7166
	for_each_possible_cpu(i) {
7167
		struct rq *rq;
L
Linus Torvalds 已提交
7168 7169 7170

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7171
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7172
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7173 7174
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7175
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7176
#ifdef CONFIG_FAIR_GROUP_SCHED
7177
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7178 7179 7180 7181 7182
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7183 7184
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7185 7186
		init_task_group.rt_runtime =
			sysctl_sched_rt_runtime * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7187 7188 7189 7190
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7191
#endif
P
Peter Zijlstra 已提交
7192
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7193
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7194

I
Ingo Molnar 已提交
7195 7196
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7197
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7198
		rq->sd = NULL;
G
Gregory Haskins 已提交
7199
		rq->rd = NULL;
L
Linus Torvalds 已提交
7200
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7201
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7202
		rq->push_cpu = 0;
7203
		rq->cpu = i;
L
Linus Torvalds 已提交
7204 7205
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7206
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7207
#endif
P
Peter Zijlstra 已提交
7208
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7209
		atomic_set(&rq->nr_iowait, 0);
7210
		highest_cpu = i;
L
Linus Torvalds 已提交
7211 7212
	}

7213
	set_load_weight(&init_task);
7214

7215 7216 7217 7218
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7219
#ifdef CONFIG_SMP
7220
	nr_cpu_ids = highest_cpu + 1;
7221 7222 7223
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7224 7225 7226 7227
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7241 7242 7243 7244
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7245 7246

	scheduler_running = 1;
L
Linus Torvalds 已提交
7247 7248 7249 7250 7251
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7252
#ifdef in_atomic
L
Linus Torvalds 已提交
7253 7254 7255 7256 7257 7258 7259
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7260
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7261 7262 7263
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7264
		debug_show_held_locks(current);
7265 7266
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7267 7268 7269 7270 7271 7272 7273 7274
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7289 7290
void normalize_rt_tasks(void)
{
7291
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7292
	unsigned long flags;
7293
	struct rq *rq;
L
Linus Torvalds 已提交
7294

7295
	read_lock_irqsave(&tasklist_lock, flags);
7296
	do_each_thread(g, p) {
7297 7298 7299 7300 7301 7302
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7303 7304
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7305 7306 7307
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7308
#endif
I
Ingo Molnar 已提交
7309 7310 7311 7312 7313 7314 7315 7316 7317
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7318
			continue;
I
Ingo Molnar 已提交
7319
		}
L
Linus Torvalds 已提交
7320

7321
		spin_lock(&p->pi_lock);
7322
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7323

7324
		normalize_task(rq, p);
7325

7326
		__task_rq_unlock(rq);
7327
		spin_unlock(&p->pi_lock);
7328 7329
	} while_each_thread(g, p);

7330
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7331 7332 7333
}

#endif /* CONFIG_MAGIC_SYSRQ */
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7352
struct task_struct *curr_task(int cpu)
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7363 7364
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7365 7366 7367 7368 7369 7370 7371
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7372
void set_curr_task(int cpu, struct task_struct *p)
7373 7374 7375 7376 7377
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7378

7379
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7380

7381 7382
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7397
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7398 7399 7400
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7401
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7402 7403
	int i;

7404
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7405 7406
	if (!tg->cfs_rq)
		goto err;
7407
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7408 7409
	if (!tg->se)
		goto err;
7410 7411

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7412 7413

	for_each_possible_cpu(i) {
7414
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7415

P
Peter Zijlstra 已提交
7416 7417
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7418 7419 7420
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7421 7422
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7423 7424 7425
		if (!se)
			goto err;

7426
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7462 7463 7464
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->rt_runtime = 0;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7499 7500 7501 7502
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7503

P
Peter Zijlstra 已提交
7504 7505 7506 7507
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7508

P
Peter Zijlstra 已提交
7509
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7510 7511
	}

7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7571
	spin_lock_irqsave(&task_group_lock, flags);
7572
	for_each_possible_cpu(i) {
7573 7574
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7575
	}
P
Peter Zijlstra 已提交
7576
	list_add_rcu(&tg->list, &task_groups);
7577
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7578

7579
	return tg;
S
Srivatsa Vaddagiri 已提交
7580 7581

err:
P
Peter Zijlstra 已提交
7582
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7583 7584 7585
	return ERR_PTR(-ENOMEM);
}

7586
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7587
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7588 7589
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7590
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7591 7592
}

7593
/* Destroy runqueue etc associated with a task group */
7594
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7595
{
7596
	unsigned long flags;
7597
	int i;
S
Srivatsa Vaddagiri 已提交
7598

7599
	spin_lock_irqsave(&task_group_lock, flags);
7600
	for_each_possible_cpu(i) {
7601 7602
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7603
	}
P
Peter Zijlstra 已提交
7604
	list_del_rcu(&tg->list);
7605
	spin_unlock_irqrestore(&task_group_lock, flags);
7606 7607

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7608
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7609 7610
}

7611
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7612 7613 7614
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7615 7616
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7617 7618 7619 7620 7621 7622 7623 7624 7625
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7626
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7627 7628
	on_rq = tsk->se.on_rq;

7629
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7630
		dequeue_task(rq, tsk, 0);
7631 7632
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7633

P
Peter Zijlstra 已提交
7634
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7635

P
Peter Zijlstra 已提交
7636 7637 7638 7639 7640
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

7641 7642 7643
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7644
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7645 7646 7647 7648

	task_rq_unlock(rq, &flags);
}

7649
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7650 7651 7652 7653 7654 7655
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7656
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7657 7658

	on_rq = se->on_rq;
7659
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7660 7661 7662 7663 7664
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7665
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7666
		enqueue_entity(cfs_rq, se, 0);
7667 7668

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7669 7670
}

7671 7672
static DEFINE_MUTEX(shares_mutex);

7673
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7674 7675
{
	int i;
7676
	unsigned long flags;
7677

7678 7679 7680 7681 7682 7683 7684 7685
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7686
	mutex_lock(&shares_mutex);
7687
	if (tg->shares == shares)
7688
		goto done;
S
Srivatsa Vaddagiri 已提交
7689

7690
	spin_lock_irqsave(&task_group_lock, flags);
7691 7692
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7693
	spin_unlock_irqrestore(&task_group_lock, flags);
7694 7695 7696 7697 7698 7699 7700 7701

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7702
	tg->shares = shares;
7703
	for_each_possible_cpu(i)
7704
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7705

7706 7707 7708 7709
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7710
	spin_lock_irqsave(&task_group_lock, flags);
7711 7712
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7713
	spin_unlock_irqrestore(&task_group_lock, flags);
7714
done:
7715
	mutex_unlock(&shares_mutex);
7716
	return 0;
S
Srivatsa Vaddagiri 已提交
7717 7718
}

7719 7720 7721 7722
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7723
#endif
7724

7725
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7726
/*
P
Peter Zijlstra 已提交
7727
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7728
 */
P
Peter Zijlstra 已提交
7729 7730 7731 7732 7733 7734 7735
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

7736
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
7737 7738 7739
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7740 7741 7742
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7743 7744 7745 7746
	unsigned long global_ratio =
		to_ratio(sysctl_sched_rt_period,
			 sysctl_sched_rt_runtime < 0 ?
				RUNTIME_INF : sysctl_sched_rt_runtime);
P
Peter Zijlstra 已提交
7747 7748

	rcu_read_lock();
P
Peter Zijlstra 已提交
7749 7750 7751
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7752

P
Peter Zijlstra 已提交
7753 7754 7755
		total += to_ratio(period, tgi->rt_runtime);
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7756

P
Peter Zijlstra 已提交
7757
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7758 7759
}

7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

P
Peter Zijlstra 已提交
7771
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
P
Peter Zijlstra 已提交
7772
{
P
Peter Zijlstra 已提交
7773 7774 7775
	u64 rt_runtime, rt_period;
	int err = 0;

7776
	rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7777 7778
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us == -1)
7779
		rt_runtime = RUNTIME_INF;
P
Peter Zijlstra 已提交
7780 7781

	mutex_lock(&rt_constraints_mutex);
7782 7783 7784 7785 7786
	read_lock(&tasklist_lock);
	if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
7787 7788 7789 7790 7791 7792
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
	tg->rt_runtime = rt_runtime;
 unlock:
7793
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7794 7795 7796
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7797 7798
}

P
Peter Zijlstra 已提交
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

	if (tg->rt_runtime == RUNTIME_INF)
		return -1;

	rt_runtime_us = tg->rt_runtime;
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7810 7811
#endif
#endif	/* CONFIG_GROUP_SCHED */
7812

7813
#ifdef CONFIG_CGROUP_SCHED
7814 7815

/* return corresponding task_group object of a cgroup */
7816
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7817
{
7818 7819
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7820 7821 7822
}

static struct cgroup_subsys_state *
7823
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7824 7825 7826
{
	struct task_group *tg;

7827
	if (!cgrp->parent) {
7828
		/* This is early initialization for the top cgroup */
7829
		init_task_group.css.cgroup = cgrp;
7830 7831 7832 7833
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7834
	if (cgrp->parent->parent)
7835 7836 7837 7838 7839 7840 7841
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7842
	tg->css.cgroup = cgrp;
7843 7844 7845 7846

	return &tg->css;
}

I
Ingo Molnar 已提交
7847 7848
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7849
{
7850
	struct task_group *tg = cgroup_tg(cgrp);
7851 7852 7853 7854

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7855 7856 7857
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7858
{
7859 7860 7861 7862 7863
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
		return -EINVAL;
#else
7864 7865 7866
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7867
#endif
7868 7869 7870 7871 7872

	return 0;
}

static void
7873
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7874 7875 7876 7877 7878
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7879
#ifdef CONFIG_FAIR_GROUP_SCHED
7880 7881
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7882
{
7883
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7884 7885
}

7886
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7887
{
7888
	struct task_group *tg = cgroup_tg(cgrp);
7889 7890 7891

	return (u64) tg->shares;
}
7892
#endif
7893

7894
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7895 7896 7897 7898
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
7899
{
P
Peter Zijlstra 已提交
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
7926 7927
}

P
Peter Zijlstra 已提交
7928 7929 7930 7931
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
7932
{
P
Peter Zijlstra 已提交
7933 7934 7935
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
7936

P
Peter Zijlstra 已提交
7937
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
7938
}
7939
#endif
P
Peter Zijlstra 已提交
7940

7941
static struct cftype cpu_files[] = {
7942
#ifdef CONFIG_FAIR_GROUP_SCHED
7943 7944 7945 7946 7947
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7948 7949
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7950
	{
P
Peter Zijlstra 已提交
7951 7952 7953
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7954
	},
7955
#endif
7956 7957 7958 7959
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7960
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7961 7962 7963
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7964 7965 7966 7967 7968 7969 7970
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7971 7972 7973
	.early_init	= 1,
};

7974
#endif	/* CONFIG_CGROUP_SCHED */
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8027 8028
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */