i915_gem.c 136.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156 157
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158
			    struct drm_file *file)
159
{
160
	struct drm_i915_private *dev_priv = dev->dev_private;
161
	struct drm_i915_gem_get_aperture *args = data;
162 163
	struct drm_i915_gem_object *obj;
	size_t pinned;
164

165
	pinned = 0;
166
	mutex_lock(&dev->struct_mutex);
167
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
168
		if (i915_gem_obj_is_pinned(obj))
169
			pinned += i915_gem_obj_ggtt_size(obj);
170
	mutex_unlock(&dev->struct_mutex);
171

172
	args->aper_size = dev_priv->gtt.base.total;
173
	args->aper_available_size = args->aper_size - pinned;
174

175 176 177
	return 0;
}

178 179
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180
{
181 182 183 184 185
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
236

237 238 239 240 241 242 243 244 245 246 247 248 249
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
250
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251
		char *vaddr = obj->phys_handle->vaddr;
252 253 254
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255 256 257 258 259 260 261 262 263 264 265 266 267 268
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
269
				mark_page_accessed(page);
270
			page_cache_release(page);
271 272
			vaddr += PAGE_SIZE;
		}
273
		obj->dirty = 0;
274 275
	}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
309 310 311 312 313 314 315
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
316
	int ret;
317 318 319 320 321 322 323 324 325 326 327 328 329 330

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

331 332 333 334
	ret = drop_pages(obj);
	if (ret)
		return ret;

335 336 337 338 339 340
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
341 342 343
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
344 345 346 347 348 349 350 351 352 353
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
354 355 356 357 358 359 360 361
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

377
	drm_clflush_virt_range(vaddr, args->size);
378 379 380 381
	i915_gem_chipset_flush(dev);
	return 0;
}

382 383 384
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
385
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
386 387 388 389 390 391 392 393
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

394 395 396 397
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
398
		bool dumb,
399
		uint32_t *handle_p)
400
{
401
	struct drm_i915_gem_object *obj;
402 403
	int ret;
	u32 handle;
404

405
	size = roundup(size, PAGE_SIZE);
406 407
	if (size == 0)
		return -EINVAL;
408 409

	/* Allocate the new object */
410
	obj = i915_gem_alloc_object(dev, size);
411 412 413
	if (obj == NULL)
		return -ENOMEM;

414
	obj->base.dumb = dumb;
415
	ret = drm_gem_handle_create(file, &obj->base, &handle);
416
	/* drop reference from allocate - handle holds it now */
417 418 419
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
420

421
	*handle_p = handle;
422 423 424
	return 0;
}

425 426 427 428 429 430
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
431
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
432 433
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
434
			       args->size, true, &args->handle);
435 436 437 438 439 440 441 442 443 444
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
445

446
	return i915_gem_create(file, dev,
447
			       args->size, false, &args->handle);
448 449
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

476
static inline int
477 478
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
527 528

		i915_gem_object_retire(obj);
529 530 531 532 533 534 535 536 537 538 539
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

540 541 542
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
543
static int
544 545 546 547 548 549 550
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

551
	if (unlikely(page_do_bit17_swizzling))
552 553 554 555 556 557 558 559 560 561 562
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

563
	return ret ? -EFAULT : 0;
564 565
}

566 567 568 569
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
570
	if (unlikely(swizzled)) {
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

588 589 590 591 592 593 594 595 596 597 598 599
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
600 601 602
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
603 604 605 606 607 608 609 610 611 612 613

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

614
	return ret ? - EFAULT : 0;
615 616
}

617
static int
618 619 620 621
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
622
{
623
	char __user *user_data;
624
	ssize_t remain;
625
	loff_t offset;
626
	int shmem_page_offset, page_length, ret = 0;
627
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
628
	int prefaulted = 0;
629
	int needs_clflush = 0;
630
	struct sg_page_iter sg_iter;
631

V
Ville Syrjälä 已提交
632
	user_data = to_user_ptr(args->data_ptr);
633 634
	remain = args->size;

635
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
636

637
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
638 639 640
	if (ret)
		return ret;

641
	offset = args->offset;
642

643 644
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
645
		struct page *page = sg_page_iter_page(&sg_iter);
646 647 648 649

		if (remain <= 0)
			break;

650 651 652 653 654
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
655
		shmem_page_offset = offset_in_page(offset);
656 657 658 659
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

660 661 662
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

663 664 665 666 667
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
668 669 670

		mutex_unlock(&dev->struct_mutex);

671
		if (likely(!i915.prefault_disable) && !prefaulted) {
672
			ret = fault_in_multipages_writeable(user_data, remain);
673 674 675 676 677 678 679
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
680

681 682 683
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
684

685
		mutex_lock(&dev->struct_mutex);
686 687

		if (ret)
688 689
			goto out;

690
next_page:
691
		remain -= page_length;
692
		user_data += page_length;
693 694 695
		offset += page_length;
	}

696
out:
697 698
	i915_gem_object_unpin_pages(obj);

699 700 701
	return ret;
}

702 703 704 705 706 707 708
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
709
		     struct drm_file *file)
710 711
{
	struct drm_i915_gem_pread *args = data;
712
	struct drm_i915_gem_object *obj;
713
	int ret = 0;
714

715 716 717 718
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
719
		       to_user_ptr(args->data_ptr),
720 721 722
		       args->size))
		return -EFAULT;

723
	ret = i915_mutex_lock_interruptible(dev);
724
	if (ret)
725
		return ret;
726

727
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
728
	if (&obj->base == NULL) {
729 730
		ret = -ENOENT;
		goto unlock;
731
	}
732

733
	/* Bounds check source.  */
734 735
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
736
		ret = -EINVAL;
737
		goto out;
C
Chris Wilson 已提交
738 739
	}

740 741 742 743 744 745 746 747
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
748 749
	trace_i915_gem_object_pread(obj, args->offset, args->size);

750
	ret = i915_gem_shmem_pread(dev, obj, args, file);
751

752
out:
753
	drm_gem_object_unreference(&obj->base);
754
unlock:
755
	mutex_unlock(&dev->struct_mutex);
756
	return ret;
757 758
}

759 760
/* This is the fast write path which cannot handle
 * page faults in the source data
761
 */
762 763 764 765 766 767

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
768
{
769 770
	void __iomem *vaddr_atomic;
	void *vaddr;
771
	unsigned long unwritten;
772

P
Peter Zijlstra 已提交
773
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
774 775 776
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
777
						      user_data, length);
P
Peter Zijlstra 已提交
778
	io_mapping_unmap_atomic(vaddr_atomic);
779
	return unwritten;
780 781
}

782 783 784 785
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
786
static int
787 788
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
789
			 struct drm_i915_gem_pwrite *args,
790
			 struct drm_file *file)
791
{
792
	struct drm_i915_private *dev_priv = dev->dev_private;
793
	ssize_t remain;
794
	loff_t offset, page_base;
795
	char __user *user_data;
D
Daniel Vetter 已提交
796 797
	int page_offset, page_length, ret;

798
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
799 800 801 802 803 804 805 806 807 808
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
809

V
Ville Syrjälä 已提交
810
	user_data = to_user_ptr(args->data_ptr);
811 812
	remain = args->size;

813
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
814 815 816 817

	while (remain > 0) {
		/* Operation in this page
		 *
818 819 820
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
821
		 */
822 823
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
824 825 826 827 828
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
829 830
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
831
		 */
B
Ben Widawsky 已提交
832
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
833 834 835 836
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
837

838 839 840
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
841 842
	}

D
Daniel Vetter 已提交
843
out_unpin:
B
Ben Widawsky 已提交
844
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
845
out:
846
	return ret;
847 848
}

849 850 851 852
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
853
static int
854 855 856 857 858
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
859
{
860
	char *vaddr;
861
	int ret;
862

863
	if (unlikely(page_do_bit17_swizzling))
864
		return -EINVAL;
865

866 867 868 869
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
870 871
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
872 873 874 875
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
876

877
	return ret ? -EFAULT : 0;
878 879
}

880 881
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
882
static int
883 884 885 886 887
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
888
{
889 890
	char *vaddr;
	int ret;
891

892
	vaddr = kmap(page);
893
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
894 895 896
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
897 898
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
899 900
						user_data,
						page_length);
901 902 903 904 905
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
906 907 908
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
909
	kunmap(page);
910

911
	return ret ? -EFAULT : 0;
912 913 914
}

static int
915 916 917 918
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
919 920
{
	ssize_t remain;
921 922
	loff_t offset;
	char __user *user_data;
923
	int shmem_page_offset, page_length, ret = 0;
924
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
925
	int hit_slowpath = 0;
926 927
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
928
	struct sg_page_iter sg_iter;
929

V
Ville Syrjälä 已提交
930
	user_data = to_user_ptr(args->data_ptr);
931 932
	remain = args->size;

933
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
934

935 936 937 938 939
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
940
		needs_clflush_after = cpu_write_needs_clflush(obj);
941 942 943
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
944 945

		i915_gem_object_retire(obj);
946
	}
947 948 949 950 951
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
952

953 954 955 956 957 958
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	return ret;
1036 1037 1038 1039 1040 1041 1042 1043 1044
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1045
		      struct drm_file *file)
1046 1047
{
	struct drm_i915_gem_pwrite *args = data;
1048
	struct drm_i915_gem_object *obj;
1049 1050 1051 1052 1053 1054
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1055
		       to_user_ptr(args->data_ptr),
1056 1057 1058
		       args->size))
		return -EFAULT;

1059
	if (likely(!i915.prefault_disable)) {
1060 1061 1062 1063 1064
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1065

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		return ret;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
	return ret;
}

1123
int
1124
i915_gem_check_wedge(struct i915_gpu_error *error,
1125 1126
		     bool interruptible)
{
1127
	if (i915_reset_in_progress(error)) {
1128 1129 1130 1131 1132
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1133 1134
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1135 1136
			return -EIO;

1137 1138 1139 1140 1141 1142 1143
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1144 1145 1146 1147 1148 1149
	}

	return 0;
}

/*
1150
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1151
 */
1152
int
1153
i915_gem_check_olr(struct drm_i915_gem_request *req)
1154 1155 1156
{
	int ret;

1157
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1158 1159

	ret = 0;
1160
	if (req == req->ring->outstanding_lazy_request)
1161
		ret = i915_add_request(req->ring);
1162 1163 1164 1165

	return ret;
}

1166 1167 1168 1169 1170 1171
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1172
		       struct intel_engine_cs *ring)
1173 1174 1175 1176
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1177 1178 1179 1180 1181 1182 1183 1184
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1185
/**
1186 1187 1188
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1189 1190 1191
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1192 1193 1194 1195 1196 1197 1198
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1199
 * Returns 0 if the request was found within the alloted time. Else returns the
1200 1201
 * errno with remaining time filled in timeout argument.
 */
1202
int __i915_wait_request(struct drm_i915_gem_request *req,
1203
			unsigned reset_counter,
1204
			bool interruptible,
1205
			s64 *timeout,
1206
			struct drm_i915_file_private *file_priv)
1207
{
1208
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1209
	struct drm_device *dev = ring->dev;
1210
	struct drm_i915_private *dev_priv = dev->dev_private;
1211 1212
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1213
	DEFINE_WAIT(wait);
1214
	unsigned long timeout_expire;
1215
	s64 before, now;
1216 1217
	int ret;

1218
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1219

1220
	if (i915_gem_request_completed(req, true))
1221 1222
		return 0;

1223
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1224

1225
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1226 1227 1228 1229 1230 1231 1232
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1233
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1234 1235
		return -ENODEV;

1236
	/* Record current time in case interrupted by signal, or wedged */
1237
	trace_i915_gem_request_wait_begin(req);
1238
	before = ktime_get_raw_ns();
1239 1240
	for (;;) {
		struct timer_list timer;
1241

1242 1243
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1244

1245 1246
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1247 1248 1249 1250 1251 1252 1253 1254
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1255

1256
		if (i915_gem_request_completed(req, false)) {
1257 1258 1259
			ret = 0;
			break;
		}
1260

1261 1262 1263 1264 1265
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1266
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1267 1268 1269 1270 1271 1272
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1273 1274
			unsigned long expire;

1275
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1276
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1277 1278 1279
			mod_timer(&timer, expire);
		}

1280
		io_schedule();
1281 1282 1283 1284 1285 1286

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1287
	now = ktime_get_raw_ns();
1288
	trace_i915_gem_request_wait_end(req);
1289

1290 1291
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1292 1293

	finish_wait(&ring->irq_queue, &wait);
1294 1295

	if (timeout) {
1296 1297 1298
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1299 1300
	}

1301
	return ret;
1302 1303 1304
}

/**
1305
 * Waits for a request to be signaled, and cleans up the
1306 1307 1308
 * request and object lists appropriately for that event.
 */
int
1309
i915_wait_request(struct drm_i915_gem_request *req)
1310
{
1311 1312 1313
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1314
	unsigned reset_counter;
1315 1316
	int ret;

1317 1318 1319 1320 1321 1322
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1323 1324
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1325
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1326 1327 1328
	if (ret)
		return ret;

1329
	ret = i915_gem_check_olr(req);
1330 1331 1332
	if (ret)
		return ret;

1333
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1334
	i915_gem_request_reference(req);
1335 1336
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1337 1338
	i915_gem_request_unreference(req);
	return ret;
1339 1340
}

1341
static int
1342
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1343
{
1344 1345
	if (!obj->active)
		return 0;
1346 1347 1348 1349

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1350 1351
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1352 1353
	 * we know we have passed the last write.
	 */
1354
	i915_gem_request_assign(&obj->last_write_req, NULL);
1355 1356 1357 1358

	return 0;
}

1359 1360 1361 1362 1363 1364 1365 1366
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1367
	struct drm_i915_gem_request *req;
1368 1369
	int ret;

1370 1371
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1372 1373
		return 0;

1374
	ret = i915_wait_request(req);
1375 1376 1377
	if (ret)
		return ret;

1378
	return i915_gem_object_wait_rendering__tail(obj);
1379 1380
}

1381 1382 1383 1384 1385
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1386
					    struct drm_i915_file_private *file_priv,
1387 1388
					    bool readonly)
{
1389
	struct drm_i915_gem_request *req;
1390 1391
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1392
	unsigned reset_counter;
1393 1394 1395 1396 1397
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1398 1399
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1400 1401
		return 0;

1402
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1403 1404 1405
	if (ret)
		return ret;

1406
	ret = i915_gem_check_olr(req);
1407 1408 1409
	if (ret)
		return ret;

1410
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1411
	i915_gem_request_reference(req);
1412
	mutex_unlock(&dev->struct_mutex);
1413
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1414
	mutex_lock(&dev->struct_mutex);
1415
	i915_gem_request_unreference(req);
1416 1417
	if (ret)
		return ret;
1418

1419
	return i915_gem_object_wait_rendering__tail(obj);
1420 1421
}

1422
/**
1423 1424
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1425 1426 1427
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1428
			  struct drm_file *file)
1429 1430
{
	struct drm_i915_gem_set_domain *args = data;
1431
	struct drm_i915_gem_object *obj;
1432 1433
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1434 1435
	int ret;

1436
	/* Only handle setting domains to types used by the CPU. */
1437
	if (write_domain & I915_GEM_GPU_DOMAINS)
1438 1439
		return -EINVAL;

1440
	if (read_domains & I915_GEM_GPU_DOMAINS)
1441 1442 1443 1444 1445 1446 1447 1448
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1449
	ret = i915_mutex_lock_interruptible(dev);
1450
	if (ret)
1451
		return ret;
1452

1453
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1454
	if (&obj->base == NULL) {
1455 1456
		ret = -ENOENT;
		goto unlock;
1457
	}
1458

1459 1460 1461 1462
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1463 1464 1465
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1466 1467 1468
	if (ret)
		goto unref;

1469
	if (read_domains & I915_GEM_DOMAIN_GTT)
1470
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1471
	else
1472
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1473

1474
unref:
1475
	drm_gem_object_unreference(&obj->base);
1476
unlock:
1477 1478 1479 1480 1481 1482 1483 1484 1485
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1486
			 struct drm_file *file)
1487 1488
{
	struct drm_i915_gem_sw_finish *args = data;
1489
	struct drm_i915_gem_object *obj;
1490 1491
	int ret = 0;

1492
	ret = i915_mutex_lock_interruptible(dev);
1493
	if (ret)
1494
		return ret;
1495

1496
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1497
	if (&obj->base == NULL) {
1498 1499
		ret = -ENOENT;
		goto unlock;
1500 1501 1502
	}

	/* Pinned buffers may be scanout, so flush the cache */
1503 1504
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1505

1506
	drm_gem_object_unreference(&obj->base);
1507
unlock:
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1528 1529 1530
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1531
		    struct drm_file *file)
1532 1533 1534 1535 1536
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1537 1538 1539 1540 1541 1542
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1543
	obj = drm_gem_object_lookup(dev, file, args->handle);
1544
	if (obj == NULL)
1545
		return -ENOENT;
1546

1547 1548 1549 1550 1551 1552 1553 1554
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1555
	addr = vm_mmap(obj->filp, 0, args->size,
1556 1557
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1571
	drm_gem_object_unreference_unlocked(obj);
1572 1573 1574 1575 1576 1577 1578 1579
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1598 1599
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1600
	struct drm_i915_private *dev_priv = dev->dev_private;
1601 1602 1603
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1604
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1605

1606 1607
	intel_runtime_pm_get(dev_priv);

1608 1609 1610 1611
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1612 1613 1614
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1615

C
Chris Wilson 已提交
1616 1617
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1618 1619 1620 1621 1622 1623 1624 1625 1626
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1627 1628
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1629
		ret = -EFAULT;
1630 1631 1632
		goto unlock;
	}

1633
	/* Now bind it into the GTT if needed */
1634
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1635 1636
	if (ret)
		goto unlock;
1637

1638 1639 1640
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1641

1642
	ret = i915_gem_object_get_fence(obj);
1643
	if (ret)
1644
		goto unpin;
1645

1646
	/* Finally, remap it using the new GTT offset */
1647 1648
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1649

1650
	if (!obj->fault_mappable) {
1651 1652 1653
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1654 1655
		int i;

1656
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1669
unpin:
B
Ben Widawsky 已提交
1670
	i915_gem_object_ggtt_unpin(obj);
1671
unlock:
1672
	mutex_unlock(&dev->struct_mutex);
1673
out:
1674
	switch (ret) {
1675
	case -EIO:
1676 1677 1678 1679 1680 1681 1682
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1683 1684 1685
			ret = VM_FAULT_SIGBUS;
			break;
		}
1686
	case -EAGAIN:
D
Daniel Vetter 已提交
1687 1688 1689 1690
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1691
		 */
1692 1693
	case 0:
	case -ERESTARTSYS:
1694
	case -EINTR:
1695 1696 1697 1698 1699
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1700 1701
		ret = VM_FAULT_NOPAGE;
		break;
1702
	case -ENOMEM:
1703 1704
		ret = VM_FAULT_OOM;
		break;
1705
	case -ENOSPC:
1706
	case -EFAULT:
1707 1708
		ret = VM_FAULT_SIGBUS;
		break;
1709
	default:
1710
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1711 1712
		ret = VM_FAULT_SIGBUS;
		break;
1713
	}
1714 1715 1716

	intel_runtime_pm_put(dev_priv);
	return ret;
1717 1718
}

1719 1720 1721 1722
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1723
 * Preserve the reservation of the mmapping with the DRM core code, but
1724 1725 1726 1727 1728 1729 1730 1731 1732
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1733
void
1734
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1735
{
1736 1737
	if (!obj->fault_mappable)
		return;
1738

1739 1740
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1741
	obj->fault_mappable = false;
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1753
uint32_t
1754
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1755
{
1756
	uint32_t gtt_size;
1757 1758

	if (INTEL_INFO(dev)->gen >= 4 ||
1759 1760
	    tiling_mode == I915_TILING_NONE)
		return size;
1761 1762 1763

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1764
		gtt_size = 1024*1024;
1765
	else
1766
		gtt_size = 512*1024;
1767

1768 1769
	while (gtt_size < size)
		gtt_size <<= 1;
1770

1771
	return gtt_size;
1772 1773
}

1774 1775 1776 1777 1778
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1779
 * potential fence register mapping.
1780
 */
1781 1782 1783
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1784 1785 1786 1787 1788
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1789
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1790
	    tiling_mode == I915_TILING_NONE)
1791 1792
		return 4096;

1793 1794 1795 1796
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1797
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1798 1799
}

1800 1801 1802 1803 1804
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1805
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1806 1807
		return 0;

1808 1809
	dev_priv->mm.shrinker_no_lock_stealing = true;

1810 1811
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1812
		goto out;
1813 1814 1815 1816 1817 1818 1819 1820

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1821 1822 1823 1824 1825
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1826 1827
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1828
		goto out;
1829 1830

	i915_gem_shrink_all(dev_priv);
1831 1832 1833 1834 1835
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1836 1837 1838 1839 1840 1841 1842
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1843
static int
1844 1845
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1846
		  uint32_t handle, bool dumb,
1847
		  uint64_t *offset)
1848
{
1849
	struct drm_i915_private *dev_priv = dev->dev_private;
1850
	struct drm_i915_gem_object *obj;
1851 1852
	int ret;

1853
	ret = i915_mutex_lock_interruptible(dev);
1854
	if (ret)
1855
		return ret;
1856

1857
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1858
	if (&obj->base == NULL) {
1859 1860 1861
		ret = -ENOENT;
		goto unlock;
	}
1862

1863 1864 1865 1866 1867 1868 1869
	/*
	 * We don't allow dumb mmaps on objects created using another
	 * interface.
	 */
	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
		  "Illegal dumb map of accelerated buffer.\n");

B
Ben Widawsky 已提交
1870
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1871
		ret = -E2BIG;
1872
		goto out;
1873 1874
	}

1875
	if (obj->madv != I915_MADV_WILLNEED) {
1876
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1877
		ret = -EFAULT;
1878
		goto out;
1879 1880
	}

1881 1882 1883
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1884

1885
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1886

1887
out:
1888
	drm_gem_object_unreference(&obj->base);
1889
unlock:
1890
	mutex_unlock(&dev->struct_mutex);
1891
	return ret;
1892 1893
}

1894 1895 1896 1897 1898 1899 1900 1901 1902
int
i915_gem_dumb_map_offset(struct drm_file *file,
			 struct drm_device *dev,
			 uint32_t handle,
			 uint64_t *offset)
{
	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1924
	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1925 1926
}

1927 1928 1929 1930 1931 1932
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1933 1934 1935
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1936
{
1937
	i915_gem_object_free_mmap_offset(obj);
1938

1939 1940
	if (obj->base.filp == NULL)
		return;
1941

D
Daniel Vetter 已提交
1942 1943 1944 1945 1946
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1947
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1948 1949
	obj->madv = __I915_MADV_PURGED;
}
1950

1951 1952 1953
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1954
{
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1969 1970
}

1971
static void
1972
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1973
{
1974 1975
	struct sg_page_iter sg_iter;
	int ret;
1976

1977
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1978

C
Chris Wilson 已提交
1979 1980 1981 1982 1983 1984
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1985
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1986 1987 1988
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1989
	if (i915_gem_object_needs_bit17_swizzle(obj))
1990 1991
		i915_gem_object_save_bit_17_swizzle(obj);

1992 1993
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1994

1995
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1996
		struct page *page = sg_page_iter_page(&sg_iter);
1997

1998
		if (obj->dirty)
1999
			set_page_dirty(page);
2000

2001
		if (obj->madv == I915_MADV_WILLNEED)
2002
			mark_page_accessed(page);
2003

2004
		page_cache_release(page);
2005
	}
2006
	obj->dirty = 0;
2007

2008 2009
	sg_free_table(obj->pages);
	kfree(obj->pages);
2010
}
C
Chris Wilson 已提交
2011

2012
int
2013 2014 2015 2016
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2017
	if (obj->pages == NULL)
2018 2019
		return 0;

2020 2021 2022
	if (obj->pages_pin_count)
		return -EBUSY;

2023
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2024

2025 2026 2027
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2028
	list_del(&obj->global_list);
2029

2030
	ops->put_pages(obj);
2031
	obj->pages = NULL;
2032

2033
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2034 2035 2036 2037

	return 0;
}

2038 2039 2040
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2041
{
2042 2043 2044 2045 2046 2047 2048 2049
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2050
	unsigned long count = 0;
C
Chris Wilson 已提交
2051

2052
	/*
2053
	 * As we may completely rewrite the (un)bound list whilst unbinding
2054 2055 2056
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2070
	 */
2071
	for (phase = phases; phase->list; phase++) {
2072
		struct list_head still_in_list;
2073

2074 2075
		if ((flags & phase->bit) == 0)
			continue;
2076

2077
		INIT_LIST_HEAD(&still_in_list);
2078
		while (count < target && !list_empty(phase->list)) {
2079 2080
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2081

2082
			obj = list_first_entry(phase->list,
2083 2084
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2085

2086 2087
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2088
				continue;
2089

2090
			drm_gem_object_reference(&obj->base);
2091

2092 2093 2094
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2095 2096
				if (i915_vma_unbind(vma))
					break;
2097

2098 2099 2100 2101 2102
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2103
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2104 2105 2106 2107 2108
	}

	return count;
}

2109
static unsigned long
C
Chris Wilson 已提交
2110 2111 2112
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2113 2114
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2115 2116
}

2117
static int
C
Chris Wilson 已提交
2118
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2119
{
C
Chris Wilson 已提交
2120
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2121 2122
	int page_count, i;
	struct address_space *mapping;
2123 2124
	struct sg_table *st;
	struct scatterlist *sg;
2125
	struct sg_page_iter sg_iter;
2126
	struct page *page;
2127
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2128
	gfp_t gfp;
2129

C
Chris Wilson 已提交
2130 2131 2132 2133 2134 2135 2136
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2137 2138 2139 2140
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2141
	page_count = obj->base.size / PAGE_SIZE;
2142 2143
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2144
		return -ENOMEM;
2145
	}
2146

2147 2148 2149 2150 2151
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2152
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2153
	gfp = mapping_gfp_mask(mapping);
2154
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2155
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2156 2157 2158
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2159 2160
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2161 2162 2163 2164 2165
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2166 2167 2168 2169 2170 2171 2172 2173
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2174
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2175 2176 2177
			if (IS_ERR(page))
				goto err_pages;
		}
2178 2179 2180 2181 2182 2183 2184 2185
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2186 2187 2188 2189 2190 2191 2192 2193 2194
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2195 2196 2197

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2198
	}
2199 2200 2201 2202
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2203 2204
	obj->pages = st;

2205
	if (i915_gem_object_needs_bit17_swizzle(obj))
2206 2207
		i915_gem_object_do_bit_17_swizzle(obj);

2208 2209 2210 2211
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2212 2213 2214
	return 0;

err_pages:
2215 2216
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2217
		page_cache_release(sg_page_iter_page(&sg_iter));
2218 2219
	sg_free_table(st);
	kfree(st);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2233 2234
}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2249
	if (obj->pages)
2250 2251
		return 0;

2252
	if (obj->madv != I915_MADV_WILLNEED) {
2253
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2254
		return -EFAULT;
2255 2256
	}

2257 2258
	BUG_ON(obj->pages_pin_count);

2259 2260 2261 2262
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2263
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2264
	return 0;
2265 2266
}

B
Ben Widawsky 已提交
2267
static void
2268
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2269
			       struct intel_engine_cs *ring)
2270
{
2271 2272
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2273

2274
	BUG_ON(ring == NULL);
2275 2276 2277 2278 2279

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2280 2281
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2282
	}
2283 2284

	/* Add a reference if we're newly entering the active list. */
2285 2286 2287
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2288
	}
2289

2290
	list_move_tail(&obj->ring_list, &ring->active_list);
2291

2292
	i915_gem_request_assign(&obj->last_read_req, req);
2293 2294
}

B
Ben Widawsky 已提交
2295
void i915_vma_move_to_active(struct i915_vma *vma,
2296
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2297 2298 2299 2300 2301
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2302 2303
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2304
{
2305
	struct i915_vma *vma;
2306

2307
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2308
	BUG_ON(!obj->active);
2309

2310 2311 2312
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2313
	}
2314

2315 2316
	intel_fb_obj_flush(obj, true);

2317
	list_del_init(&obj->ring_list);
2318

2319 2320
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2321 2322
	obj->base.write_domain = 0;

2323
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2324 2325 2326 2327 2328

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2329
}
2330

2331 2332 2333
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2334
	if (obj->last_read_req == NULL)
2335 2336
		return;

2337
	if (i915_gem_request_completed(obj->last_read_req, true))
2338 2339 2340
		i915_gem_object_move_to_inactive(obj);
}

2341
static int
2342
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2343
{
2344
	struct drm_i915_private *dev_priv = dev->dev_private;
2345
	struct intel_engine_cs *ring;
2346
	int ret, i, j;
2347

2348
	/* Carefully retire all requests without writing to the rings */
2349
	for_each_ring(ring, dev_priv, i) {
2350 2351 2352
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2353 2354
	}
	i915_gem_retire_requests(dev);
2355 2356

	/* Finally reset hw state */
2357
	for_each_ring(ring, dev_priv, i) {
2358
		intel_ring_init_seqno(ring, seqno);
2359

2360 2361
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2362
	}
2363

2364
	return 0;
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2393 2394
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2395
{
2396 2397 2398 2399
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2400
		int ret = i915_gem_init_seqno(dev, 0);
2401 2402
		if (ret)
			return ret;
2403

2404 2405
		dev_priv->next_seqno = 1;
	}
2406

2407
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2408
	return 0;
2409 2410
}

2411
int __i915_add_request(struct intel_engine_cs *ring,
2412
		       struct drm_file *file,
2413
		       struct drm_i915_gem_object *obj)
2414
{
2415
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2416
	struct drm_i915_gem_request *request;
2417
	struct intel_ringbuffer *ringbuf;
2418
	u32 request_ring_position, request_start;
2419 2420
	int ret;

2421
	request = ring->outstanding_lazy_request;
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2432 2433 2434 2435 2436 2437 2438
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2439 2440 2441 2442 2443 2444 2445 2446 2447
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2448

2449 2450 2451 2452 2453
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2454
	request_ring_position = intel_ring_get_tail(ringbuf);
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2465

2466
	request->head = request_start;
2467
	request->tail = request_ring_position;
2468 2469 2470 2471 2472 2473 2474

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2475
	request->batch_obj = obj;
2476

2477 2478 2479 2480 2481 2482 2483 2484
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2485

2486
	request->emitted_jiffies = jiffies;
2487
	list_add_tail(&request->list, &ring->request_list);
2488
	request->file_priv = NULL;
2489

C
Chris Wilson 已提交
2490 2491 2492
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2493
		spin_lock(&file_priv->mm.lock);
2494
		request->file_priv = file_priv;
2495
		list_add_tail(&request->client_list,
2496
			      &file_priv->mm.request_list);
2497
		spin_unlock(&file_priv->mm.lock);
2498
	}
2499

2500
	trace_i915_gem_request_add(request);
2501
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2502

2503
	i915_queue_hangcheck(ring->dev);
2504

2505 2506 2507 2508 2509
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2510

2511
	return 0;
2512 2513
}

2514 2515
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2516
{
2517
	struct drm_i915_file_private *file_priv = request->file_priv;
2518

2519 2520
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2521

2522
	spin_lock(&file_priv->mm.lock);
2523 2524
	list_del(&request->client_list);
	request->file_priv = NULL;
2525
	spin_unlock(&file_priv->mm.lock);
2526 2527
}

2528
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2529
				   const struct intel_context *ctx)
2530
{
2531
	unsigned long elapsed;
2532

2533 2534 2535
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2536 2537 2538
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2539
		if (!i915_gem_context_is_default(ctx)) {
2540
			DRM_DEBUG("context hanging too fast, banning!\n");
2541
			return true;
2542 2543 2544
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2545
			return true;
2546
		}
2547 2548 2549 2550 2551
	}

	return false;
}

2552
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2553
				  struct intel_context *ctx,
2554
				  const bool guilty)
2555
{
2556 2557 2558 2559
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2560

2561 2562 2563
	hs = &ctx->hang_stats;

	if (guilty) {
2564
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2565 2566 2567 2568
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2569 2570 2571
	}
}

2572 2573 2574 2575 2576
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2577 2578 2579 2580 2581 2582 2583 2584 2585
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2586 2587
	if (ctx) {
		if (i915.enable_execlists) {
2588
			struct intel_engine_cs *ring = req->ring;
2589

2590 2591 2592
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2593

2594 2595
		i915_gem_context_unreference(ctx);
	}
2596 2597

	kfree(req);
2598 2599
}

2600
struct drm_i915_gem_request *
2601
i915_gem_find_active_request(struct intel_engine_cs *ring)
2602
{
2603 2604 2605
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2606
		if (i915_gem_request_completed(request, false))
2607
			continue;
2608

2609
		return request;
2610
	}
2611 2612 2613 2614 2615

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2616
				       struct intel_engine_cs *ring)
2617 2618 2619 2620
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2621
	request = i915_gem_find_active_request(ring);
2622 2623 2624 2625 2626 2627

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2628
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2629 2630

	list_for_each_entry_continue(request, &ring->request_list, list)
2631
		i915_set_reset_status(dev_priv, request->ctx, false);
2632
}
2633

2634
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2635
					struct intel_engine_cs *ring)
2636
{
2637
	while (!list_empty(&ring->active_list)) {
2638
		struct drm_i915_gem_object *obj;
2639

2640 2641 2642
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2643

2644
		i915_gem_object_move_to_inactive(obj);
2645
	}
2646

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2680

2681 2682
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2683 2684
}

2685
void i915_gem_restore_fences(struct drm_device *dev)
2686 2687 2688 2689
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2690
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2691
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2703 2704 2705
	}
}

2706
void i915_gem_reset(struct drm_device *dev)
2707
{
2708
	struct drm_i915_private *dev_priv = dev->dev_private;
2709
	struct intel_engine_cs *ring;
2710
	int i;
2711

2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2720
	for_each_ring(ring, dev_priv, i)
2721
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2722

2723 2724
	i915_gem_context_reset(dev);

2725
	i915_gem_restore_fences(dev);
2726 2727 2728 2729 2730
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2731
void
2732
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2733
{
C
Chris Wilson 已提交
2734
	if (list_empty(&ring->request_list))
2735 2736
		return;

C
Chris Wilson 已提交
2737
	WARN_ON(i915_verify_lists(ring->dev));
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2750
		if (!i915_gem_request_completed(obj->last_read_req, true))
2751 2752 2753 2754 2755 2756
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2757
	while (!list_empty(&ring->request_list)) {
2758
		struct drm_i915_gem_request *request;
2759
		struct intel_ringbuffer *ringbuf;
2760

2761
		request = list_first_entry(&ring->request_list,
2762 2763 2764
					   struct drm_i915_gem_request,
					   list);

2765
		if (!i915_gem_request_completed(request, true))
2766 2767
			break;

2768
		trace_i915_gem_request_retire(request);
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2781 2782 2783 2784 2785
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2786
		ringbuf->last_retired_head = request->tail;
2787

2788
		i915_gem_free_request(request);
2789
	}
2790

2791 2792
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2793
		ring->irq_put(ring);
2794
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2795
	}
2796

C
Chris Wilson 已提交
2797
	WARN_ON(i915_verify_lists(ring->dev));
2798 2799
}

2800
bool
2801 2802
i915_gem_retire_requests(struct drm_device *dev)
{
2803
	struct drm_i915_private *dev_priv = dev->dev_private;
2804
	struct intel_engine_cs *ring;
2805
	bool idle = true;
2806
	int i;
2807

2808
	for_each_ring(ring, dev_priv, i) {
2809
		i915_gem_retire_requests_ring(ring);
2810
		idle &= list_empty(&ring->request_list);
2811 2812 2813 2814 2815 2816 2817 2818 2819
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2820 2821 2822 2823 2824 2825 2826 2827
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2828 2829
}

2830
static void
2831 2832
i915_gem_retire_work_handler(struct work_struct *work)
{
2833 2834 2835
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2836
	bool idle;
2837

2838
	/* Come back later if the device is busy... */
2839 2840 2841 2842
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2843
	}
2844
	if (!idle)
2845 2846
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2847
}
2848

2849 2850 2851 2852 2853 2854 2855
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2856 2857
}

2858 2859 2860 2861 2862 2863 2864 2865
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2866
	struct intel_engine_cs *ring;
2867 2868 2869
	int ret;

	if (obj->active) {
2870 2871
		ring = i915_gem_request_get_ring(obj->last_read_req);

2872
		ret = i915_gem_check_olr(obj->last_read_req);
2873 2874 2875
		if (ret)
			return ret;

2876
		i915_gem_retire_requests_ring(ring);
2877 2878 2879 2880 2881
	}

	return 0;
}

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2907
	struct drm_i915_private *dev_priv = dev->dev_private;
2908 2909
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2910
	struct drm_i915_gem_request *req;
2911
	unsigned reset_counter;
2912 2913
	int ret = 0;

2914 2915 2916
	if (args->flags != 0)
		return -EINVAL;

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2927 2928
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2929 2930 2931
	if (ret)
		goto out;

2932 2933
	if (!obj->active || !obj->last_read_req)
		goto out;
2934

2935
	req = obj->last_read_req;
2936 2937

	/* Do this after OLR check to make sure we make forward progress polling
2938
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2939
	 */
2940
	if (args->timeout_ns <= 0) {
2941 2942 2943 2944 2945
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2946
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2947
	i915_gem_request_reference(req);
2948 2949
	mutex_unlock(&dev->struct_mutex);

2950 2951
	ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
				  file->driver_priv);
2952 2953 2954 2955
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2956 2957 2958 2959 2960 2961 2962

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2975 2976
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2977
		     struct intel_engine_cs *to)
2978
{
2979
	struct intel_engine_cs *from;
2980 2981 2982
	u32 seqno;
	int ret, idx;

2983 2984
	from = i915_gem_request_get_ring(obj->last_read_req);

2985 2986 2987
	if (from == NULL || to == from)
		return 0;

2988
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2989
		return i915_gem_object_wait_rendering(obj, false);
2990 2991 2992

	idx = intel_ring_sync_index(from, to);

2993
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2994 2995
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2996
	if (seqno <= from->semaphore.sync_seqno[idx])
2997 2998
		return 0;

2999
	ret = i915_gem_check_olr(obj->last_read_req);
3000 3001
	if (ret)
		return ret;
3002

3003
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3004
	ret = to->semaphore.sync_to(to, from, seqno);
3005
	if (!ret)
3006
		/* We use last_read_req because sync_to()
3007 3008 3009
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3010 3011
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3012

3013
	return ret;
3014 3015
}

3016 3017 3018 3019 3020 3021 3022
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3023 3024 3025
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3026 3027 3028
	/* Wait for any direct GTT access to complete */
	mb();

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3040
int i915_vma_unbind(struct i915_vma *vma)
3041
{
3042
	struct drm_i915_gem_object *obj = vma->obj;
3043
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3044
	int ret;
3045

3046
	if (list_empty(&vma->vma_link))
3047 3048
		return 0;

3049 3050 3051 3052
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3053

B
Ben Widawsky 已提交
3054
	if (vma->pin_count)
3055
		return -EBUSY;
3056

3057 3058
	BUG_ON(obj->pages == NULL);

3059
	ret = i915_gem_object_finish_gpu(obj);
3060
	if (ret)
3061 3062 3063 3064 3065 3066
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3067 3068
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3069
		i915_gem_object_finish_gtt(obj);
3070

3071 3072 3073 3074 3075
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3076

3077
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3078

3079 3080
	vma->unbind_vma(vma);

3081
	list_del_init(&vma->mm_list);
3082 3083 3084 3085 3086 3087 3088 3089 3090
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3091

B
Ben Widawsky 已提交
3092 3093 3094 3095
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3096
	 * no more VMAs exist. */
3097
	if (list_empty(&obj->vma_list)) {
3098 3099 3100 3101
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3102
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3103
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3104
	}
3105

3106 3107 3108 3109 3110 3111
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3112
	return 0;
3113 3114
}

3115
int i915_gpu_idle(struct drm_device *dev)
3116
{
3117
	struct drm_i915_private *dev_priv = dev->dev_private;
3118
	struct intel_engine_cs *ring;
3119
	int ret, i;
3120 3121

	/* Flush everything onto the inactive list. */
3122
	for_each_ring(ring, dev_priv, i) {
3123 3124 3125 3126 3127
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3128

3129
		ret = intel_ring_idle(ring);
3130 3131 3132
		if (ret)
			return ret;
	}
3133

3134
	return 0;
3135 3136
}

3137 3138
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3139
{
3140
	struct drm_i915_private *dev_priv = dev->dev_private;
3141 3142
	int fence_reg;
	int fence_pitch_shift;
3143

3144 3145 3146 3147 3148 3149 3150 3151
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3166
	if (obj) {
3167
		u32 size = i915_gem_obj_ggtt_size(obj);
3168
		uint64_t val;
3169

3170
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3171
				 0xfffff000) << 32;
3172
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3173
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3174 3175 3176
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3187 3188
}

3189 3190
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3191
{
3192
	struct drm_i915_private *dev_priv = dev->dev_private;
3193
	u32 val;
3194

3195
	if (obj) {
3196
		u32 size = i915_gem_obj_ggtt_size(obj);
3197 3198
		int pitch_val;
		int tile_width;
3199

3200
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3201
		     (size & -size) != size ||
3202 3203 3204
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3215
		val = i915_gem_obj_ggtt_offset(obj);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3231 3232
}

3233 3234
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3235
{
3236
	struct drm_i915_private *dev_priv = dev->dev_private;
3237 3238
	uint32_t val;

3239
	if (obj) {
3240
		u32 size = i915_gem_obj_ggtt_size(obj);
3241
		uint32_t pitch_val;
3242

3243
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3244
		     (size & -size) != size ||
3245 3246 3247
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3248

3249 3250
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3251

3252
		val = i915_gem_obj_ggtt_offset(obj);
3253 3254 3255 3256 3257 3258 3259
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3260

3261 3262 3263 3264
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3265 3266 3267 3268 3269
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3270 3271 3272
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3273 3274 3275 3276 3277 3278 3279 3280
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3281 3282 3283 3284
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3285 3286 3287 3288 3289 3290
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3291 3292 3293 3294 3295 3296

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3297 3298
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3309
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310 3311 3312
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3313 3314

	if (enable) {
3315
		obj->fence_reg = reg;
3316 3317 3318 3319 3320 3321 3322
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3323
	obj->fence_dirty = false;
3324 3325
}

3326
static int
3327
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3328
{
3329
	if (obj->last_fenced_req) {
3330
		int ret = i915_wait_request(obj->last_fenced_req);
3331 3332
		if (ret)
			return ret;
3333

3334
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3335 3336 3337 3338 3339 3340 3341 3342
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3343
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3344
	struct drm_i915_fence_reg *fence;
3345 3346
	int ret;

3347
	ret = i915_gem_object_wait_fence(obj);
3348 3349 3350
	if (ret)
		return ret;

3351 3352
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3353

3354 3355
	fence = &dev_priv->fence_regs[obj->fence_reg];

3356 3357 3358
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3359
	i915_gem_object_fence_lost(obj);
3360
	i915_gem_object_update_fence(obj, fence, false);
3361 3362 3363 3364 3365

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3366
i915_find_fence_reg(struct drm_device *dev)
3367 3368
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3369
	struct drm_i915_fence_reg *reg, *avail;
3370
	int i;
3371 3372

	/* First try to find a free reg */
3373
	avail = NULL;
3374 3375 3376
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3377
			return reg;
3378

3379
		if (!reg->pin_count)
3380
			avail = reg;
3381 3382
	}

3383
	if (avail == NULL)
3384
		goto deadlock;
3385 3386

	/* None available, try to steal one or wait for a user to finish */
3387
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3388
		if (reg->pin_count)
3389 3390
			continue;

C
Chris Wilson 已提交
3391
		return reg;
3392 3393
	}

3394 3395 3396 3397 3398 3399
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3400 3401
}

3402
/**
3403
 * i915_gem_object_get_fence - set up fencing for an object
3404 3405 3406 3407 3408 3409 3410 3411 3412
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3413 3414
 *
 * For an untiled surface, this removes any existing fence.
3415
 */
3416
int
3417
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3418
{
3419
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3420
	struct drm_i915_private *dev_priv = dev->dev_private;
3421
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3422
	struct drm_i915_fence_reg *reg;
3423
	int ret;
3424

3425 3426 3427
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3428
	if (obj->fence_dirty) {
3429
		ret = i915_gem_object_wait_fence(obj);
3430 3431 3432
		if (ret)
			return ret;
	}
3433

3434
	/* Just update our place in the LRU if our fence is getting reused. */
3435 3436
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3437
		if (!obj->fence_dirty) {
3438 3439 3440 3441 3442
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3443 3444 3445
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3446
		reg = i915_find_fence_reg(dev);
3447 3448
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3449

3450 3451 3452
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3453
			ret = i915_gem_object_wait_fence(old);
3454 3455 3456
			if (ret)
				return ret;

3457
			i915_gem_object_fence_lost(old);
3458
		}
3459
	} else
3460 3461
		return 0;

3462 3463
	i915_gem_object_update_fence(obj, reg, enable);

3464
	return 0;
3465 3466
}

3467
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3468 3469
				     unsigned long cache_level)
{
3470
	struct drm_mm_node *gtt_space = &vma->node;
3471 3472
	struct drm_mm_node *other;

3473 3474 3475 3476 3477 3478
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3479
	 */
3480
	if (vma->vm->mm.color_adjust == NULL)
3481 3482
		return true;

3483
	if (!drm_mm_node_allocated(gtt_space))
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3500 3501 3502
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3503
static struct i915_vma *
3504 3505 3506
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3507 3508
			   uint64_t flags,
			   const struct i915_ggtt_view *view)
3509
{
3510
	struct drm_device *dev = obj->base.dev;
3511
	struct drm_i915_private *dev_priv = dev->dev_private;
3512
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3513 3514 3515
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3516
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3517
	struct i915_vma *vma;
3518
	int ret;
3519

3520 3521 3522 3523 3524
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3525
						     obj->tiling_mode, true);
3526
	unfenced_alignment =
3527
		i915_gem_get_gtt_alignment(dev,
3528 3529
					   obj->base.size,
					   obj->tiling_mode, false);
3530

3531
	if (alignment == 0)
3532
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3533
						unfenced_alignment;
3534
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3535
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3536
		return ERR_PTR(-EINVAL);
3537 3538
	}

3539
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3540

3541 3542 3543
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3544 3545
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3546
			  obj->base.size,
3547
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3548
			  end);
3549
		return ERR_PTR(-E2BIG);
3550 3551
	}

3552
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3553
	if (ret)
3554
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3555

3556 3557
	i915_gem_object_pin_pages(obj);

3558
	vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3559
	if (IS_ERR(vma))
3560
		goto err_unpin;
B
Ben Widawsky 已提交
3561

3562
search_free:
3563
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3564
						  size, alignment,
3565 3566
						  obj->cache_level,
						  start, end,
3567 3568
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3569
	if (ret) {
3570
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3571 3572 3573
					       obj->cache_level,
					       start, end,
					       flags);
3574 3575
		if (ret == 0)
			goto search_free;
3576

3577
		goto err_free_vma;
3578
	}
3579
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3580
		ret = -EINVAL;
3581
		goto err_remove_node;
3582 3583
	}

3584
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3585
	if (ret)
3586
		goto err_remove_node;
3587

3588 3589 3590 3591 3592 3593
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3594
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3595
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3596

3597
	return vma;
B
Ben Widawsky 已提交
3598

3599 3600
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3601
err_remove_node:
3602
	drm_mm_remove_node(&vma->node);
3603
err_free_vma:
B
Ben Widawsky 已提交
3604
	i915_gem_vma_destroy(vma);
3605
	vma = ERR_PTR(ret);
3606
err_unpin:
B
Ben Widawsky 已提交
3607
	i915_gem_object_unpin_pages(obj);
3608
	return vma;
3609 3610
}

3611
bool
3612 3613
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3614 3615 3616 3617 3618
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3619
	if (obj->pages == NULL)
3620
		return false;
3621

3622 3623 3624 3625
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3626
	if (obj->stolen || obj->phys_handle)
3627
		return false;
3628

3629 3630 3631 3632 3633 3634 3635 3636
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3637
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3638
		return false;
3639

C
Chris Wilson 已提交
3640
	trace_i915_gem_object_clflush(obj);
3641
	drm_clflush_sg(obj->pages);
3642 3643

	return true;
3644 3645 3646 3647
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3648
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3649
{
C
Chris Wilson 已提交
3650 3651
	uint32_t old_write_domain;

3652
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3653 3654
		return;

3655
	/* No actual flushing is required for the GTT write domain.  Writes
3656 3657
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3658 3659 3660 3661
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3662
	 */
3663 3664
	wmb();

3665 3666
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3667

3668 3669
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3670
	trace_i915_gem_object_change_domain(obj,
3671
					    obj->base.read_domains,
C
Chris Wilson 已提交
3672
					    old_write_domain);
3673 3674 3675 3676
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3677 3678
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3679
{
C
Chris Wilson 已提交
3680
	uint32_t old_write_domain;
3681

3682
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3683 3684
		return;

3685 3686 3687
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3688 3689
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3690

3691 3692
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3693
	trace_i915_gem_object_change_domain(obj,
3694
					    obj->base.read_domains,
C
Chris Wilson 已提交
3695
					    old_write_domain);
3696 3697
}

3698 3699 3700 3701 3702 3703
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3704
int
3705
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3706
{
C
Chris Wilson 已提交
3707
	uint32_t old_write_domain, old_read_domains;
3708
	struct i915_vma *vma;
3709
	int ret;
3710

3711 3712 3713
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3714
	ret = i915_gem_object_wait_rendering(obj, !write);
3715 3716 3717
	if (ret)
		return ret;

3718
	i915_gem_object_retire(obj);
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3732
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3733

3734 3735 3736 3737 3738 3739 3740
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3741 3742
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3743

3744 3745 3746
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3747 3748
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3749
	if (write) {
3750 3751 3752
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3753 3754
	}

3755 3756 3757
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3758 3759 3760 3761
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3762
	/* And bump the LRU for this access */
3763 3764
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3765
		list_move_tail(&vma->mm_list,
3766
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3767

3768 3769 3770
	return 0;
}

3771 3772 3773
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3774
	struct drm_device *dev = obj->base.dev;
3775
	struct i915_vma *vma, *next;
3776 3777 3778 3779 3780
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3781
	if (i915_gem_obj_is_pinned(obj)) {
3782 3783 3784 3785
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3786
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3787
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3788
			ret = i915_vma_unbind(vma);
3789 3790 3791
			if (ret)
				return ret;
		}
3792 3793
	}

3794
	if (i915_gem_obj_bound_any(obj)) {
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3805
		if (INTEL_INFO(dev)->gen < 6) {
3806 3807 3808 3809 3810
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3811
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3812 3813 3814 3815 3816 3817
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3818 3819
	}

3820 3821 3822 3823 3824
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3825 3826 3827 3828 3829 3830 3831 3832
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3833
		i915_gem_object_retire(obj);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3850 3851
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3852
{
B
Ben Widawsky 已提交
3853
	struct drm_i915_gem_caching *args = data;
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3867 3868 3869 3870 3871 3872
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3873 3874 3875 3876
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3877 3878 3879 3880
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3881 3882 3883 3884 3885 3886 3887

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3888 3889
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3890
{
B
Ben Widawsky 已提交
3891
	struct drm_i915_gem_caching *args = data;
3892 3893 3894 3895
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3896 3897
	switch (args->caching) {
	case I915_CACHING_NONE:
3898 3899
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3900
	case I915_CACHING_CACHED:
3901 3902
		level = I915_CACHE_LLC;
		break;
3903 3904 3905
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3906 3907 3908 3909
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3910 3911 3912 3913
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3928 3929
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3930 3931 3932 3933 3934 3935
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3936
	/* There are 2 sources that pin objects:
3937 3938 3939 3940
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3941
	 * are only called outside of the reservation path.
3942
	 */
D
Daniel Vetter 已提交
3943
	return vma->pin_count;
3944 3945
}

3946
/*
3947 3948 3949
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3950 3951
 */
int
3952 3953
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3954
				     struct intel_engine_cs *pipelined)
3955
{
3956
	u32 old_read_domains, old_write_domain;
3957
	bool was_pin_display;
3958 3959
	int ret;

3960
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3961 3962
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3963 3964 3965
			return ret;
	}

3966 3967 3968
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3969
	was_pin_display = obj->pin_display;
3970 3971
	obj->pin_display = true;

3972 3973 3974 3975 3976 3977 3978 3979 3980
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3981 3982
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3983
	if (ret)
3984
		goto err_unpin_display;
3985

3986 3987 3988 3989
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3990
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3991
	if (ret)
3992
		goto err_unpin_display;
3993

3994
	i915_gem_object_flush_cpu_write_domain(obj, true);
3995

3996
	old_write_domain = obj->base.write_domain;
3997
	old_read_domains = obj->base.read_domains;
3998 3999 4000 4001

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4002
	obj->base.write_domain = 0;
4003
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4004 4005 4006

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4007
					    old_write_domain);
4008 4009

	return 0;
4010 4011

err_unpin_display:
4012 4013
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
4014 4015 4016 4017 4018 4019
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4020
	i915_gem_object_ggtt_unpin(obj);
4021
	obj->pin_display = is_pin_display(obj);
4022 4023
}

4024
int
4025
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4026
{
4027 4028
	int ret;

4029
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4030 4031
		return 0;

4032
	ret = i915_gem_object_wait_rendering(obj, false);
4033 4034 4035
	if (ret)
		return ret;

4036 4037
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4038
	return 0;
4039 4040
}

4041 4042 4043 4044 4045 4046
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4047
int
4048
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4049
{
C
Chris Wilson 已提交
4050
	uint32_t old_write_domain, old_read_domains;
4051 4052
	int ret;

4053 4054 4055
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4056
	ret = i915_gem_object_wait_rendering(obj, !write);
4057 4058 4059
	if (ret)
		return ret;

4060
	i915_gem_object_retire(obj);
4061
	i915_gem_object_flush_gtt_write_domain(obj);
4062

4063 4064
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4065

4066
	/* Flush the CPU cache if it's still invalid. */
4067
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4068
		i915_gem_clflush_object(obj, false);
4069

4070
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4071 4072 4073 4074 4075
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4076
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4077 4078 4079 4080 4081

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4082 4083
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4084
	}
4085

4086 4087 4088
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4089 4090 4091 4092
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4093 4094 4095
	return 0;
}

4096 4097 4098
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4099 4100 4101 4102
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4103 4104 4105
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4106
static int
4107
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4108
{
4109 4110
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4111
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4112
	struct drm_i915_gem_request *request, *target = NULL;
4113
	unsigned reset_counter;
4114
	int ret;
4115

4116 4117 4118 4119 4120 4121 4122
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4123

4124
	spin_lock(&file_priv->mm.lock);
4125
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4126 4127
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4128

4129
		target = request;
4130
	}
4131
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4132 4133
	if (target)
		i915_gem_request_reference(target);
4134
	spin_unlock(&file_priv->mm.lock);
4135

4136
	if (target == NULL)
4137
		return 0;
4138

4139
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4140 4141
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4142

4143 4144 4145 4146
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4147 4148 4149
	return ret;
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4169
int
4170 4171 4172 4173 4174
i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
			 struct i915_address_space *vm,
			 uint32_t alignment,
			 uint64_t flags,
			 const struct i915_ggtt_view *view)
4175
{
4176
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4177
	struct i915_vma *vma;
4178
	unsigned bound;
4179 4180
	int ret;

4181 4182 4183
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4184
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4185
		return -EINVAL;
4186

4187 4188 4189
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4190
	vma = i915_gem_obj_to_vma_view(obj, vm, view);
4191
	if (vma) {
B
Ben Widawsky 已提交
4192 4193 4194
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4195
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4196
			WARN(vma->pin_count,
4197
			     "bo is already pinned with incorrect alignment:"
4198
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4199
			     " obj->map_and_fenceable=%d\n",
4200 4201
			     i915_gem_obj_offset_view(obj, vm, view->type),
			     alignment,
4202
			     !!(flags & PIN_MAPPABLE),
4203
			     obj->map_and_fenceable);
4204
			ret = i915_vma_unbind(vma);
4205 4206
			if (ret)
				return ret;
4207 4208

			vma = NULL;
4209 4210 4211
		}
	}

4212
	bound = vma ? vma->bound : 0;
4213
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4214 4215
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
						 flags, view);
4216 4217
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4218
	}
J
Jesse Barnes 已提交
4219

4220 4221 4222 4223 4224
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4225

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4249
	vma->pin_count++;
4250 4251
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4252 4253 4254 4255 4256

	return 0;
}

void
B
Ben Widawsky 已提交
4257
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4258
{
B
Ben Widawsky 已提交
4259
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4260

B
Ben Widawsky 已提交
4261 4262 4263 4264 4265
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4266
		obj->pin_mappable = false;
4267 4268
}

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4295 4296
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4297
		    struct drm_file *file)
4298 4299
{
	struct drm_i915_gem_busy *args = data;
4300
	struct drm_i915_gem_object *obj;
4301 4302
	int ret;

4303
	ret = i915_mutex_lock_interruptible(dev);
4304
	if (ret)
4305
		return ret;
4306

4307
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4308
	if (&obj->base == NULL) {
4309 4310
		ret = -ENOENT;
		goto unlock;
4311
	}
4312

4313 4314 4315 4316
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4317
	 */
4318
	ret = i915_gem_object_flush_active(obj);
4319

4320
	args->busy = obj->active;
4321 4322
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4323
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4324 4325
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4326
	}
4327

4328
	drm_gem_object_unreference(&obj->base);
4329
unlock:
4330
	mutex_unlock(&dev->struct_mutex);
4331
	return ret;
4332 4333 4334 4335 4336 4337
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4338
	return i915_gem_ring_throttle(dev, file_priv);
4339 4340
}

4341 4342 4343 4344
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4345
	struct drm_i915_private *dev_priv = dev->dev_private;
4346
	struct drm_i915_gem_madvise *args = data;
4347
	struct drm_i915_gem_object *obj;
4348
	int ret;
4349 4350 4351 4352 4353 4354 4355 4356 4357

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4358 4359 4360 4361
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4362
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4363
	if (&obj->base == NULL) {
4364 4365
		ret = -ENOENT;
		goto unlock;
4366 4367
	}

B
Ben Widawsky 已提交
4368
	if (i915_gem_obj_is_pinned(obj)) {
4369 4370
		ret = -EINVAL;
		goto out;
4371 4372
	}

4373 4374 4375 4376 4377 4378 4379 4380 4381
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4382 4383
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4384

C
Chris Wilson 已提交
4385 4386
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4387 4388
		i915_gem_object_truncate(obj);

4389
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4390

4391
out:
4392
	drm_gem_object_unreference(&obj->base);
4393
unlock:
4394
	mutex_unlock(&dev->struct_mutex);
4395
	return ret;
4396 4397
}

4398 4399
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4400
{
4401
	INIT_LIST_HEAD(&obj->global_list);
4402
	INIT_LIST_HEAD(&obj->ring_list);
4403
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4404
	INIT_LIST_HEAD(&obj->vma_list);
4405
	INIT_LIST_HEAD(&obj->batch_pool_list);
4406

4407 4408
	obj->ops = ops;

4409 4410 4411 4412 4413 4414
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4415 4416 4417 4418 4419
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4420 4421
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4422
{
4423
	struct drm_i915_gem_object *obj;
4424
	struct address_space *mapping;
D
Daniel Vetter 已提交
4425
	gfp_t mask;
4426

4427
	obj = i915_gem_object_alloc(dev);
4428 4429
	if (obj == NULL)
		return NULL;
4430

4431
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4432
		i915_gem_object_free(obj);
4433 4434
		return NULL;
	}
4435

4436 4437 4438 4439 4440 4441 4442
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4443
	mapping = file_inode(obj->base.filp)->i_mapping;
4444
	mapping_set_gfp_mask(mapping, mask);
4445

4446
	i915_gem_object_init(obj, &i915_gem_object_ops);
4447

4448 4449
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4450

4451 4452
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4468 4469
	trace_i915_gem_object_create(obj);

4470
	return obj;
4471 4472
}

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4497
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4498
{
4499
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4500
	struct drm_device *dev = obj->base.dev;
4501
	struct drm_i915_private *dev_priv = dev->dev_private;
4502
	struct i915_vma *vma, *next;
4503

4504 4505
	intel_runtime_pm_get(dev_priv);

4506 4507
	trace_i915_gem_object_destroy(obj);

4508
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4509 4510 4511 4512
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4513 4514
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4515

4516 4517
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4518

4519
			WARN_ON(i915_vma_unbind(vma));
4520

4521 4522
			dev_priv->mm.interruptible = was_interruptible;
		}
4523 4524
	}

B
Ben Widawsky 已提交
4525 4526 4527 4528 4529
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4530 4531
	WARN_ON(obj->frontbuffer_bits);

4532 4533 4534 4535 4536
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4537 4538
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4539
	if (discard_backing_storage(obj))
4540
		obj->madv = I915_MADV_DONTNEED;
4541
	i915_gem_object_put_pages(obj);
4542
	i915_gem_object_free_mmap_offset(obj);
4543

4544 4545
	BUG_ON(obj->pages);

4546 4547
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4548

4549 4550 4551
	if (obj->ops->release)
		obj->ops->release(obj);

4552 4553
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4554

4555
	kfree(obj->bit_17);
4556
	i915_gem_object_free(obj);
4557 4558

	intel_runtime_pm_put(dev_priv);
4559 4560
}

4561 4562 4563
struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
					  struct i915_address_space *vm,
					  const struct i915_ggtt_view *view)
4564 4565 4566
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4567
		if (vma->vm == vm && vma->ggtt_view.type == view->type)
4568 4569 4570 4571 4572
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4573 4574
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4575
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4576
	WARN_ON(vma->node.allocated);
4577 4578 4579 4580 4581

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4582 4583
	vm = vma->vm;

4584 4585
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4586

4587
	list_del(&vma->vma_link);
4588

B
Ben Widawsky 已提交
4589 4590 4591
	kfree(vma);
}

4592 4593 4594 4595
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4596
	struct intel_engine_cs *ring;
4597 4598 4599
	int i;

	for_each_ring(ring, dev_priv, i)
4600
		dev_priv->gt.stop_ring(ring);
4601 4602
}

4603
int
4604
i915_gem_suspend(struct drm_device *dev)
4605
{
4606
	struct drm_i915_private *dev_priv = dev->dev_private;
4607
	int ret = 0;
4608

4609
	mutex_lock(&dev->struct_mutex);
4610
	ret = i915_gpu_idle(dev);
4611
	if (ret)
4612
		goto err;
4613

4614
	i915_gem_retire_requests(dev);
4615

4616
	/* Under UMS, be paranoid and evict. */
4617
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4618
		i915_gem_evict_everything(dev);
4619

4620
	i915_gem_stop_ringbuffers(dev);
4621 4622 4623
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4624
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4625
	flush_delayed_work(&dev_priv->mm.idle_work);
4626

4627 4628 4629 4630 4631
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4632
	return 0;
4633 4634 4635 4636

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4637 4638
}

4639
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4640
{
4641
	struct drm_device *dev = ring->dev;
4642
	struct drm_i915_private *dev_priv = dev->dev_private;
4643 4644
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4645
	int i, ret;
B
Ben Widawsky 已提交
4646

4647
	if (!HAS_L3_DPF(dev) || !remap_info)
4648
		return 0;
B
Ben Widawsky 已提交
4649

4650 4651 4652
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4653

4654 4655 4656 4657 4658
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4659
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4660 4661 4662
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4663 4664
	}

4665
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4666

4667
	return ret;
B
Ben Widawsky 已提交
4668 4669
}

4670 4671
void i915_gem_init_swizzling(struct drm_device *dev)
{
4672
	struct drm_i915_private *dev_priv = dev->dev_private;
4673

4674
	if (INTEL_INFO(dev)->gen < 5 ||
4675 4676 4677 4678 4679 4680
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4681 4682 4683
	if (IS_GEN5(dev))
		return;

4684 4685
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4686
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4687
	else if (IS_GEN7(dev))
4688
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4689 4690
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4691 4692
	else
		BUG();
4693
}
D
Daniel Vetter 已提交
4694

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4738
int i915_gem_init_rings(struct drm_device *dev)
4739
{
4740
	struct drm_i915_private *dev_priv = dev->dev_private;
4741
	int ret;
4742

4743
	ret = intel_init_render_ring_buffer(dev);
4744
	if (ret)
4745
		return ret;
4746 4747

	if (HAS_BSD(dev)) {
4748
		ret = intel_init_bsd_ring_buffer(dev);
4749 4750
		if (ret)
			goto cleanup_render_ring;
4751
	}
4752

4753
	if (intel_enable_blt(dev)) {
4754 4755 4756 4757 4758
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4759 4760 4761 4762 4763 4764
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4765 4766 4767 4768 4769
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4770

4771
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4772
	if (ret)
4773
		goto cleanup_bsd2_ring;
4774 4775 4776

	return 0;

4777 4778
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4779 4780
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4794
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4795
	struct intel_engine_cs *ring;
4796
	int ret, i;
4797 4798 4799 4800

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4801
	if (dev_priv->ellc_size)
4802
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4803

4804 4805 4806
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4807

4808
	if (HAS_PCH_NOP(dev)) {
4809 4810 4811 4812 4813 4814 4815 4816 4817
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4818 4819
	}

4820 4821
	i915_gem_init_swizzling(dev);

4822 4823 4824 4825 4826 4827 4828 4829
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4830 4831 4832 4833 4834
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
			return ret;
	}
4835

4836 4837 4838
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4839
	/*
4840 4841 4842 4843 4844
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4845
	 */
4846
	ret = i915_gem_context_enable(dev_priv);
4847
	if (ret && ret != -EIO) {
4848
		DRM_ERROR("Context enable failed %d\n", ret);
4849
		i915_gem_cleanup_ringbuffer(dev);
4850 4851 4852 4853 4854 4855 4856 4857

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4858
	}
D
Daniel Vetter 已提交
4859

4860
	return ret;
4861 4862
}

4863 4864 4865 4866 4867
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4868 4869 4870
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4871
	mutex_lock(&dev->struct_mutex);
4872 4873 4874

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4875 4876 4877
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4878 4879 4880
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4881 4882 4883 4884 4885
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4886 4887 4888 4889 4890
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4891 4892
	}

4893
	ret = i915_gem_init_userptr(dev);
4894 4895
	if (ret)
		goto out_unlock;
4896

4897
	i915_gem_init_global_gtt(dev);
4898

4899
	ret = i915_gem_context_init(dev);
4900 4901
	if (ret)
		goto out_unlock;
4902

D
Daniel Vetter 已提交
4903 4904
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4905
		goto out_unlock;
D
Daniel Vetter 已提交
4906

4907
	ret = i915_gem_init_hw(dev);
4908 4909 4910 4911 4912 4913 4914 4915
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4916
	}
4917 4918

out_unlock:
4919
	mutex_unlock(&dev->struct_mutex);
4920

4921
	return ret;
4922 4923
}

4924 4925 4926
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4927
	struct drm_i915_private *dev_priv = dev->dev_private;
4928
	struct intel_engine_cs *ring;
4929
	int i;
4930

4931
	for_each_ring(ring, dev_priv, i)
4932
		dev_priv->gt.cleanup_ring(ring);
4933 4934
}

4935
static void
4936
init_ring_lists(struct intel_engine_cs *ring)
4937 4938 4939 4940 4941
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4942 4943
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4944
{
4945 4946
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4947 4948 4949 4950
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4951
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4952 4953
}

4954 4955 4956
void
i915_gem_load(struct drm_device *dev)
{
4957
	struct drm_i915_private *dev_priv = dev->dev_private;
4958 4959 4960 4961 4962 4963 4964
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4965

B
Ben Widawsky 已提交
4966 4967 4968
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4969
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4970 4971
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4972
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4973 4974
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4975
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4976
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4977 4978
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4979 4980
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4981
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4982

4983
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4984
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4985 4986
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4987 4988
	}

4989 4990
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4991
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4992 4993
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4994

4995 4996 4997
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4998 4999 5000 5001
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5002
	/* Initialize fence registers to zero */
5003 5004
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5005

5006
	i915_gem_detect_bit_6_swizzle(dev);
5007
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5008

5009 5010
	dev_priv->mm.interruptible = true;

5011 5012 5013 5014
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5015 5016 5017

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5018

5019 5020
	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);

5021
	mutex_init(&dev_priv->fb_tracking.lock);
5022
}
5023

5024
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5025
{
5026
	struct drm_i915_file_private *file_priv = file->driver_priv;
5027

5028 5029
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5030 5031 5032 5033
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5034
	spin_lock(&file_priv->mm.lock);
5035 5036 5037 5038 5039 5040 5041 5042 5043
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5044
	spin_unlock(&file_priv->mm.lock);
5045
}
5046

5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5059
	int ret;
5060 5061 5062 5063 5064 5065 5066 5067 5068

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5069
	file_priv->file = file;
5070 5071 5072 5073 5074 5075

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5076 5077 5078
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5079

5080
	return ret;
5081 5082
}

5083 5084 5085 5086 5087 5088 5089 5090 5091
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5150
static unsigned long
5151
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5152
{
5153
	struct drm_i915_private *dev_priv =
5154
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5155
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5156
	struct drm_i915_gem_object *obj;
5157
	unsigned long count;
5158
	bool unlock;
5159

5160 5161
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5162

5163
	count = 0;
5164
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5165
		if (obj->pages_pin_count == 0)
5166
			count += obj->base.size >> PAGE_SHIFT;
5167 5168

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5169 5170
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5171
			count += obj->base.size >> PAGE_SHIFT;
5172
	}
5173

5174 5175
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5176

5177
	return count;
5178
}
5179 5180

/* All the new VM stuff */
5181 5182 5183
unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
				       struct i915_address_space *vm,
				       enum i915_ggtt_view_type view)
5184 5185 5186 5187
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5188
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5189 5190

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5191
		if (vma->vm == vm && vma->ggtt_view.type == view)
5192 5193 5194
			return vma->node.start;

	}
5195 5196
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5197 5198 5199
	return -1;
}

5200 5201 5202
bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
			     struct i915_address_space *vm,
			     enum i915_ggtt_view_type view)
5203 5204 5205 5206
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5207 5208 5209
		if (vma->vm == vm &&
		    vma->ggtt_view.type == view &&
		    drm_mm_node_allocated(&vma->node))
5210 5211 5212 5213 5214 5215 5216
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5217
	struct i915_vma *vma;
5218

5219 5220
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5232
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5243
static unsigned long
5244
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5245 5246
{
	struct drm_i915_private *dev_priv =
5247
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5248 5249
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5250
	bool unlock;
5251

5252 5253
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5254

5255 5256 5257 5258 5259
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5260
	if (freed < sc->nr_to_scan)
5261 5262 5263 5264
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5265 5266
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5267

5268 5269
	return freed;
}
5270

5271 5272 5273 5274 5275 5276 5277 5278
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5279
	unsigned long pinned, bound, unbound, freed_pages;
5280 5281 5282
	bool was_interruptible;
	bool unlock;

5283
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5284
		schedule_timeout_killable(1);
5285 5286 5287
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5288 5289 5290 5291 5292 5293 5294 5295
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5296
	freed_pages = i915_gem_shrink_all(dev_priv);
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5327 5328 5329
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5330 5331 5332 5333 5334
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5335
	*(unsigned long *)ptr += freed_pages;
5336 5337 5338
	return NOTIFY_DONE;
}

5339 5340
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
5341
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5342 5343
	struct i915_vma *vma;

5344 5345 5346
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == ggtt &&
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5347
			return vma;
5348

5349
	return NULL;
5350
}