i915_gem.c 136.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156
static inline bool
157
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158
{
159
	return i915_gem_obj_bound_any(obj) && !obj->active;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
174
		if (i915_gem_obj_is_pinned(obj))
175
			pinned += i915_gem_obj_ggtt_size(obj);
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->gtt.base.total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186
{
187 188 189 190 191
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
242

243 244 245 246 247 248 249 250 251 252 253 254 255
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
256
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257
		char *vaddr = obj->phys_handle->vaddr;
258 259 260
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
275
				mark_page_accessed(page);
276
			page_cache_release(page);
277 278
			vaddr += PAGE_SIZE;
		}
279
		obj->dirty = 0;
280 281
	}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
315 316 317 318 319 320 321
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
322
	int ret;
323 324 325 326 327 328 329 330 331 332 333 334 335 336

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

337 338 339 340
	ret = drop_pages(obj);
	if (ret)
		return ret;

341 342 343 344 345 346
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
347 348 349
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
350 351 352 353 354 355 356 357 358 359
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
360 361 362 363 364 365 366 367
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

383
	drm_clflush_virt_range(vaddr, args->size);
384 385 386 387
	i915_gem_chipset_flush(dev);
	return 0;
}

388 389 390
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
391
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 393 394 395 396 397 398 399
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

400 401 402 403
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
404
		bool dumb,
405
		uint32_t *handle_p)
406
{
407
	struct drm_i915_gem_object *obj;
408 409
	int ret;
	u32 handle;
410

411
	size = roundup(size, PAGE_SIZE);
412 413
	if (size == 0)
		return -EINVAL;
414 415

	/* Allocate the new object */
416
	obj = i915_gem_alloc_object(dev, size);
417 418 419
	if (obj == NULL)
		return -ENOMEM;

420
	obj->base.dumb = dumb;
421
	ret = drm_gem_handle_create(file, &obj->base, &handle);
422
	/* drop reference from allocate - handle holds it now */
423 424 425
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
426

427
	*handle_p = handle;
428 429 430
	return 0;
}

431 432 433 434 435 436
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
437
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438 439
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
440
			       args->size, true, &args->handle);
441 442 443 444 445 446 447 448 449 450
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
451

452
	return i915_gem_create(file, dev,
453
			       args->size, false, &args->handle);
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

482
static inline int
483 484
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
533 534

		i915_gem_object_retire(obj);
535 536 537 538 539 540 541 542 543 544 545
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

546 547 548
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
549
static int
550 551 552 553 554 555 556
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

557
	if (unlikely(page_do_bit17_swizzling))
558 559 560 561 562 563 564 565 566 567 568
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

569
	return ret ? -EFAULT : 0;
570 571
}

572 573 574 575
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
576
	if (unlikely(swizzled)) {
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

594 595 596 597 598 599 600 601 602 603 604 605
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
606 607 608
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
609 610 611 612 613 614 615 616 617 618 619

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

620
	return ret ? - EFAULT : 0;
621 622
}

623
static int
624 625 626 627
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
628
{
629
	char __user *user_data;
630
	ssize_t remain;
631
	loff_t offset;
632
	int shmem_page_offset, page_length, ret = 0;
633
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634
	int prefaulted = 0;
635
	int needs_clflush = 0;
636
	struct sg_page_iter sg_iter;
637

V
Ville Syrjälä 已提交
638
	user_data = to_user_ptr(args->data_ptr);
639 640
	remain = args->size;

641
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642

643
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644 645 646
	if (ret)
		return ret;

647
	offset = args->offset;
648

649 650
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
651
		struct page *page = sg_page_iter_page(&sg_iter);
652 653 654 655

		if (remain <= 0)
			break;

656 657 658 659 660
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
661
		shmem_page_offset = offset_in_page(offset);
662 663 664 665
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

666 667 668
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

669 670 671 672 673
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
674 675 676

		mutex_unlock(&dev->struct_mutex);

677
		if (likely(!i915.prefault_disable) && !prefaulted) {
678
			ret = fault_in_multipages_writeable(user_data, remain);
679 680 681 682 683 684 685
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
686

687 688 689
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
690

691
		mutex_lock(&dev->struct_mutex);
692 693

		if (ret)
694 695
			goto out;

696
next_page:
697
		remain -= page_length;
698
		user_data += page_length;
699 700 701
		offset += page_length;
	}

702
out:
703 704
	i915_gem_object_unpin_pages(obj);

705 706 707
	return ret;
}

708 709 710 711 712 713 714
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715
		     struct drm_file *file)
716 717
{
	struct drm_i915_gem_pread *args = data;
718
	struct drm_i915_gem_object *obj;
719
	int ret = 0;
720

721 722 723 724
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
725
		       to_user_ptr(args->data_ptr),
726 727 728
		       args->size))
		return -EFAULT;

729
	ret = i915_mutex_lock_interruptible(dev);
730
	if (ret)
731
		return ret;
732

733
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734
	if (&obj->base == NULL) {
735 736
		ret = -ENOENT;
		goto unlock;
737
	}
738

739
	/* Bounds check source.  */
740 741
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
742
		ret = -EINVAL;
743
		goto out;
C
Chris Wilson 已提交
744 745
	}

746 747 748 749 750 751 752 753
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
754 755
	trace_i915_gem_object_pread(obj, args->offset, args->size);

756
	ret = i915_gem_shmem_pread(dev, obj, args, file);
757

758
out:
759
	drm_gem_object_unreference(&obj->base);
760
unlock:
761
	mutex_unlock(&dev->struct_mutex);
762
	return ret;
763 764
}

765 766
/* This is the fast write path which cannot handle
 * page faults in the source data
767
 */
768 769 770 771 772 773

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
774
{
775 776
	void __iomem *vaddr_atomic;
	void *vaddr;
777
	unsigned long unwritten;
778

P
Peter Zijlstra 已提交
779
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780 781 782
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
783
						      user_data, length);
P
Peter Zijlstra 已提交
784
	io_mapping_unmap_atomic(vaddr_atomic);
785
	return unwritten;
786 787
}

788 789 790 791
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
792
static int
793 794
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
795
			 struct drm_i915_gem_pwrite *args,
796
			 struct drm_file *file)
797
{
798
	struct drm_i915_private *dev_priv = dev->dev_private;
799
	ssize_t remain;
800
	loff_t offset, page_base;
801
	char __user *user_data;
D
Daniel Vetter 已提交
802 803
	int page_offset, page_length, ret;

804
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
805 806 807 808 809 810 811 812 813 814
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
815

V
Ville Syrjälä 已提交
816
	user_data = to_user_ptr(args->data_ptr);
817 818
	remain = args->size;

819
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820 821 822 823

	while (remain > 0) {
		/* Operation in this page
		 *
824 825 826
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
827
		 */
828 829
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
830 831 832 833 834
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
835 836
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
837
		 */
B
Ben Widawsky 已提交
838
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
839 840 841 842
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
843

844 845 846
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
847 848
	}

D
Daniel Vetter 已提交
849
out_unpin:
B
Ben Widawsky 已提交
850
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
851
out:
852
	return ret;
853 854
}

855 856 857 858
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
859
static int
860 861 862 863 864
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
865
{
866
	char *vaddr;
867
	int ret;
868

869
	if (unlikely(page_do_bit17_swizzling))
870
		return -EINVAL;
871

872 873 874 875
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
876 877
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
878 879 880 881
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
882

883
	return ret ? -EFAULT : 0;
884 885
}

886 887
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
888
static int
889 890 891 892 893
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
894
{
895 896
	char *vaddr;
	int ret;
897

898
	vaddr = kmap(page);
899
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900 901 902
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
903 904
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905 906
						user_data,
						page_length);
907 908 909 910 911
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
912 913 914
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
915
	kunmap(page);
916

917
	return ret ? -EFAULT : 0;
918 919 920
}

static int
921 922 923 924
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
925 926
{
	ssize_t remain;
927 928
	loff_t offset;
	char __user *user_data;
929
	int shmem_page_offset, page_length, ret = 0;
930
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931
	int hit_slowpath = 0;
932 933
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
934
	struct sg_page_iter sg_iter;
935

V
Ville Syrjälä 已提交
936
	user_data = to_user_ptr(args->data_ptr);
937 938
	remain = args->size;

939
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940

941 942 943 944 945
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
946
		needs_clflush_after = cpu_write_needs_clflush(obj);
947 948 949
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
950 951

		i915_gem_object_retire(obj);
952
	}
953 954 955 956 957
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
958

959 960 961 962 963 964
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

965
	offset = args->offset;
966
	obj->dirty = 1;
967

968 969
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
970
		struct page *page = sg_page_iter_page(&sg_iter);
971
		int partial_cacheline_write;
972

973 974 975
		if (remain <= 0)
			break;

976 977 978 979 980
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
981
		shmem_page_offset = offset_in_page(offset);
982 983 984 985 986

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

987 988 989 990 991 992 993
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

994 995 996
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

997 998 999 1000 1001 1002
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1003 1004 1005

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1006 1007 1008 1009
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1010

1011
		mutex_lock(&dev->struct_mutex);
1012 1013

		if (ret)
1014 1015
			goto out;

1016
next_page:
1017
		remain -= page_length;
1018
		user_data += page_length;
1019
		offset += page_length;
1020 1021
	}

1022
out:
1023 1024
	i915_gem_object_unpin_pages(obj);

1025
	if (hit_slowpath) {
1026 1027 1028 1029 1030 1031 1032
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033 1034
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1035
		}
1036
	}
1037

1038
	if (needs_clflush_after)
1039
		i915_gem_chipset_flush(dev);
1040

1041
	return ret;
1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051
		      struct drm_file *file)
1052 1053
{
	struct drm_i915_gem_pwrite *args = data;
1054
	struct drm_i915_gem_object *obj;
1055 1056 1057 1058 1059 1060
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1061
		       to_user_ptr(args->data_ptr),
1062 1063 1064
		       args->size))
		return -EFAULT;

1065
	if (likely(!i915.prefault_disable)) {
1066 1067 1068 1069 1070
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1071

1072
	ret = i915_mutex_lock_interruptible(dev);
1073
	if (ret)
1074
		return ret;
1075

1076
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077
	if (&obj->base == NULL) {
1078 1079
		ret = -ENOENT;
		goto unlock;
1080
	}
1081

1082
	/* Bounds check destination. */
1083 1084
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1085
		ret = -EINVAL;
1086
		goto out;
C
Chris Wilson 已提交
1087 1088
	}

1089 1090 1091 1092 1093 1094 1095 1096
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1097 1098
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1099
	ret = -EFAULT;
1100 1101 1102 1103 1104 1105
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1106 1107 1108
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1109
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1110 1111 1112
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1113
	}
1114

1115 1116 1117 1118 1119 1120
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1121

1122
out:
1123
	drm_gem_object_unreference(&obj->base);
1124
unlock:
1125
	mutex_unlock(&dev->struct_mutex);
1126 1127 1128
	return ret;
}

1129
int
1130
i915_gem_check_wedge(struct i915_gpu_error *error,
1131 1132
		     bool interruptible)
{
1133
	if (i915_reset_in_progress(error)) {
1134 1135 1136 1137 1138
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1139 1140
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1141 1142
			return -EIO;

1143 1144 1145 1146 1147 1148 1149
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1150 1151 1152 1153 1154 1155 1156 1157 1158
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
1159
int
1160
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1161 1162 1163 1164 1165 1166
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
1167
	if (seqno == ring->outstanding_lazy_seqno)
1168
		ret = i915_add_request(ring, NULL);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184 1185 1186 1187 1188 1189 1190 1191
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1192
/**
1193
 * __i915_wait_seqno - wait until execution of seqno has finished
1194 1195
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1196
 * @reset_counter: reset sequence associated with the given seqno
1197 1198 1199
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1200 1201 1202 1203 1204 1205 1206
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1207 1208 1209
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1210
int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1211
			unsigned reset_counter,
1212
			bool interruptible,
1213
			s64 *timeout,
1214
			struct drm_i915_file_private *file_priv)
1215
{
1216
	struct drm_device *dev = ring->dev;
1217
	struct drm_i915_private *dev_priv = dev->dev_private;
1218 1219
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220
	DEFINE_WAIT(wait);
1221
	unsigned long timeout_expire;
1222
	s64 before, now;
1223 1224
	int ret;

1225
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226

1227 1228 1229
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1230 1231
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232

1233
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 1235 1236 1237 1238 1239 1240
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1241
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 1243
		return -ENODEV;

1244 1245
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1246
	before = ktime_get_raw_ns();
1247 1248
	for (;;) {
		struct timer_list timer;
1249

1250 1251
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252

1253 1254
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1255 1256 1257 1258 1259 1260 1261 1262
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1263

1264 1265 1266 1267
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1268

1269 1270 1271 1272 1273
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1274
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 1276 1277 1278 1279 1280
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1281 1282
			unsigned long expire;

1283
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 1286 1287
			mod_timer(&timer, expire);
		}

1288
		io_schedule();
1289 1290 1291 1292 1293 1294

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1295
	now = ktime_get_raw_ns();
1296
	trace_i915_gem_request_wait_end(ring, seqno);
1297

1298 1299
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1300 1301

	finish_wait(&ring->irq_queue, &wait);
1302 1303

	if (timeout) {
1304 1305 1306
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1317 1318
	}

1319
	return ret;
1320 1321 1322 1323 1324 1325 1326
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1327
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1328 1329 1330 1331
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
1332
	unsigned reset_counter;
1333 1334 1335 1336 1337
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1338
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1339 1340 1341 1342 1343 1344 1345
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1346 1347 1348
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
	return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
				 NULL, NULL);
1349 1350
}

1351
static int
1352
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1353
{
1354 1355
	if (!obj->active)
		return 0;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1369 1370 1371 1372 1373 1374 1375 1376
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1377
	struct intel_engine_cs *ring = obj->ring;
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1389
	return i915_gem_object_wait_rendering__tail(obj);
1390 1391
}

1392 1393 1394 1395 1396
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1397
					    struct drm_i915_file_private *file_priv,
1398 1399 1400 1401
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1402
	struct intel_engine_cs *ring = obj->ring;
1403
	unsigned reset_counter;
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1414
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1415 1416 1417 1418 1419 1420 1421
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1422
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1423
	mutex_unlock(&dev->struct_mutex);
1424 1425
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
				file_priv);
1426
	mutex_lock(&dev->struct_mutex);
1427 1428
	if (ret)
		return ret;
1429

1430
	return i915_gem_object_wait_rendering__tail(obj);
1431 1432
}

1433
/**
1434 1435
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1436 1437 1438
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1439
			  struct drm_file *file)
1440 1441
{
	struct drm_i915_gem_set_domain *args = data;
1442
	struct drm_i915_gem_object *obj;
1443 1444
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1445 1446
	int ret;

1447
	/* Only handle setting domains to types used by the CPU. */
1448
	if (write_domain & I915_GEM_GPU_DOMAINS)
1449 1450
		return -EINVAL;

1451
	if (read_domains & I915_GEM_GPU_DOMAINS)
1452 1453 1454 1455 1456 1457 1458 1459
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1460
	ret = i915_mutex_lock_interruptible(dev);
1461
	if (ret)
1462
		return ret;
1463

1464
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1465
	if (&obj->base == NULL) {
1466 1467
		ret = -ENOENT;
		goto unlock;
1468
	}
1469

1470 1471 1472 1473
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1474 1475 1476
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1477 1478 1479
	if (ret)
		goto unref;

1480 1481
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1482 1483 1484 1485 1486 1487 1488

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1489
	} else {
1490
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491 1492
	}

1493
unref:
1494
	drm_gem_object_unreference(&obj->base);
1495
unlock:
1496 1497 1498 1499 1500 1501 1502 1503 1504
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1505
			 struct drm_file *file)
1506 1507
{
	struct drm_i915_gem_sw_finish *args = data;
1508
	struct drm_i915_gem_object *obj;
1509 1510
	int ret = 0;

1511
	ret = i915_mutex_lock_interruptible(dev);
1512
	if (ret)
1513
		return ret;
1514

1515
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1516
	if (&obj->base == NULL) {
1517 1518
		ret = -ENOENT;
		goto unlock;
1519 1520 1521
	}

	/* Pinned buffers may be scanout, so flush the cache */
1522 1523
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1524

1525
	drm_gem_object_unreference(&obj->base);
1526
unlock:
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1547 1548 1549
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1550
		    struct drm_file *file)
1551 1552 1553 1554 1555
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1556
	obj = drm_gem_object_lookup(dev, file, args->handle);
1557
	if (obj == NULL)
1558
		return -ENOENT;
1559

1560 1561 1562 1563 1564 1565 1566 1567
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1568
	addr = vm_mmap(obj->filp, 0, args->size,
1569 1570
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1571
	drm_gem_object_unreference_unlocked(obj);
1572 1573 1574 1575 1576 1577 1578 1579
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1598 1599
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1600
	struct drm_i915_private *dev_priv = dev->dev_private;
1601 1602 1603
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1604
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1605

1606 1607
	intel_runtime_pm_get(dev_priv);

1608 1609 1610 1611
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1612 1613 1614
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1615

C
Chris Wilson 已提交
1616 1617
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1618 1619 1620 1621 1622 1623 1624 1625 1626
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1627 1628
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1629
		ret = -EFAULT;
1630 1631 1632
		goto unlock;
	}

1633
	/* Now bind it into the GTT if needed */
1634
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1635 1636
	if (ret)
		goto unlock;
1637

1638 1639 1640
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1641

1642
	ret = i915_gem_object_get_fence(obj);
1643
	if (ret)
1644
		goto unpin;
1645

1646
	/* Finally, remap it using the new GTT offset */
1647 1648
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1649

1650
	if (!obj->fault_mappable) {
1651 1652 1653
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1654 1655
		int i;

1656
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1669
unpin:
B
Ben Widawsky 已提交
1670
	i915_gem_object_ggtt_unpin(obj);
1671
unlock:
1672
	mutex_unlock(&dev->struct_mutex);
1673
out:
1674
	switch (ret) {
1675
	case -EIO:
1676 1677 1678 1679 1680 1681 1682
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1683 1684 1685
			ret = VM_FAULT_SIGBUS;
			break;
		}
1686
	case -EAGAIN:
D
Daniel Vetter 已提交
1687 1688 1689 1690
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1691
		 */
1692 1693
	case 0:
	case -ERESTARTSYS:
1694
	case -EINTR:
1695 1696 1697 1698 1699
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1700 1701
		ret = VM_FAULT_NOPAGE;
		break;
1702
	case -ENOMEM:
1703 1704
		ret = VM_FAULT_OOM;
		break;
1705
	case -ENOSPC:
1706
	case -EFAULT:
1707 1708
		ret = VM_FAULT_SIGBUS;
		break;
1709
	default:
1710
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1711 1712
		ret = VM_FAULT_SIGBUS;
		break;
1713
	}
1714 1715 1716

	intel_runtime_pm_put(dev_priv);
	return ret;
1717 1718
}

1719 1720 1721 1722
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1723
 * Preserve the reservation of the mmapping with the DRM core code, but
1724 1725 1726 1727 1728 1729 1730 1731 1732
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1733
void
1734
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1735
{
1736 1737
	if (!obj->fault_mappable)
		return;
1738

1739 1740
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1741
	obj->fault_mappable = false;
1742 1743
}

1744 1745 1746 1747 1748 1749 1750 1751 1752
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1753
uint32_t
1754
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1755
{
1756
	uint32_t gtt_size;
1757 1758

	if (INTEL_INFO(dev)->gen >= 4 ||
1759 1760
	    tiling_mode == I915_TILING_NONE)
		return size;
1761 1762 1763

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1764
		gtt_size = 1024*1024;
1765
	else
1766
		gtt_size = 512*1024;
1767

1768 1769
	while (gtt_size < size)
		gtt_size <<= 1;
1770

1771
	return gtt_size;
1772 1773
}

1774 1775 1776 1777 1778
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1779
 * potential fence register mapping.
1780
 */
1781 1782 1783
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1784 1785 1786 1787 1788
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1789
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1790
	    tiling_mode == I915_TILING_NONE)
1791 1792
		return 4096;

1793 1794 1795 1796
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1797
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1798 1799
}

1800 1801 1802 1803 1804
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1805
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1806 1807
		return 0;

1808 1809
	dev_priv->mm.shrinker_no_lock_stealing = true;

1810 1811
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1812
		goto out;
1813 1814 1815 1816 1817 1818 1819 1820

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1821 1822 1823 1824 1825
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1826 1827
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1828
		goto out;
1829 1830

	i915_gem_shrink_all(dev_priv);
1831 1832 1833 1834 1835
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1836 1837 1838 1839 1840 1841 1842
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1843
static int
1844 1845
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1846
		  uint32_t handle, bool dumb,
1847
		  uint64_t *offset)
1848
{
1849
	struct drm_i915_private *dev_priv = dev->dev_private;
1850
	struct drm_i915_gem_object *obj;
1851 1852
	int ret;

1853
	ret = i915_mutex_lock_interruptible(dev);
1854
	if (ret)
1855
		return ret;
1856

1857
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1858
	if (&obj->base == NULL) {
1859 1860 1861
		ret = -ENOENT;
		goto unlock;
	}
1862

1863 1864 1865 1866 1867 1868 1869
	/*
	 * We don't allow dumb mmaps on objects created using another
	 * interface.
	 */
	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
		  "Illegal dumb map of accelerated buffer.\n");

B
Ben Widawsky 已提交
1870
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1871
		ret = -E2BIG;
1872
		goto out;
1873 1874
	}

1875
	if (obj->madv != I915_MADV_WILLNEED) {
1876
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1877
		ret = -EFAULT;
1878
		goto out;
1879 1880
	}

1881 1882 1883
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1884

1885
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1886

1887
out:
1888
	drm_gem_object_unreference(&obj->base);
1889
unlock:
1890
	mutex_unlock(&dev->struct_mutex);
1891
	return ret;
1892 1893
}

1894 1895 1896 1897 1898 1899 1900 1901 1902
int
i915_gem_dumb_map_offset(struct drm_file *file,
			 struct drm_device *dev,
			 uint32_t handle,
			 uint64_t *offset)
{
	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1924
	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1925 1926
}

1927 1928 1929 1930 1931 1932
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1933 1934 1935
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1936
{
1937
	i915_gem_object_free_mmap_offset(obj);
1938

1939 1940
	if (obj->base.filp == NULL)
		return;
1941

D
Daniel Vetter 已提交
1942 1943 1944 1945 1946
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1947
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1948 1949
	obj->madv = __I915_MADV_PURGED;
}
1950

1951 1952 1953
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1954
{
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1969 1970
}

1971
static void
1972
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1973
{
1974 1975
	struct sg_page_iter sg_iter;
	int ret;
1976

1977
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1978

C
Chris Wilson 已提交
1979 1980 1981 1982 1983 1984
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1985
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1986 1987 1988
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1989
	if (i915_gem_object_needs_bit17_swizzle(obj))
1990 1991
		i915_gem_object_save_bit_17_swizzle(obj);

1992 1993
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1994

1995
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1996
		struct page *page = sg_page_iter_page(&sg_iter);
1997

1998
		if (obj->dirty)
1999
			set_page_dirty(page);
2000

2001
		if (obj->madv == I915_MADV_WILLNEED)
2002
			mark_page_accessed(page);
2003

2004
		page_cache_release(page);
2005
	}
2006
	obj->dirty = 0;
2007

2008 2009
	sg_free_table(obj->pages);
	kfree(obj->pages);
2010
}
C
Chris Wilson 已提交
2011

2012
int
2013 2014 2015 2016
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2017
	if (obj->pages == NULL)
2018 2019
		return 0;

2020 2021 2022
	if (obj->pages_pin_count)
		return -EBUSY;

2023
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2024

2025 2026 2027
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2028
	list_del(&obj->global_list);
2029

2030
	ops->put_pages(obj);
2031
	obj->pages = NULL;
2032

2033
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2034 2035 2036 2037

	return 0;
}

2038 2039 2040
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2041
{
2042 2043 2044 2045 2046 2047 2048 2049
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2050
	unsigned long count = 0;
C
Chris Wilson 已提交
2051

2052
	/*
2053
	 * As we may completely rewrite the (un)bound list whilst unbinding
2054 2055 2056
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2070
	 */
2071
	for (phase = phases; phase->list; phase++) {
2072
		struct list_head still_in_list;
2073

2074 2075
		if ((flags & phase->bit) == 0)
			continue;
2076

2077
		INIT_LIST_HEAD(&still_in_list);
2078
		while (count < target && !list_empty(phase->list)) {
2079 2080
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2081

2082
			obj = list_first_entry(phase->list,
2083 2084
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2085

2086 2087
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2088
				continue;
2089

2090
			drm_gem_object_reference(&obj->base);
2091

2092 2093 2094
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2095 2096
				if (i915_vma_unbind(vma))
					break;
2097

2098 2099 2100 2101 2102
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2103
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2104 2105 2106 2107 2108
	}

	return count;
}

2109
static unsigned long
C
Chris Wilson 已提交
2110 2111 2112
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2113 2114
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2115 2116
}

2117
static int
C
Chris Wilson 已提交
2118
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2119
{
C
Chris Wilson 已提交
2120
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2121 2122
	int page_count, i;
	struct address_space *mapping;
2123 2124
	struct sg_table *st;
	struct scatterlist *sg;
2125
	struct sg_page_iter sg_iter;
2126
	struct page *page;
2127
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2128
	gfp_t gfp;
2129

C
Chris Wilson 已提交
2130 2131 2132 2133 2134 2135 2136
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2137 2138 2139 2140
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2141
	page_count = obj->base.size / PAGE_SIZE;
2142 2143
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2144
		return -ENOMEM;
2145
	}
2146

2147 2148 2149 2150 2151
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2152
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2153
	gfp = mapping_gfp_mask(mapping);
2154
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2155
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2156 2157 2158
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2159 2160
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2161 2162 2163 2164 2165
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2166 2167 2168 2169 2170 2171 2172 2173
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2174
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2175 2176 2177
			if (IS_ERR(page))
				goto err_pages;
		}
2178 2179 2180 2181 2182 2183 2184 2185
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2186 2187 2188 2189 2190 2191 2192 2193 2194
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2195 2196 2197

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2198
	}
2199 2200 2201 2202
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2203 2204
	obj->pages = st;

2205
	if (i915_gem_object_needs_bit17_swizzle(obj))
2206 2207
		i915_gem_object_do_bit_17_swizzle(obj);

2208 2209 2210 2211
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2212 2213 2214
	return 0;

err_pages:
2215 2216
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2217
		page_cache_release(sg_page_iter_page(&sg_iter));
2218 2219
	sg_free_table(st);
	kfree(st);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2233 2234
}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2249
	if (obj->pages)
2250 2251
		return 0;

2252
	if (obj->madv != I915_MADV_WILLNEED) {
2253
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2254
		return -EFAULT;
2255 2256
	}

2257 2258
	BUG_ON(obj->pages_pin_count);

2259 2260 2261 2262
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2263
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2264
	return 0;
2265 2266
}

B
Ben Widawsky 已提交
2267
static void
2268
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2269
			       struct intel_engine_cs *ring)
2270
{
2271
	u32 seqno = intel_ring_get_seqno(ring);
2272

2273
	BUG_ON(ring == NULL);
2274 2275 2276 2277
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2278
	obj->ring = ring;
2279 2280

	/* Add a reference if we're newly entering the active list. */
2281 2282 2283
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2284
	}
2285

2286
	list_move_tail(&obj->ring_list, &ring->active_list);
2287

2288
	obj->last_read_seqno = seqno;
2289 2290
}

B
Ben Widawsky 已提交
2291
void i915_vma_move_to_active(struct i915_vma *vma,
2292
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2293 2294 2295 2296 2297
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2298 2299
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2300
{
B
Ben Widawsky 已提交
2301
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2302 2303
	struct i915_address_space *vm;
	struct i915_vma *vma;
2304

2305
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2306
	BUG_ON(!obj->active);
2307

2308 2309 2310 2311 2312
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2313

2314 2315
	intel_fb_obj_flush(obj, true);

2316
	list_del_init(&obj->ring_list);
2317 2318
	obj->ring = NULL;

2319 2320 2321 2322 2323
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2324 2325 2326 2327 2328

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2329
}
2330

2331 2332 2333
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2334
	struct intel_engine_cs *ring = obj->ring;
2335 2336 2337 2338 2339 2340 2341 2342 2343

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2344
static int
2345
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2346
{
2347
	struct drm_i915_private *dev_priv = dev->dev_private;
2348
	struct intel_engine_cs *ring;
2349
	int ret, i, j;
2350

2351
	/* Carefully retire all requests without writing to the rings */
2352
	for_each_ring(ring, dev_priv, i) {
2353 2354 2355
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2356 2357
	}
	i915_gem_retire_requests(dev);
2358 2359

	/* Finally reset hw state */
2360
	for_each_ring(ring, dev_priv, i) {
2361
		intel_ring_init_seqno(ring, seqno);
2362

2363 2364
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2365
	}
2366

2367
	return 0;
2368 2369
}

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2396 2397
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2398
{
2399 2400 2401 2402
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2403
		int ret = i915_gem_init_seqno(dev, 0);
2404 2405
		if (ret)
			return ret;
2406

2407 2408
		dev_priv->next_seqno = 1;
	}
2409

2410
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2411
	return 0;
2412 2413
}

2414
int __i915_add_request(struct intel_engine_cs *ring,
2415
		       struct drm_file *file,
2416
		       struct drm_i915_gem_object *obj,
2417
		       u32 *out_seqno)
2418
{
2419
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2420
	struct drm_i915_gem_request *request;
2421
	struct intel_ringbuffer *ringbuf;
2422
	u32 request_ring_position, request_start;
2423 2424
	int ret;

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2436 2437 2438 2439 2440 2441 2442
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2443 2444 2445 2446 2447 2448 2449 2450 2451
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2452

2453 2454 2455 2456 2457
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2458
	request_ring_position = intel_ring_get_tail(ringbuf);
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2469

2470
	request->seqno = intel_ring_get_seqno(ring);
2471
	request->ring = ring;
2472
	request->head = request_start;
2473
	request->tail = request_ring_position;
2474 2475 2476 2477 2478 2479 2480

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2481
	request->batch_obj = obj;
2482

2483 2484 2485 2486 2487 2488 2489 2490
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2491

2492
	request->emitted_jiffies = jiffies;
2493
	list_add_tail(&request->list, &ring->request_list);
2494
	request->file_priv = NULL;
2495

C
Chris Wilson 已提交
2496 2497 2498
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2499
		spin_lock(&file_priv->mm.lock);
2500
		request->file_priv = file_priv;
2501
		list_add_tail(&request->client_list,
2502
			      &file_priv->mm.request_list);
2503
		spin_unlock(&file_priv->mm.lock);
2504
	}
2505

2506
	trace_i915_gem_request_add(ring, request->seqno);
2507
	ring->outstanding_lazy_seqno = 0;
2508
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2509

2510
	i915_queue_hangcheck(ring->dev);
2511

2512 2513 2514 2515 2516
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2517

2518
	if (out_seqno)
2519
		*out_seqno = request->seqno;
2520
	return 0;
2521 2522
}

2523 2524
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2525
{
2526
	struct drm_i915_file_private *file_priv = request->file_priv;
2527

2528 2529
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2530

2531
	spin_lock(&file_priv->mm.lock);
2532 2533
	list_del(&request->client_list);
	request->file_priv = NULL;
2534
	spin_unlock(&file_priv->mm.lock);
2535 2536
}

2537
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2538
				   const struct intel_context *ctx)
2539
{
2540
	unsigned long elapsed;
2541

2542 2543 2544
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2545 2546 2547
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2548
		if (!i915_gem_context_is_default(ctx)) {
2549
			DRM_DEBUG("context hanging too fast, banning!\n");
2550
			return true;
2551 2552 2553
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2554
			return true;
2555
		}
2556 2557 2558 2559 2560
	}

	return false;
}

2561
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2562
				  struct intel_context *ctx,
2563
				  const bool guilty)
2564
{
2565 2566 2567 2568
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2569

2570 2571 2572
	hs = &ctx->hang_stats;

	if (guilty) {
2573
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2574 2575 2576 2577
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2578 2579 2580
	}
}

2581 2582
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
2583 2584
	struct intel_context *ctx = request->ctx;

2585 2586 2587
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2588 2589 2590
	if (ctx) {
		if (i915.enable_execlists) {
			struct intel_engine_cs *ring = request->ring;
2591

2592 2593 2594
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2595 2596
		i915_gem_context_unreference(ctx);
	}
2597 2598 2599
	kfree(request);
}

2600
struct drm_i915_gem_request *
2601
i915_gem_find_active_request(struct intel_engine_cs *ring)
2602
{
2603
	struct drm_i915_gem_request *request;
2604 2605 2606
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2607 2608 2609 2610

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2611

2612
		return request;
2613
	}
2614 2615 2616 2617 2618

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2619
				       struct intel_engine_cs *ring)
2620 2621 2622 2623
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2624
	request = i915_gem_find_active_request(ring);
2625 2626 2627 2628 2629 2630

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2631
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2632 2633

	list_for_each_entry_continue(request, &ring->request_list, list)
2634
		i915_set_reset_status(dev_priv, request->ctx, false);
2635
}
2636

2637
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2638
					struct intel_engine_cs *ring)
2639
{
2640
	while (!list_empty(&ring->active_list)) {
2641
		struct drm_i915_gem_object *obj;
2642

2643 2644 2645
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2646

2647
		i915_gem_object_move_to_inactive(obj);
2648
	}
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2683 2684 2685 2686 2687

	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2688 2689
}

2690
void i915_gem_restore_fences(struct drm_device *dev)
2691 2692 2693 2694
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2695
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2696
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2708 2709 2710
	}
}

2711
void i915_gem_reset(struct drm_device *dev)
2712
{
2713
	struct drm_i915_private *dev_priv = dev->dev_private;
2714
	struct intel_engine_cs *ring;
2715
	int i;
2716

2717 2718 2719 2720 2721 2722 2723 2724
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2725
	for_each_ring(ring, dev_priv, i)
2726
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2727

2728 2729
	i915_gem_context_reset(dev);

2730
	i915_gem_restore_fences(dev);
2731 2732 2733 2734 2735
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2736
void
2737
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2738 2739 2740
{
	uint32_t seqno;

C
Chris Wilson 已提交
2741
	if (list_empty(&ring->request_list))
2742 2743
		return;

C
Chris Wilson 已提交
2744
	WARN_ON(i915_verify_lists(ring->dev));
2745

2746
	seqno = ring->get_seqno(ring, true);
2747

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2766
	while (!list_empty(&ring->request_list)) {
2767
		struct drm_i915_gem_request *request;
2768
		struct intel_ringbuffer *ringbuf;
2769

2770
		request = list_first_entry(&ring->request_list,
2771 2772 2773
					   struct drm_i915_gem_request,
					   list);

2774
		if (!i915_seqno_passed(seqno, request->seqno))
2775 2776
			break;

C
Chris Wilson 已提交
2777
		trace_i915_gem_request_retire(ring, request->seqno);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2790 2791 2792 2793 2794
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2795
		ringbuf->last_retired_head = request->tail;
2796

2797
		i915_gem_free_request(request);
2798
	}
2799

C
Chris Wilson 已提交
2800 2801
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2802
		ring->irq_put(ring);
C
Chris Wilson 已提交
2803
		ring->trace_irq_seqno = 0;
2804
	}
2805

C
Chris Wilson 已提交
2806
	WARN_ON(i915_verify_lists(ring->dev));
2807 2808
}

2809
bool
2810 2811
i915_gem_retire_requests(struct drm_device *dev)
{
2812
	struct drm_i915_private *dev_priv = dev->dev_private;
2813
	struct intel_engine_cs *ring;
2814
	bool idle = true;
2815
	int i;
2816

2817
	for_each_ring(ring, dev_priv, i) {
2818
		i915_gem_retire_requests_ring(ring);
2819
		idle &= list_empty(&ring->request_list);
2820 2821 2822 2823 2824 2825 2826 2827 2828
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2829 2830 2831 2832 2833 2834 2835 2836
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2837 2838
}

2839
static void
2840 2841
i915_gem_retire_work_handler(struct work_struct *work)
{
2842 2843 2844
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2845
	bool idle;
2846

2847
	/* Come back later if the device is busy... */
2848 2849 2850 2851
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2852
	}
2853
	if (!idle)
2854 2855
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2856
}
2857

2858 2859 2860 2861 2862 2863 2864
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2865 2866
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2878
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2879 2880 2881 2882 2883 2884 2885 2886 2887
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2913
	struct drm_i915_private *dev_priv = dev->dev_private;
2914 2915
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2916
	struct intel_engine_cs *ring = NULL;
2917
	unsigned reset_counter;
2918 2919 2920
	u32 seqno = 0;
	int ret = 0;

2921 2922 2923
	if (args->flags != 0)
		return -EINVAL;

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2934 2935
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2936 2937 2938 2939
	if (ret)
		goto out;

	if (obj->active) {
2940
		seqno = obj->last_read_seqno;
2941 2942 2943 2944 2945 2946 2947
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
2948
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2949
	 */
2950
	if (args->timeout_ns <= 0) {
2951 2952 2953 2954 2955
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2956
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2957 2958
	mutex_unlock(&dev->struct_mutex);

2959 2960
	return __i915_wait_seqno(ring, seqno, reset_counter, true,
				 &args->timeout_ns, file->driver_priv);
2961 2962 2963 2964 2965 2966 2967

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2980 2981
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2982
		     struct intel_engine_cs *to)
2983
{
2984
	struct intel_engine_cs *from = obj->ring;
2985 2986 2987 2988 2989 2990
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2991
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2992
		return i915_gem_object_wait_rendering(obj, false);
2993 2994 2995

	idx = intel_ring_sync_index(from, to);

2996
	seqno = obj->last_read_seqno;
R
Rodrigo Vivi 已提交
2997 2998
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2999
	if (seqno <= from->semaphore.sync_seqno[idx])
3000 3001
		return 0;

3002 3003 3004
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
3005

3006
	trace_i915_gem_ring_sync_to(from, to, seqno);
3007
	ret = to->semaphore.sync_to(to, from, seqno);
3008
	if (!ret)
3009 3010 3011 3012
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3013
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3014

3015
	return ret;
3016 3017
}

3018 3019 3020 3021 3022 3023 3024
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3025 3026 3027
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3028 3029 3030
	/* Wait for any direct GTT access to complete */
	mb();

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3042
int i915_vma_unbind(struct i915_vma *vma)
3043
{
3044
	struct drm_i915_gem_object *obj = vma->obj;
3045
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3046
	int ret;
3047

3048
	if (list_empty(&vma->vma_link))
3049 3050
		return 0;

3051 3052 3053 3054
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3055

B
Ben Widawsky 已提交
3056
	if (vma->pin_count)
3057
		return -EBUSY;
3058

3059 3060
	BUG_ON(obj->pages == NULL);

3061
	ret = i915_gem_object_finish_gpu(obj);
3062
	if (ret)
3063 3064 3065 3066 3067 3068
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3069 3070 3071
	/* Throw away the active reference before moving to the unbound list */
	i915_gem_object_retire(obj);

3072 3073
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
3074

3075 3076 3077 3078 3079
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3080

3081
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3082

3083 3084
	vma->unbind_vma(vma);

3085
	list_del_init(&vma->mm_list);
3086
	if (i915_is_ggtt(vma->vm))
3087
		obj->map_and_fenceable = false;
3088

B
Ben Widawsky 已提交
3089 3090 3091 3092
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3093
	 * no more VMAs exist. */
3094 3095
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3096
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3097
	}
3098

3099 3100 3101 3102 3103 3104
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3105
	return 0;
3106 3107
}

3108
int i915_gpu_idle(struct drm_device *dev)
3109
{
3110
	struct drm_i915_private *dev_priv = dev->dev_private;
3111
	struct intel_engine_cs *ring;
3112
	int ret, i;
3113 3114

	/* Flush everything onto the inactive list. */
3115
	for_each_ring(ring, dev_priv, i) {
3116 3117 3118 3119 3120
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3121

3122
		ret = intel_ring_idle(ring);
3123 3124 3125
		if (ret)
			return ret;
	}
3126

3127
	return 0;
3128 3129
}

3130 3131
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3132
{
3133
	struct drm_i915_private *dev_priv = dev->dev_private;
3134 3135
	int fence_reg;
	int fence_pitch_shift;
3136

3137 3138 3139 3140 3141 3142 3143 3144
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3159
	if (obj) {
3160
		u32 size = i915_gem_obj_ggtt_size(obj);
3161
		uint64_t val;
3162

3163
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3164
				 0xfffff000) << 32;
3165
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3166
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3167 3168 3169
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3170

3171 3172 3173 3174 3175 3176 3177 3178 3179
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3180 3181
}

3182 3183
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3184
{
3185
	struct drm_i915_private *dev_priv = dev->dev_private;
3186
	u32 val;
3187

3188
	if (obj) {
3189
		u32 size = i915_gem_obj_ggtt_size(obj);
3190 3191
		int pitch_val;
		int tile_width;
3192

3193
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3194
		     (size & -size) != size ||
3195 3196 3197
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3198

3199 3200 3201 3202 3203 3204 3205 3206 3207
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3208
		val = i915_gem_obj_ggtt_offset(obj);
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3224 3225
}

3226 3227
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3228
{
3229
	struct drm_i915_private *dev_priv = dev->dev_private;
3230 3231
	uint32_t val;

3232
	if (obj) {
3233
		u32 size = i915_gem_obj_ggtt_size(obj);
3234
		uint32_t pitch_val;
3235

3236
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3237
		     (size & -size) != size ||
3238 3239 3240
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3241

3242 3243
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3244

3245
		val = i915_gem_obj_ggtt_offset(obj);
3246 3247 3248 3249 3250 3251 3252
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3253

3254 3255 3256 3257
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3258 3259 3260 3261 3262
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3263 3264 3265
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3266 3267 3268 3269 3270 3271 3272 3273
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3274 3275 3276 3277
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3278
	switch (INTEL_INFO(dev)->gen) {
3279
	case 9:
3280
	case 8:
3281
	case 7:
3282
	case 6:
3283 3284 3285 3286
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3287
	default: BUG();
3288
	}
3289 3290 3291 3292 3293 3294

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3295 3296
}

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3307
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3308 3309 3310
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3311 3312

	if (enable) {
3313
		obj->fence_reg = reg;
3314 3315 3316 3317 3318 3319 3320
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3321
	obj->fence_dirty = false;
3322 3323
}

3324
static int
3325
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3326
{
3327
	if (obj->last_fenced_seqno) {
3328
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3329 3330
		if (ret)
			return ret;
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

		obj->last_fenced_seqno = 0;
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3341
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3342
	struct drm_i915_fence_reg *fence;
3343 3344
	int ret;

3345
	ret = i915_gem_object_wait_fence(obj);
3346 3347 3348
	if (ret)
		return ret;

3349 3350
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3351

3352 3353
	fence = &dev_priv->fence_regs[obj->fence_reg];

3354 3355 3356
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3357
	i915_gem_object_fence_lost(obj);
3358
	i915_gem_object_update_fence(obj, fence, false);
3359 3360 3361 3362 3363

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3364
i915_find_fence_reg(struct drm_device *dev)
3365 3366
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3367
	struct drm_i915_fence_reg *reg, *avail;
3368
	int i;
3369 3370

	/* First try to find a free reg */
3371
	avail = NULL;
3372 3373 3374
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3375
			return reg;
3376

3377
		if (!reg->pin_count)
3378
			avail = reg;
3379 3380
	}

3381
	if (avail == NULL)
3382
		goto deadlock;
3383 3384

	/* None available, try to steal one or wait for a user to finish */
3385
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3386
		if (reg->pin_count)
3387 3388
			continue;

C
Chris Wilson 已提交
3389
		return reg;
3390 3391
	}

3392 3393 3394 3395 3396 3397
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3398 3399
}

3400
/**
3401
 * i915_gem_object_get_fence - set up fencing for an object
3402 3403 3404 3405 3406 3407 3408 3409 3410
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3411 3412
 *
 * For an untiled surface, this removes any existing fence.
3413
 */
3414
int
3415
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3416
{
3417
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3418
	struct drm_i915_private *dev_priv = dev->dev_private;
3419
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3420
	struct drm_i915_fence_reg *reg;
3421
	int ret;
3422

3423 3424 3425
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3426
	if (obj->fence_dirty) {
3427
		ret = i915_gem_object_wait_fence(obj);
3428 3429 3430
		if (ret)
			return ret;
	}
3431

3432
	/* Just update our place in the LRU if our fence is getting reused. */
3433 3434
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3435
		if (!obj->fence_dirty) {
3436 3437 3438 3439 3440
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3441 3442 3443
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3444
		reg = i915_find_fence_reg(dev);
3445 3446
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3447

3448 3449 3450
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3451
			ret = i915_gem_object_wait_fence(old);
3452 3453 3454
			if (ret)
				return ret;

3455
			i915_gem_object_fence_lost(old);
3456
		}
3457
	} else
3458 3459
		return 0;

3460 3461
	i915_gem_object_update_fence(obj, reg, enable);

3462
	return 0;
3463 3464
}

3465
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3466 3467
				     unsigned long cache_level)
{
3468
	struct drm_mm_node *gtt_space = &vma->node;
3469 3470
	struct drm_mm_node *other;

3471 3472 3473 3474 3475 3476
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3477
	 */
3478
	if (vma->vm->mm.color_adjust == NULL)
3479 3480
		return true;

3481
	if (!drm_mm_node_allocated(gtt_space))
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3498 3499 3500
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3501
static struct i915_vma *
3502 3503 3504
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3505
			   uint64_t flags)
3506
{
3507
	struct drm_device *dev = obj->base.dev;
3508
	struct drm_i915_private *dev_priv = dev->dev_private;
3509
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3510 3511 3512
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3513
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3514
	struct i915_vma *vma;
3515
	int ret;
3516

3517 3518 3519 3520 3521
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3522
						     obj->tiling_mode, true);
3523
	unfenced_alignment =
3524
		i915_gem_get_gtt_alignment(dev,
3525 3526
					   obj->base.size,
					   obj->tiling_mode, false);
3527

3528
	if (alignment == 0)
3529
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3530
						unfenced_alignment;
3531
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3532
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3533
		return ERR_PTR(-EINVAL);
3534 3535
	}

3536
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3537

3538 3539 3540
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3541 3542
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3543
			  obj->base.size,
3544
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3545
			  end);
3546
		return ERR_PTR(-E2BIG);
3547 3548
	}

3549
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3550
	if (ret)
3551
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3552

3553 3554
	i915_gem_object_pin_pages(obj);

3555
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3556
	if (IS_ERR(vma))
3557
		goto err_unpin;
B
Ben Widawsky 已提交
3558

3559
search_free:
3560
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3561
						  size, alignment,
3562 3563
						  obj->cache_level,
						  start, end,
3564 3565
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3566
	if (ret) {
3567
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3568 3569 3570
					       obj->cache_level,
					       start, end,
					       flags);
3571 3572
		if (ret == 0)
			goto search_free;
3573

3574
		goto err_free_vma;
3575
	}
3576
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3577
		ret = -EINVAL;
3578
		goto err_remove_node;
3579 3580
	}

3581
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3582
	if (ret)
3583
		goto err_remove_node;
3584

3585
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3586
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3587

3588
	trace_i915_vma_bind(vma, flags);
3589
	vma->bind_vma(vma, obj->cache_level,
3590
		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591

3592
	return vma;
B
Ben Widawsky 已提交
3593

3594
err_remove_node:
3595
	drm_mm_remove_node(&vma->node);
3596
err_free_vma:
B
Ben Widawsky 已提交
3597
	i915_gem_vma_destroy(vma);
3598
	vma = ERR_PTR(ret);
3599
err_unpin:
B
Ben Widawsky 已提交
3600
	i915_gem_object_unpin_pages(obj);
3601
	return vma;
3602 3603
}

3604
bool
3605 3606
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3607 3608 3609 3610 3611
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3612
	if (obj->pages == NULL)
3613
		return false;
3614

3615 3616 3617 3618
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3619
	if (obj->stolen || obj->phys_handle)
3620
		return false;
3621

3622 3623 3624 3625 3626 3627 3628 3629
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3630
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3631
		return false;
3632

C
Chris Wilson 已提交
3633
	trace_i915_gem_object_clflush(obj);
3634
	drm_clflush_sg(obj->pages);
3635 3636

	return true;
3637 3638 3639 3640
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3641
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3642
{
C
Chris Wilson 已提交
3643 3644
	uint32_t old_write_domain;

3645
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3646 3647
		return;

3648
	/* No actual flushing is required for the GTT write domain.  Writes
3649 3650
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3651 3652 3653 3654
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3655
	 */
3656 3657
	wmb();

3658 3659
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3660

3661 3662
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3663
	trace_i915_gem_object_change_domain(obj,
3664
					    obj->base.read_domains,
C
Chris Wilson 已提交
3665
					    old_write_domain);
3666 3667 3668 3669
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3670 3671
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3672
{
C
Chris Wilson 已提交
3673
	uint32_t old_write_domain;
3674

3675
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3676 3677
		return;

3678 3679 3680
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3681 3682
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3683

3684 3685
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3686
	trace_i915_gem_object_change_domain(obj,
3687
					    obj->base.read_domains,
C
Chris Wilson 已提交
3688
					    old_write_domain);
3689 3690
}

3691 3692 3693 3694 3695 3696
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3697
int
3698
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3699
{
3700
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3701
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3702
	uint32_t old_write_domain, old_read_domains;
3703
	int ret;
3704

3705
	/* Not valid to be called on unbound objects. */
3706
	if (vma == NULL)
3707 3708
		return -EINVAL;

3709 3710 3711
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3712
	ret = i915_gem_object_wait_rendering(obj, !write);
3713 3714 3715
	if (ret)
		return ret;

3716
	i915_gem_object_retire(obj);
3717
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3718

3719 3720 3721 3722 3723 3724 3725
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3726 3727
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3728

3729 3730 3731
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3732 3733
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3734
	if (write) {
3735 3736 3737
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3738 3739
	}

3740 3741 3742
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3743 3744 3745 3746
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3747
	/* And bump the LRU for this access */
3748 3749 3750
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3751

3752 3753 3754
	return 0;
}

3755 3756 3757
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3758
	struct drm_device *dev = obj->base.dev;
3759
	struct i915_vma *vma, *next;
3760 3761 3762 3763 3764
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3765
	if (i915_gem_obj_is_pinned(obj)) {
3766 3767 3768 3769
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3770
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3771
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3772
			ret = i915_vma_unbind(vma);
3773 3774 3775
			if (ret)
				return ret;
		}
3776 3777
	}

3778
	if (i915_gem_obj_bound_any(obj)) {
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3789
		if (INTEL_INFO(dev)->gen < 6) {
3790 3791 3792 3793 3794
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3795
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3796 3797
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
3798
						vma->bound & GLOBAL_BIND);
3799 3800
	}

3801 3802 3803 3804 3805
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3806 3807 3808 3809 3810 3811 3812 3813
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3814
		i915_gem_object_retire(obj);
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3831 3832
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3833
{
B
Ben Widawsky 已提交
3834
	struct drm_i915_gem_caching *args = data;
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3848 3849 3850 3851 3852 3853
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3854 3855 3856 3857
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3858 3859 3860 3861
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3862 3863 3864 3865 3866 3867 3868

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3869 3870
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3871
{
B
Ben Widawsky 已提交
3872
	struct drm_i915_gem_caching *args = data;
3873 3874 3875 3876
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3877 3878
	switch (args->caching) {
	case I915_CACHING_NONE:
3879 3880
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3881
	case I915_CACHING_CACHED:
3882 3883
		level = I915_CACHE_LLC;
		break;
3884 3885 3886
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3887 3888 3889 3890
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3891 3892 3893 3894
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3909 3910
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3911 3912 3913 3914 3915 3916
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	/* There are 3 sources that pin objects:
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *   3. The user.
	 *
	 * We can ignore reservations as we hold the struct_mutex and
	 * are only called outside of the reservation path.  The user
	 * can only increment pin_count once, and so if after
	 * subtracting the potential reference by the user, any pin_count
	 * remains, it must be due to another use by the display engine.
	 */
3928
	return vma->pin_count - !!obj->user_pin_count;
3929 3930
}

3931
/*
3932 3933 3934
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3935 3936
 */
int
3937 3938
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3939
				     struct intel_engine_cs *pipelined)
3940
{
3941
	u32 old_read_domains, old_write_domain;
3942
	bool was_pin_display;
3943 3944
	int ret;

3945
	if (pipelined != obj->ring) {
3946 3947
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3948 3949 3950
			return ret;
	}

3951 3952 3953
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3954
	was_pin_display = obj->pin_display;
3955 3956
	obj->pin_display = true;

3957 3958 3959 3960 3961 3962 3963 3964 3965
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3966 3967
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3968
	if (ret)
3969
		goto err_unpin_display;
3970

3971 3972 3973 3974
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3975
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3976
	if (ret)
3977
		goto err_unpin_display;
3978

3979
	i915_gem_object_flush_cpu_write_domain(obj, true);
3980

3981
	old_write_domain = obj->base.write_domain;
3982
	old_read_domains = obj->base.read_domains;
3983 3984 3985 3986

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3987
	obj->base.write_domain = 0;
3988
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3989 3990 3991

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3992
					    old_write_domain);
3993 3994

	return 0;
3995 3996

err_unpin_display:
3997 3998
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3999 4000 4001 4002 4003 4004
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4005
	i915_gem_object_ggtt_unpin(obj);
4006
	obj->pin_display = is_pin_display(obj);
4007 4008
}

4009
int
4010
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4011
{
4012 4013
	int ret;

4014
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4015 4016
		return 0;

4017
	ret = i915_gem_object_wait_rendering(obj, false);
4018 4019 4020
	if (ret)
		return ret;

4021 4022
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4023
	return 0;
4024 4025
}

4026 4027 4028 4029 4030 4031
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4032
int
4033
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4034
{
C
Chris Wilson 已提交
4035
	uint32_t old_write_domain, old_read_domains;
4036 4037
	int ret;

4038 4039 4040
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4041
	ret = i915_gem_object_wait_rendering(obj, !write);
4042 4043 4044
	if (ret)
		return ret;

4045
	i915_gem_object_retire(obj);
4046
	i915_gem_object_flush_gtt_write_domain(obj);
4047

4048 4049
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4050

4051
	/* Flush the CPU cache if it's still invalid. */
4052
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4053
		i915_gem_clflush_object(obj, false);
4054

4055
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4056 4057 4058 4059 4060
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4061
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4062 4063 4064 4065 4066

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4067 4068
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4069
	}
4070

4071 4072 4073
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4074 4075 4076 4077
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4078 4079 4080
	return 0;
}

4081 4082 4083
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4084 4085 4086 4087
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4088 4089 4090
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4091
static int
4092
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4093
{
4094 4095
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4096
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4097
	struct drm_i915_gem_request *request;
4098
	struct intel_engine_cs *ring = NULL;
4099
	unsigned reset_counter;
4100 4101
	u32 seqno = 0;
	int ret;
4102

4103 4104 4105 4106 4107 4108 4109
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4110

4111
	spin_lock(&file_priv->mm.lock);
4112
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4113 4114
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4115

4116 4117
		ring = request->ring;
		seqno = request->seqno;
4118
	}
4119
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4120
	spin_unlock(&file_priv->mm.lock);
4121

4122 4123
	if (seqno == 0)
		return 0;
4124

4125
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4126 4127
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4128 4129 4130 4131

	return ret;
}

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4151
int
4152
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4153
		    struct i915_address_space *vm,
4154
		    uint32_t alignment,
4155
		    uint64_t flags)
4156
{
4157
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4158
	struct i915_vma *vma;
4159
	unsigned bound;
4160 4161
	int ret;

4162 4163 4164
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4165
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4166
		return -EINVAL;
4167

4168 4169 4170
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4171 4172
	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4173 4174 4175
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4176
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4177
			WARN(vma->pin_count,
4178
			     "bo is already pinned with incorrect alignment:"
4179
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4180
			     " obj->map_and_fenceable=%d\n",
4181
			     i915_gem_obj_offset(obj, vm), alignment,
4182
			     !!(flags & PIN_MAPPABLE),
4183
			     obj->map_and_fenceable);
4184
			ret = i915_vma_unbind(vma);
4185 4186
			if (ret)
				return ret;
4187 4188

			vma = NULL;
4189 4190 4191
		}
	}

4192
	bound = vma ? vma->bound : 0;
4193
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4194 4195 4196
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4197
	}
J
Jesse Barnes 已提交
4198

4199
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4200
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4201

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4225
	vma->pin_count++;
4226 4227
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4228 4229 4230 4231 4232

	return 0;
}

void
B
Ben Widawsky 已提交
4233
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4234
{
B
Ben Widawsky 已提交
4235
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4236

B
Ben Widawsky 已提交
4237 4238 4239 4240 4241
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4242
		obj->pin_mappable = false;
4243 4244
}

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4271 4272
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4273
		   struct drm_file *file)
4274 4275
{
	struct drm_i915_gem_pin *args = data;
4276
	struct drm_i915_gem_object *obj;
4277 4278
	int ret;

4279
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4280 4281
		return -ENODEV;

4282 4283 4284
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4285

4286
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4287
	if (&obj->base == NULL) {
4288 4289
		ret = -ENOENT;
		goto unlock;
4290 4291
	}

4292
	if (obj->madv != I915_MADV_WILLNEED) {
4293
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4294
		ret = -EFAULT;
4295
		goto out;
4296 4297
	}

4298
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4299
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4300
			  args->handle);
4301 4302
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4303 4304
	}

4305 4306 4307 4308 4309
	if (obj->user_pin_count == ULONG_MAX) {
		ret = -EBUSY;
		goto out;
	}

4310
	if (obj->user_pin_count == 0) {
4311
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4312 4313
		if (ret)
			goto out;
4314 4315
	}

4316 4317 4318
	obj->user_pin_count++;
	obj->pin_filp = file;

4319
	args->offset = i915_gem_obj_ggtt_offset(obj);
4320
out:
4321
	drm_gem_object_unreference(&obj->base);
4322
unlock:
4323
	mutex_unlock(&dev->struct_mutex);
4324
	return ret;
4325 4326 4327 4328
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4329
		     struct drm_file *file)
4330 4331
{
	struct drm_i915_gem_pin *args = data;
4332
	struct drm_i915_gem_object *obj;
4333
	int ret;
4334

4335 4336 4337
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

4338 4339 4340
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4341

4342
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4343
	if (&obj->base == NULL) {
4344 4345
		ret = -ENOENT;
		goto unlock;
4346
	}
4347

4348
	if (obj->pin_filp != file) {
4349
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4350
			  args->handle);
4351 4352
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4353
	}
4354 4355 4356
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
B
Ben Widawsky 已提交
4357
		i915_gem_object_ggtt_unpin(obj);
J
Jesse Barnes 已提交
4358
	}
4359

4360
out:
4361
	drm_gem_object_unreference(&obj->base);
4362
unlock:
4363
	mutex_unlock(&dev->struct_mutex);
4364
	return ret;
4365 4366 4367 4368
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4369
		    struct drm_file *file)
4370 4371
{
	struct drm_i915_gem_busy *args = data;
4372
	struct drm_i915_gem_object *obj;
4373 4374
	int ret;

4375
	ret = i915_mutex_lock_interruptible(dev);
4376
	if (ret)
4377
		return ret;
4378

4379
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4380
	if (&obj->base == NULL) {
4381 4382
		ret = -ENOENT;
		goto unlock;
4383
	}
4384

4385 4386 4387 4388
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4389
	 */
4390
	ret = i915_gem_object_flush_active(obj);
4391

4392
	args->busy = obj->active;
4393 4394 4395 4396
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4397

4398
	drm_gem_object_unreference(&obj->base);
4399
unlock:
4400
	mutex_unlock(&dev->struct_mutex);
4401
	return ret;
4402 4403 4404 4405 4406 4407
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4408
	return i915_gem_ring_throttle(dev, file_priv);
4409 4410
}

4411 4412 4413 4414
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4415
	struct drm_i915_private *dev_priv = dev->dev_private;
4416
	struct drm_i915_gem_madvise *args = data;
4417
	struct drm_i915_gem_object *obj;
4418
	int ret;
4419 4420 4421 4422 4423 4424 4425 4426 4427

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4428 4429 4430 4431
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4432
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4433
	if (&obj->base == NULL) {
4434 4435
		ret = -ENOENT;
		goto unlock;
4436 4437
	}

B
Ben Widawsky 已提交
4438
	if (i915_gem_obj_is_pinned(obj)) {
4439 4440
		ret = -EINVAL;
		goto out;
4441 4442
	}

4443 4444 4445 4446 4447 4448 4449 4450 4451
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4452 4453
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4454

C
Chris Wilson 已提交
4455 4456
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4457 4458
		i915_gem_object_truncate(obj);

4459
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4460

4461
out:
4462
	drm_gem_object_unreference(&obj->base);
4463
unlock:
4464
	mutex_unlock(&dev->struct_mutex);
4465
	return ret;
4466 4467
}

4468 4469
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4470
{
4471
	INIT_LIST_HEAD(&obj->global_list);
4472
	INIT_LIST_HEAD(&obj->ring_list);
4473
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4474
	INIT_LIST_HEAD(&obj->vma_list);
4475

4476 4477
	obj->ops = ops;

4478 4479 4480 4481 4482 4483
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4484 4485 4486 4487 4488
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4489 4490
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4491
{
4492
	struct drm_i915_gem_object *obj;
4493
	struct address_space *mapping;
D
Daniel Vetter 已提交
4494
	gfp_t mask;
4495

4496
	obj = i915_gem_object_alloc(dev);
4497 4498
	if (obj == NULL)
		return NULL;
4499

4500
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4501
		i915_gem_object_free(obj);
4502 4503
		return NULL;
	}
4504

4505 4506 4507 4508 4509 4510 4511
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4512
	mapping = file_inode(obj->base.filp)->i_mapping;
4513
	mapping_set_gfp_mask(mapping, mask);
4514

4515
	i915_gem_object_init(obj, &i915_gem_object_ops);
4516

4517 4518
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4519

4520 4521
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4537 4538
	trace_i915_gem_object_create(obj);

4539
	return obj;
4540 4541
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4566
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4567
{
4568
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4569
	struct drm_device *dev = obj->base.dev;
4570
	struct drm_i915_private *dev_priv = dev->dev_private;
4571
	struct i915_vma *vma, *next;
4572

4573 4574
	intel_runtime_pm_get(dev_priv);

4575 4576
	trace_i915_gem_object_destroy(obj);

4577
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4578 4579 4580 4581
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4582 4583
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4584

4585 4586
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4587

4588
			WARN_ON(i915_vma_unbind(vma));
4589

4590 4591
			dev_priv->mm.interruptible = was_interruptible;
		}
4592 4593
	}

B
Ben Widawsky 已提交
4594 4595 4596 4597 4598
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4599 4600
	WARN_ON(obj->frontbuffer_bits);

4601 4602 4603 4604 4605
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4606 4607
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4608
	if (discard_backing_storage(obj))
4609
		obj->madv = I915_MADV_DONTNEED;
4610
	i915_gem_object_put_pages(obj);
4611
	i915_gem_object_free_mmap_offset(obj);
4612

4613 4614
	BUG_ON(obj->pages);

4615 4616
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4617

4618 4619 4620
	if (obj->ops->release)
		obj->ops->release(obj);

4621 4622
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4623

4624
	kfree(obj->bit_17);
4625
	i915_gem_object_free(obj);
4626 4627

	intel_runtime_pm_put(dev_priv);
4628 4629
}

4630
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4631
				     struct i915_address_space *vm)
4632 4633 4634 4635 4636 4637 4638 4639 4640
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4641 4642
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4643
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4644
	WARN_ON(vma->node.allocated);
4645 4646 4647 4648 4649

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4650 4651
	vm = vma->vm;

4652 4653
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4654

4655
	list_del(&vma->vma_link);
4656

B
Ben Widawsky 已提交
4657 4658 4659
	kfree(vma);
}

4660 4661 4662 4663
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4664
	struct intel_engine_cs *ring;
4665 4666 4667
	int i;

	for_each_ring(ring, dev_priv, i)
4668
		dev_priv->gt.stop_ring(ring);
4669 4670
}

4671
int
4672
i915_gem_suspend(struct drm_device *dev)
4673
{
4674
	struct drm_i915_private *dev_priv = dev->dev_private;
4675
	int ret = 0;
4676

4677
	mutex_lock(&dev->struct_mutex);
4678
	ret = i915_gpu_idle(dev);
4679
	if (ret)
4680
		goto err;
4681

4682
	i915_gem_retire_requests(dev);
4683

4684
	/* Under UMS, be paranoid and evict. */
4685
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4686
		i915_gem_evict_everything(dev);
4687

4688
	i915_gem_stop_ringbuffers(dev);
4689 4690 4691
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4692
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4693
	flush_delayed_work(&dev_priv->mm.idle_work);
4694

4695
	return 0;
4696 4697 4698 4699

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4700 4701
}

4702
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4703
{
4704
	struct drm_device *dev = ring->dev;
4705
	struct drm_i915_private *dev_priv = dev->dev_private;
4706 4707
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4708
	int i, ret;
B
Ben Widawsky 已提交
4709

4710
	if (!HAS_L3_DPF(dev) || !remap_info)
4711
		return 0;
B
Ben Widawsky 已提交
4712

4713 4714 4715
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4716

4717 4718 4719 4720 4721
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4722
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4723 4724 4725
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4726 4727
	}

4728
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4729

4730
	return ret;
B
Ben Widawsky 已提交
4731 4732
}

4733 4734
void i915_gem_init_swizzling(struct drm_device *dev)
{
4735
	struct drm_i915_private *dev_priv = dev->dev_private;
4736

4737
	if (INTEL_INFO(dev)->gen < 5 ||
4738 4739 4740 4741 4742 4743
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4744 4745 4746
	if (IS_GEN5(dev))
		return;

4747 4748
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4749
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4750
	else if (IS_GEN7(dev))
4751
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4752 4753
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4754 4755
	else
		BUG();
4756
}
D
Daniel Vetter 已提交
4757

4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4801
int i915_gem_init_rings(struct drm_device *dev)
4802
{
4803
	struct drm_i915_private *dev_priv = dev->dev_private;
4804
	int ret;
4805

4806 4807 4808 4809 4810 4811 4812 4813
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4814
	ret = intel_init_render_ring_buffer(dev);
4815
	if (ret)
4816
		return ret;
4817 4818

	if (HAS_BSD(dev)) {
4819
		ret = intel_init_bsd_ring_buffer(dev);
4820 4821
		if (ret)
			goto cleanup_render_ring;
4822
	}
4823

4824
	if (intel_enable_blt(dev)) {
4825 4826 4827 4828 4829
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4830 4831 4832 4833 4834 4835
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4836 4837 4838 4839 4840
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4841

4842
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4843
	if (ret)
4844
		goto cleanup_bsd2_ring;
4845 4846 4847

	return 0;

4848 4849
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4850 4851
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4865
	struct drm_i915_private *dev_priv = dev->dev_private;
4866
	int ret, i;
4867 4868 4869 4870

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4871
	if (dev_priv->ellc_size)
4872
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4873

4874 4875 4876
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4877

4878
	if (HAS_PCH_NOP(dev)) {
4879 4880 4881 4882 4883 4884 4885 4886 4887
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4888 4889
	}

4890 4891
	i915_gem_init_swizzling(dev);

4892
	ret = dev_priv->gt.init_rings(dev);
4893 4894 4895
	if (ret)
		return ret;

4896 4897 4898
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4899
	/*
4900 4901 4902 4903 4904
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4905
	 */
4906
	ret = i915_gem_context_enable(dev_priv);
4907
	if (ret && ret != -EIO) {
4908
		DRM_ERROR("Context enable failed %d\n", ret);
4909
		i915_gem_cleanup_ringbuffer(dev);
4910 4911 4912 4913 4914 4915 4916 4917

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4918
	}
D
Daniel Vetter 已提交
4919

4920
	return ret;
4921 4922
}

4923 4924 4925 4926 4927
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4928 4929 4930
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4931
	mutex_lock(&dev->struct_mutex);
4932 4933 4934

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4935 4936 4937
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4938 4939 4940
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4941 4942 4943 4944 4945
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4946 4947 4948 4949 4950
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4951 4952
	}

4953 4954 4955 4956 4957 4958
	ret = i915_gem_init_userptr(dev);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

4959
	i915_gem_init_global_gtt(dev);
4960

4961
	ret = i915_gem_context_init(dev);
4962 4963
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4964
		return ret;
4965
	}
4966

4967
	ret = i915_gem_init_hw(dev);
4968 4969 4970 4971 4972 4973 4974 4975
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4976
	}
4977
	mutex_unlock(&dev->struct_mutex);
4978

4979
	return ret;
4980 4981
}

4982 4983 4984
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4985
	struct drm_i915_private *dev_priv = dev->dev_private;
4986
	struct intel_engine_cs *ring;
4987
	int i;
4988

4989
	for_each_ring(ring, dev_priv, i)
4990
		dev_priv->gt.cleanup_ring(ring);
4991 4992
}

4993
static void
4994
init_ring_lists(struct intel_engine_cs *ring)
4995 4996 4997 4998 4999
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5000 5001
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5002
{
5003 5004
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5005 5006 5007 5008
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5009
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5010 5011
}

5012 5013 5014
void
i915_gem_load(struct drm_device *dev)
{
5015
	struct drm_i915_private *dev_priv = dev->dev_private;
5016 5017 5018 5019 5020 5021 5022
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5023

B
Ben Widawsky 已提交
5024 5025 5026
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5027
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5028 5029
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5030
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5031 5032
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5033
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5034
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5035 5036
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5037 5038
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5039
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5040

5041
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5042
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5043 5044
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5045 5046
	}

5047 5048
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5049
	/* Old X drivers will take 0-2 for front, back, depth buffers */
5050 5051
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
5052

5053 5054 5055
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5056 5057 5058 5059
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5060
	/* Initialize fence registers to zero */
5061 5062
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5063

5064
	i915_gem_detect_bit_6_swizzle(dev);
5065
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5066

5067 5068
	dev_priv->mm.interruptible = true;

5069 5070 5071 5072
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5073 5074 5075

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5076 5077

	mutex_init(&dev_priv->fb_tracking.lock);
5078
}
5079

5080
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5081
{
5082
	struct drm_i915_file_private *file_priv = file->driver_priv;
5083

5084 5085
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5086 5087 5088 5089
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5090
	spin_lock(&file_priv->mm.lock);
5091 5092 5093 5094 5095 5096 5097 5098 5099
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5100
	spin_unlock(&file_priv->mm.lock);
5101
}
5102

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5115
	int ret;
5116 5117 5118 5119 5120 5121 5122 5123 5124

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5125
	file_priv->file = file;
5126 5127 5128 5129 5130 5131

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5132 5133 5134
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5135

5136
	return ret;
5137 5138
}

5139 5140 5141 5142 5143 5144 5145 5146 5147
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5206
static unsigned long
5207
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5208
{
5209
	struct drm_i915_private *dev_priv =
5210
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5211
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5212
	struct drm_i915_gem_object *obj;
5213
	unsigned long count;
5214
	bool unlock;
5215

5216 5217
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5218

5219
	count = 0;
5220
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5221
		if (obj->pages_pin_count == 0)
5222
			count += obj->base.size >> PAGE_SHIFT;
5223 5224

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5225 5226
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5227
			count += obj->base.size >> PAGE_SHIFT;
5228
	}
5229

5230 5231
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5232

5233
	return count;
5234
}
5235 5236 5237 5238 5239 5240 5241 5242

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5243
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5244 5245 5246 5247 5248 5249

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5250 5251
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5252 5253 5254 5255 5256 5257 5258 5259 5260
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5261
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5262 5263 5264 5265 5266 5267 5268
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5269
	struct i915_vma *vma;
5270

5271 5272
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5284
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5295
static unsigned long
5296
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5297 5298
{
	struct drm_i915_private *dev_priv =
5299
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5300 5301
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5302
	bool unlock;
5303

5304 5305
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5306

5307 5308 5309 5310 5311
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5312
	if (freed < sc->nr_to_scan)
5313 5314 5315 5316
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5317 5318
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5319

5320 5321
	return freed;
}
5322

5323 5324 5325 5326 5327 5328 5329 5330
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5331
	unsigned long pinned, bound, unbound, freed_pages;
5332 5333 5334
	bool was_interruptible;
	bool unlock;

5335
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5336
		schedule_timeout_killable(1);
5337 5338 5339
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5340 5341 5342 5343 5344 5345 5346 5347
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5348
	freed_pages = i915_gem_shrink_all(dev_priv);
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5379 5380 5381
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5382 5383 5384 5385 5386
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5387
	*(unsigned long *)ptr += freed_pages;
5388 5389 5390
	return NOTIFY_DONE;
}

5391 5392 5393 5394 5395
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5396
	if (vma->vm != i915_obj_to_ggtt(obj))
5397 5398 5399 5400
		return NULL;

	return vma;
}