i915_gem.c 121.3 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46

47 48 49 50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

53 54
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
55 56 57
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

58 59 60 61 62 63
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

82 83 84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
86
	spin_lock(&dev_priv->mm.object_stat_lock);
87 88
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
89
	spin_unlock(&dev_priv->mm.object_stat_lock);
90 91 92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100
}

101
static int
102
i915_gem_wait_for_error(struct i915_gpu_error *error)
103 104 105
{
	int ret;

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       10*HZ);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156
		if (i915_vma_is_pinned(vma))
157
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169 170
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172 173 174 175 176
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

194
		put_page(page);
195 196 197
		vaddr += PAGE_SIZE;
	}

198
	i915_gem_chipset_flush(to_i915(obj->base.dev));
199 200 201 202 203 204 205 206 207 208 209 210 211

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
228
	if (WARN_ON(ret)) {
229 230 231 232 233 234 235 236 237 238
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
239
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
240
		char *vaddr = obj->phys_handle->vaddr;
241 242 243
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
258
				mark_page_accessed(page);
259
			put_page(page);
260 261
			vaddr += PAGE_SIZE;
		}
262
		obj->dirty = 0;
263 264
	}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

304 305 306 307 308
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
309
	int ret;
310 311 312 313 314 315 316 317 318 319 320 321 322 323

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
324 325 326 327 328
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
329 330 331
	if (ret)
		return ret;

332 333 334 335 336 337
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
338 339 340
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
341 342 343 344 345 346 347 348 349
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
350
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
351
	int ret = 0;
352 353 354 355 356 357 358

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
359

360
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
361 362 363 364 365 366 367 368 369 370
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
371 372 373 374
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
375 376
	}

377
	drm_clflush_virt_range(vaddr, args->size);
378
	i915_gem_chipset_flush(to_i915(dev));
379 380

out:
381
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
382
	return ret;
383 384
}

385 386
void *i915_gem_object_alloc(struct drm_device *dev)
{
387
	struct drm_i915_private *dev_priv = to_i915(dev);
388
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
389 390 391 392
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
393
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
394
	kmem_cache_free(dev_priv->objects, obj);
395 396
}

397 398 399 400 401
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
402
{
403
	struct drm_i915_gem_object *obj;
404 405
	int ret;
	u32 handle;
406

407
	size = roundup(size, PAGE_SIZE);
408 409
	if (size == 0)
		return -EINVAL;
410 411

	/* Allocate the new object */
412
	obj = i915_gem_object_create(dev, size);
413 414
	if (IS_ERR(obj))
		return PTR_ERR(obj);
415

416
	ret = drm_gem_handle_create(file, &obj->base, &handle);
417
	/* drop reference from allocate - handle holds it now */
418
	i915_gem_object_put_unlocked(obj);
419 420
	if (ret)
		return ret;
421

422
	*handle_p = handle;
423 424 425
	return 0;
}

426 427 428 429 430 431
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
432
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
433 434
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
435
			       args->size, &args->handle);
436 437 438 439
}

/**
 * Creates a new mm object and returns a handle to it.
440 441 442
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
443 444 445 446 447 448
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
449

450
	return i915_gem_create(file, dev,
451
			       args->size, &args->handle);
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480
static inline int
481 482
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

518
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
519 520
		return -EINVAL;

521 522 523 524
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

543 544 545
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
546
static int
547 548 549 550 551 552 553
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

554
	if (unlikely(page_do_bit17_swizzling))
555 556 557 558 559 560 561 562 563 564 565
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

566
	return ret ? -EFAULT : 0;
567 568
}

569 570 571 572
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
573
	if (unlikely(swizzled)) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

591 592 593 594 595 596 597 598 599 600 601 602
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
603 604 605
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
606 607 608 609 610 611 612 613 614 615 616

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

617
	return ret ? - EFAULT : 0;
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
647
	struct drm_i915_private *dev_priv = to_i915(dev);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

756
static int
757 758 759 760
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
761
{
762
	char __user *user_data;
763
	ssize_t remain;
764
	loff_t offset;
765
	int shmem_page_offset, page_length, ret = 0;
766
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
767
	int prefaulted = 0;
768
	int needs_clflush = 0;
769
	struct sg_page_iter sg_iter;
770

771
	if (!i915_gem_object_has_struct_page(obj))
772 773
		return -ENODEV;

774
	user_data = u64_to_user_ptr(args->data_ptr);
775 776
	remain = args->size;

777
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
778

779
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
780 781 782
	if (ret)
		return ret;

783
	offset = args->offset;
784

785 786
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
787
		struct page *page = sg_page_iter_page(&sg_iter);
788 789 790 791

		if (remain <= 0)
			break;

792 793 794 795 796
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
797
		shmem_page_offset = offset_in_page(offset);
798 799 800 801
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

802 803 804
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

805 806 807 808 809
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
810 811 812

		mutex_unlock(&dev->struct_mutex);

813
		if (likely(!i915.prefault_disable) && !prefaulted) {
814
			ret = fault_in_multipages_writeable(user_data, remain);
815 816 817 818 819 820 821
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
822

823 824 825
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
826

827
		mutex_lock(&dev->struct_mutex);
828 829

		if (ret)
830 831
			goto out;

832
next_page:
833
		remain -= page_length;
834
		user_data += page_length;
835 836 837
		offset += page_length;
	}

838
out:
839 840
	i915_gem_object_unpin_pages(obj);

841 842 843
	return ret;
}

844 845
/**
 * Reads data from the object referenced by handle.
846 847 848
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
849 850 851 852 853
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
854
		     struct drm_file *file)
855 856
{
	struct drm_i915_gem_pread *args = data;
857
	struct drm_i915_gem_object *obj;
858
	int ret = 0;
859

860 861 862 863
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
864
		       u64_to_user_ptr(args->data_ptr),
865 866 867
		       args->size))
		return -EFAULT;

868
	ret = i915_mutex_lock_interruptible(dev);
869
	if (ret)
870
		return ret;
871

872 873
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
874 875
		ret = -ENOENT;
		goto unlock;
876
	}
877

878
	/* Bounds check source.  */
879 880
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
881
		ret = -EINVAL;
882
		goto out;
C
Chris Wilson 已提交
883 884
	}

C
Chris Wilson 已提交
885 886
	trace_i915_gem_object_pread(obj, args->offset, args->size);

887
	ret = i915_gem_shmem_pread(dev, obj, args, file);
888

889
	/* pread for non shmem backed objects */
890 891
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
892 893
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
894 895
		intel_runtime_pm_put(to_i915(dev));
	}
896

897
out:
898
	i915_gem_object_put(obj);
899
unlock:
900
	mutex_unlock(&dev->struct_mutex);
901
	return ret;
902 903
}

904 905
/* This is the fast write path which cannot handle
 * page faults in the source data
906
 */
907 908 909 910 911 912

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
913
{
914 915
	void __iomem *vaddr_atomic;
	void *vaddr;
916
	unsigned long unwritten;
917

P
Peter Zijlstra 已提交
918
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
919 920 921
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
922
						      user_data, length);
P
Peter Zijlstra 已提交
923
	io_mapping_unmap_atomic(vaddr_atomic);
924
	return unwritten;
925 926
}

927 928 929
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
930
 * @i915: i915 device private data
931 932 933
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
934
 */
935
static int
936
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
937
			 struct drm_i915_gem_object *obj,
938
			 struct drm_i915_gem_pwrite *args,
939
			 struct drm_file *file)
940
{
941
	struct i915_ggtt *ggtt = &i915->ggtt;
942
	struct drm_device *dev = obj->base.dev;
943 944
	struct drm_mm_node node;
	uint64_t remain, offset;
945
	char __user *user_data;
946
	int ret;
947 948 949 950
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
951

952
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
968 969 970
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
971
	}
D
Daniel Vetter 已提交
972 973 974 975 976

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

977
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
978
	obj->dirty = true;
979

980 981 982 983
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
984 985
		/* Operation in this page
		 *
986 987 988
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
989
		 */
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1003
		/* If we get a fault while copying data, then (presumably) our
1004 1005
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1006 1007
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1008
		 */
1009
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1010
				    page_offset, user_data, page_length)) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1023
		}
1024

1025 1026 1027
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1028 1029
	}

1030
out_flush:
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1044
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1045
out_unpin:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1056
out:
1057
	return ret;
1058 1059
}

1060 1061 1062 1063
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1064
static int
1065 1066 1067 1068 1069
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1070
{
1071
	char *vaddr;
1072
	int ret;
1073

1074
	if (unlikely(page_do_bit17_swizzling))
1075
		return -EINVAL;
1076

1077 1078 1079 1080
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1081 1082
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1083 1084 1085 1086
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1087

1088
	return ret ? -EFAULT : 0;
1089 1090
}

1091 1092
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1093
static int
1094 1095 1096 1097 1098
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1099
{
1100 1101
	char *vaddr;
	int ret;
1102

1103
	vaddr = kmap(page);
1104
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1105 1106 1107
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1108 1109
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1110 1111
						user_data,
						page_length);
1112 1113 1114 1115 1116
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1117 1118 1119
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1120
	kunmap(page);
1121

1122
	return ret ? -EFAULT : 0;
1123 1124 1125
}

static int
1126 1127 1128 1129
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1130 1131
{
	ssize_t remain;
1132 1133
	loff_t offset;
	char __user *user_data;
1134
	int shmem_page_offset, page_length, ret = 0;
1135
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1136
	int hit_slowpath = 0;
1137 1138
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1139
	struct sg_page_iter sg_iter;
1140

1141
	user_data = u64_to_user_ptr(args->data_ptr);
1142 1143
	remain = args->size;

1144
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1145

1146 1147 1148 1149
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1150 1151 1152 1153 1154
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1155
		needs_clflush_after = cpu_write_needs_clflush(obj);
1156
	}
1157 1158 1159 1160 1161
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1162

1163 1164 1165 1166
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1167
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1168

1169 1170
	i915_gem_object_pin_pages(obj);

1171
	offset = args->offset;
1172
	obj->dirty = 1;
1173

1174 1175
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1176
		struct page *page = sg_page_iter_page(&sg_iter);
1177
		int partial_cacheline_write;
1178

1179 1180 1181
		if (remain <= 0)
			break;

1182 1183 1184 1185 1186
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1187
		shmem_page_offset = offset_in_page(offset);
1188 1189 1190 1191 1192

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1193 1194 1195 1196 1197 1198 1199
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1200 1201 1202
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1203 1204 1205 1206 1207 1208
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1209 1210 1211

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1212 1213 1214 1215
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1216

1217
		mutex_lock(&dev->struct_mutex);
1218 1219

		if (ret)
1220 1221
			goto out;

1222
next_page:
1223
		remain -= page_length;
1224
		user_data += page_length;
1225
		offset += page_length;
1226 1227
	}

1228
out:
1229 1230
	i915_gem_object_unpin_pages(obj);

1231
	if (hit_slowpath) {
1232 1233 1234 1235 1236 1237 1238
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1239
			if (i915_gem_clflush_object(obj, obj->pin_display))
1240
				needs_clflush_after = true;
1241
		}
1242
	}
1243

1244
	if (needs_clflush_after)
1245
		i915_gem_chipset_flush(to_i915(dev));
1246 1247
	else
		obj->cache_dirty = true;
1248

1249
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1250
	return ret;
1251 1252 1253 1254
}

/**
 * Writes data to the object referenced by handle.
1255 1256 1257
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1258 1259 1260 1261 1262
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1263
		      struct drm_file *file)
1264
{
1265
	struct drm_i915_private *dev_priv = to_i915(dev);
1266
	struct drm_i915_gem_pwrite *args = data;
1267
	struct drm_i915_gem_object *obj;
1268 1269 1270 1271 1272 1273
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1274
		       u64_to_user_ptr(args->data_ptr),
1275 1276 1277
		       args->size))
		return -EFAULT;

1278
	if (likely(!i915.prefault_disable)) {
1279
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1280 1281 1282 1283
						   args->size);
		if (ret)
			return -EFAULT;
	}
1284

1285 1286
	intel_runtime_pm_get(dev_priv);

1287
	ret = i915_mutex_lock_interruptible(dev);
1288
	if (ret)
1289
		goto put_rpm;
1290

1291 1292
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1293 1294
		ret = -ENOENT;
		goto unlock;
1295
	}
1296

1297
	/* Bounds check destination. */
1298 1299
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1300
		ret = -EINVAL;
1301
		goto out;
C
Chris Wilson 已提交
1302 1303
	}

C
Chris Wilson 已提交
1304 1305
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1306
	ret = -EFAULT;
1307 1308 1309 1310 1311 1312
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1313 1314
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1315
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1316 1317 1318
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1319
	}
1320

1321
	if (ret == -EFAULT || ret == -ENOSPC) {
1322 1323
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1324
		else if (i915_gem_object_has_struct_page(obj))
1325
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1326 1327
		else
			ret = -ENODEV;
1328
	}
1329

1330
out:
1331
	i915_gem_object_put(obj);
1332
unlock:
1333
	mutex_unlock(&dev->struct_mutex);
1334 1335 1336
put_rpm:
	intel_runtime_pm_put(dev_priv);

1337 1338 1339
	return ret;
}

1340 1341 1342
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1343 1344
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1345
 */
1346
int
1347 1348 1349
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1350
	struct reservation_object *resv;
C
Chris Wilson 已提交
1351 1352 1353
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx, ret;
1354

C
Chris Wilson 已提交
1355 1356 1357 1358 1359
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = obj->active;
1360
	} else {
C
Chris Wilson 已提交
1361 1362 1363
		active_mask = 1;
		active = &obj->last_write;
	}
1364

C
Chris Wilson 已提交
1365
	for_each_active(active_mask, idx) {
1366 1367
		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
C
Chris Wilson 已提交
1368 1369
		if (ret)
			return ret;
1370 1371
	}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1382 1383 1384
	return 0;
}

1385 1386 1387 1388 1389
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1390
					    struct intel_rps_client *rps,
1391 1392 1393
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1394
	struct drm_i915_private *dev_priv = to_i915(dev);
1395
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
C
Chris Wilson 已提交
1396 1397
	struct i915_gem_active *active;
	unsigned long active_mask;
1398
	int ret, i, n = 0;
1399 1400 1401 1402

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

C
Chris Wilson 已提交
1403 1404
	active_mask = obj->active;
	if (!active_mask)
1405 1406
		return 0;

C
Chris Wilson 已提交
1407 1408
	if (!readonly) {
		active = obj->last_read;
1409
	} else {
C
Chris Wilson 已提交
1410 1411 1412
		active_mask = 1;
		active = &obj->last_write;
	}
1413

C
Chris Wilson 已提交
1414 1415
	for_each_active(active_mask, i) {
		struct drm_i915_gem_request *req;
1416

C
Chris Wilson 已提交
1417 1418 1419
		req = i915_gem_active_get(&active[i],
					  &obj->base.dev->struct_mutex);
		if (req)
1420
			requests[n++] = req;
1421 1422
	}

1423
	mutex_unlock(&dev->struct_mutex);
1424
	ret = 0;
1425
	for (i = 0; ret == 0 && i < n; i++)
1426
		ret = i915_wait_request(requests[i], true, NULL, rps);
1427 1428
	mutex_lock(&dev->struct_mutex);

1429
	for (i = 0; i < n; i++)
1430
		i915_gem_request_put(requests[i]);
1431 1432

	return ret;
1433 1434
}

1435 1436 1437 1438 1439 1440
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1441 1442 1443 1444 1445 1446 1447
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1448
/**
1449 1450
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1451 1452 1453
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1454 1455 1456
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1457
			  struct drm_file *file)
1458 1459
{
	struct drm_i915_gem_set_domain *args = data;
1460
	struct drm_i915_gem_object *obj;
1461 1462
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1463 1464
	int ret;

1465
	/* Only handle setting domains to types used by the CPU. */
1466
	if (write_domain & I915_GEM_GPU_DOMAINS)
1467 1468
		return -EINVAL;

1469
	if (read_domains & I915_GEM_GPU_DOMAINS)
1470 1471 1472 1473 1474 1475 1476 1477
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1478
	ret = i915_mutex_lock_interruptible(dev);
1479
	if (ret)
1480
		return ret;
1481

1482 1483
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1484 1485
		ret = -ENOENT;
		goto unlock;
1486
	}
1487

1488 1489 1490 1491
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1492
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1493
							  to_rps_client(file),
1494
							  !write_domain);
1495 1496 1497
	if (ret)
		goto unref;

1498
	if (read_domains & I915_GEM_DOMAIN_GTT)
1499
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1500
	else
1501
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1502

1503
	if (write_domain != 0)
1504
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1505

1506
unref:
1507
	i915_gem_object_put(obj);
1508
unlock:
1509 1510 1511 1512 1513 1514
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1515 1516 1517
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1518 1519 1520
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1521
			 struct drm_file *file)
1522 1523
{
	struct drm_i915_gem_sw_finish *args = data;
1524
	struct drm_i915_gem_object *obj;
1525 1526
	int ret = 0;

1527
	ret = i915_mutex_lock_interruptible(dev);
1528
	if (ret)
1529
		return ret;
1530

1531 1532
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1533 1534
		ret = -ENOENT;
		goto unlock;
1535 1536 1537
	}

	/* Pinned buffers may be scanout, so flush the cache */
1538
	if (obj->pin_display)
1539
		i915_gem_object_flush_cpu_write_domain(obj);
1540

1541
	i915_gem_object_put(obj);
1542
unlock:
1543 1544 1545 1546 1547
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1548 1549 1550 1551 1552
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1553 1554 1555
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1566 1567 1568
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1569
		    struct drm_file *file)
1570 1571
{
	struct drm_i915_gem_mmap *args = data;
1572
	struct drm_i915_gem_object *obj;
1573 1574
	unsigned long addr;

1575 1576 1577
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1578
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1579 1580
		return -ENODEV;

1581 1582
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1583
		return -ENOENT;
1584

1585 1586 1587
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1588
	if (!obj->base.filp) {
1589
		i915_gem_object_put_unlocked(obj);
1590 1591 1592
		return -EINVAL;
	}

1593
	addr = vm_mmap(obj->base.filp, 0, args->size,
1594 1595
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1596 1597 1598 1599
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1600
		if (down_write_killable(&mm->mmap_sem)) {
1601
			i915_gem_object_put_unlocked(obj);
1602 1603
			return -EINTR;
		}
1604 1605 1606 1607 1608 1609 1610
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1611 1612

		/* This may race, but that's ok, it only gets set */
1613
		WRITE_ONCE(obj->has_wc_mmap, true);
1614
	}
1615
	i915_gem_object_put_unlocked(obj);
1616 1617 1618 1619 1620 1621 1622 1623
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1624 1625
/**
 * i915_gem_fault - fault a page into the GTT
1626 1627
 * @vma: VMA in question
 * @vmf: fault info
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1642 1643
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1644 1645
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1646
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1647 1648 1649
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1650
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1651

1652 1653
	intel_runtime_pm_get(dev_priv);

1654 1655 1656 1657
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1658 1659 1660
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1661

C
Chris Wilson 已提交
1662 1663
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1664 1665 1666 1667 1668 1669 1670 1671 1672
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1673 1674
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1675
		ret = -EFAULT;
1676 1677 1678
		goto unlock;
	}

1679
	/* Use a partial view if the object is bigger than the aperture. */
1680
	if (obj->base.size >= ggtt->mappable_end &&
1681
	    obj->tiling_mode == I915_TILING_NONE) {
1682
		static const unsigned int chunk_size = 256; // 1 MiB
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1695
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1696 1697
	if (ret)
		goto unlock;
1698

1699 1700 1701
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1702

1703
	ret = i915_gem_object_get_fence(obj);
1704
	if (ret)
1705
		goto unpin;
1706

1707
	/* Finally, remap it using the new GTT offset */
1708
	pfn = ggtt->mappable_base +
1709
		i915_gem_obj_ggtt_offset_view(obj, &view);
1710
	pfn >>= PAGE_SHIFT;
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1721

1722 1723
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1724 1725 1726 1727 1728
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1750
unpin:
1751
	i915_gem_object_ggtt_unpin_view(obj, &view);
1752
unlock:
1753
	mutex_unlock(&dev->struct_mutex);
1754
out:
1755
	switch (ret) {
1756
	case -EIO:
1757 1758 1759 1760 1761 1762 1763
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1764 1765 1766
			ret = VM_FAULT_SIGBUS;
			break;
		}
1767
	case -EAGAIN:
D
Daniel Vetter 已提交
1768 1769 1770 1771
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1772
		 */
1773 1774
	case 0:
	case -ERESTARTSYS:
1775
	case -EINTR:
1776 1777 1778 1779 1780
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1781 1782
		ret = VM_FAULT_NOPAGE;
		break;
1783
	case -ENOMEM:
1784 1785
		ret = VM_FAULT_OOM;
		break;
1786
	case -ENOSPC:
1787
	case -EFAULT:
1788 1789
		ret = VM_FAULT_SIGBUS;
		break;
1790
	default:
1791
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1792 1793
		ret = VM_FAULT_SIGBUS;
		break;
1794
	}
1795 1796 1797

	intel_runtime_pm_put(dev_priv);
	return ret;
1798 1799
}

1800 1801 1802 1803
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1804
 * Preserve the reservation of the mmapping with the DRM core code, but
1805 1806 1807 1808 1809 1810 1811 1812 1813
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1814
void
1815
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1816
{
1817 1818 1819 1820 1821 1822
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1823 1824
	if (!obj->fault_mappable)
		return;
1825

1826 1827
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1838
	obj->fault_mappable = false;
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848 1849
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1850 1851
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1852
 * @dev_priv: i915 device
1853 1854 1855 1856 1857 1858
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1859 1860
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1861
{
1862
	u64 ggtt_size;
1863

1864 1865
	GEM_BUG_ON(size == 0);

1866
	if (INTEL_GEN(dev_priv) >= 4 ||
1867 1868
	    tiling_mode == I915_TILING_NONE)
		return size;
1869 1870

	/* Previous chips need a power-of-two fence region when tiling */
1871
	if (IS_GEN3(dev_priv))
1872
		ggtt_size = 1024*1024;
1873
	else
1874
		ggtt_size = 512*1024;
1875

1876 1877
	while (ggtt_size < size)
		ggtt_size <<= 1;
1878

1879
	return ggtt_size;
1880 1881
}

1882
/**
1883
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1884
 * @dev_priv: i915 device
1885 1886
 * @size: object size
 * @tiling_mode: tiling mode
1887
 * @fenced: is fenced alignment required or not
1888
 *
1889
 * Return the required global GTT alignment for an object, taking into account
1890
 * potential fence register mapping.
1891
 */
1892
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1893
				int tiling_mode, bool fenced)
1894
{
1895 1896
	GEM_BUG_ON(size == 0);

1897 1898 1899 1900
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1901
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1902
	    tiling_mode == I915_TILING_NONE)
1903 1904
		return 4096;

1905 1906 1907 1908
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1909
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1910 1911
}

1912 1913
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1914
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1915 1916
	int ret;

1917 1918
	dev_priv->mm.shrinker_no_lock_stealing = true;

1919 1920
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1921
		goto out;
1922 1923 1924 1925 1926 1927 1928 1929

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1930 1931 1932 1933 1934
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1935 1936
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1937
		goto out;
1938 1939

	i915_gem_shrink_all(dev_priv);
1940 1941 1942 1943 1944
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1945 1946 1947 1948 1949 1950 1951
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1952
int
1953 1954
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1955
		  uint32_t handle,
1956
		  uint64_t *offset)
1957
{
1958
	struct drm_i915_gem_object *obj;
1959 1960
	int ret;

1961
	ret = i915_mutex_lock_interruptible(dev);
1962
	if (ret)
1963
		return ret;
1964

1965 1966
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1967 1968 1969
		ret = -ENOENT;
		goto unlock;
	}
1970

1971
	if (obj->madv != I915_MADV_WILLNEED) {
1972
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1973
		ret = -EFAULT;
1974
		goto out;
1975 1976
	}

1977 1978 1979
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1980

1981
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1982

1983
out:
1984
	i915_gem_object_put(obj);
1985
unlock:
1986
	mutex_unlock(&dev->struct_mutex);
1987
	return ret;
1988 1989
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2011
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2012 2013
}

D
Daniel Vetter 已提交
2014 2015 2016
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2017
{
2018
	i915_gem_object_free_mmap_offset(obj);
2019

2020 2021
	if (obj->base.filp == NULL)
		return;
2022

D
Daniel Vetter 已提交
2023 2024 2025 2026 2027
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2028
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2029 2030
	obj->madv = __I915_MADV_PURGED;
}
2031

2032 2033 2034
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2035
{
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2050 2051
}

2052
static void
2053
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2054
{
2055 2056
	struct sgt_iter sgt_iter;
	struct page *page;
2057
	int ret;
2058

2059
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2060

C
Chris Wilson 已提交
2061
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2062
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2063 2064 2065
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2066
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2067 2068 2069
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2070 2071
	i915_gem_gtt_finish_object(obj);

2072
	if (i915_gem_object_needs_bit17_swizzle(obj))
2073 2074
		i915_gem_object_save_bit_17_swizzle(obj);

2075 2076
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2077

2078
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2079
		if (obj->dirty)
2080
			set_page_dirty(page);
2081

2082
		if (obj->madv == I915_MADV_WILLNEED)
2083
			mark_page_accessed(page);
2084

2085
		put_page(page);
2086
	}
2087
	obj->dirty = 0;
2088

2089 2090
	sg_free_table(obj->pages);
	kfree(obj->pages);
2091
}
C
Chris Wilson 已提交
2092

2093
int
2094 2095 2096 2097
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2098
	if (obj->pages == NULL)
2099 2100
		return 0;

2101 2102 2103
	if (obj->pages_pin_count)
		return -EBUSY;

2104
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2105

2106 2107 2108
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2109
	list_del(&obj->global_list);
2110

2111
	if (obj->mapping) {
2112 2113 2114 2115
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2116 2117 2118
		obj->mapping = NULL;
	}

2119
	ops->put_pages(obj);
2120
	obj->pages = NULL;
2121

2122
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2123 2124 2125 2126

	return 0;
}

2127
static int
C
Chris Wilson 已提交
2128
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2129
{
2130
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2131 2132
	int page_count, i;
	struct address_space *mapping;
2133 2134
	struct sg_table *st;
	struct scatterlist *sg;
2135
	struct sgt_iter sgt_iter;
2136
	struct page *page;
2137
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2138
	int ret;
C
Chris Wilson 已提交
2139
	gfp_t gfp;
2140

C
Chris Wilson 已提交
2141 2142 2143 2144 2145 2146 2147
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2148 2149 2150 2151
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2152
	page_count = obj->base.size / PAGE_SIZE;
2153 2154
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2155
		return -ENOMEM;
2156
	}
2157

2158 2159 2160 2161 2162
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2163
	mapping = file_inode(obj->base.filp)->i_mapping;
2164
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2165
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2166 2167 2168
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2169 2170
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2171 2172 2173 2174 2175
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2176 2177 2178 2179 2180 2181 2182 2183
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2184
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2185 2186
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2187
				goto err_pages;
I
Imre Deak 已提交
2188
			}
C
Chris Wilson 已提交
2189
		}
2190 2191 2192 2193 2194 2195 2196 2197
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2198 2199 2200 2201 2202 2203 2204 2205 2206
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2207 2208 2209

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2210
	}
2211 2212 2213 2214
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2215 2216
	obj->pages = st;

I
Imre Deak 已提交
2217 2218 2219 2220
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2221
	if (i915_gem_object_needs_bit17_swizzle(obj))
2222 2223
		i915_gem_object_do_bit_17_swizzle(obj);

2224 2225 2226 2227
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2228 2229 2230
	return 0;

err_pages:
2231
	sg_mark_end(sg);
2232 2233
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2234 2235
	sg_free_table(st);
	kfree(st);
2236 2237 2238 2239 2240 2241 2242 2243 2244

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2245 2246 2247 2248
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2249 2250
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2261
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2262 2263 2264
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2265
	if (obj->pages)
2266 2267
		return 0;

2268
	if (obj->madv != I915_MADV_WILLNEED) {
2269
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2270
		return -EFAULT;
2271 2272
	}

2273 2274
	BUG_ON(obj->pages_pin_count);

2275 2276 2277 2278
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2279
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2280 2281 2282 2283

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2284
	return 0;
2285 2286
}

2287 2288 2289 2290 2291
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2292 2293
	struct sgt_iter sgt_iter;
	struct page *page;
2294 2295
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2296 2297 2298 2299 2300 2301 2302
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2303 2304 2305 2306 2307 2308
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2309

2310 2311
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2312 2313 2314 2315 2316 2317

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2318 2319
	if (pages != stack_pages)
		drm_free_large(pages);
2320 2321 2322 2323 2324

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2337 2338 2339
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2340 2341 2342 2343 2344 2345 2346 2347
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2348
static void
2349 2350
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2351
{
2352 2353
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2354

2355
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2356 2357
}

2358
static void
2359 2360
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2361
{
2362 2363 2364
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2365

2366
	GEM_BUG_ON((obj->active & (1 << idx)) == 0);
2367

2368
	obj->active &= ~(1 << idx);
2369 2370
	if (obj->active)
		return;
2371

2372 2373 2374 2375
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2376 2377 2378
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2379

2380
	i915_gem_object_put(obj);
2381 2382
}

2383
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2384
{
2385
	unsigned long elapsed;
2386

2387
	if (ctx->hang_stats.banned)
2388 2389
		return true;

2390
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2391 2392
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2393 2394
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2395 2396 2397 2398 2399
	}

	return false;
}

2400
static void i915_set_reset_status(struct i915_gem_context *ctx,
2401
				  const bool guilty)
2402
{
2403
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2404 2405

	if (guilty) {
2406
		hs->banned = i915_context_is_banned(ctx);
2407 2408 2409 2410
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2411 2412 2413
	}
}

2414
struct drm_i915_gem_request *
2415
i915_gem_find_active_request(struct intel_engine_cs *engine)
2416
{
2417 2418
	struct drm_i915_gem_request *request;

2419 2420 2421 2422 2423 2424 2425 2426
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2427
	list_for_each_entry(request, &engine->request_list, link) {
2428
		if (i915_gem_request_completed(request))
2429
			continue;
2430

2431
		return request;
2432
	}
2433 2434 2435 2436

	return NULL;
}

2437
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2438 2439 2440 2441
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2442
	request = i915_gem_find_active_request(engine);
2443 2444 2445
	if (request == NULL)
		return;

2446
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2447

2448
	i915_set_reset_status(request->ctx, ring_hung);
2449
	list_for_each_entry_continue(request, &engine->request_list, link)
2450
		i915_set_reset_status(request->ctx, false);
2451
}
2452

2453
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2454
{
2455
	struct intel_ring *ring;
2456

2457 2458 2459 2460
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2461
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2462

2463 2464 2465 2466 2467 2468
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2469
	if (i915.enable_execlists) {
2470 2471
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2472

2473
		intel_execlists_cancel_requests(engine);
2474 2475
	}

2476 2477 2478 2479 2480 2481 2482
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2483
	if (!list_empty(&engine->request_list)) {
2484 2485
		struct drm_i915_gem_request *request;

2486 2487
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
2488
					  link);
2489

2490
		i915_gem_request_retire_upto(request);
2491
	}
2492 2493 2494 2495 2496 2497 2498 2499

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2500 2501 2502
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2503
	}
2504

2505
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2506 2507
}

2508
void i915_gem_reset(struct drm_device *dev)
2509
{
2510
	struct drm_i915_private *dev_priv = to_i915(dev);
2511
	struct intel_engine_cs *engine;
2512

2513 2514 2515 2516 2517
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2518
	for_each_engine(engine, dev_priv)
2519
		i915_gem_reset_engine_status(engine);
2520

2521
	for_each_engine(engine, dev_priv)
2522
		i915_gem_reset_engine_cleanup(engine);
2523
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2524

2525 2526
	i915_gem_context_reset(dev);

2527
	i915_gem_restore_fences(dev);
2528 2529
}

2530
static void
2531 2532
i915_gem_retire_work_handler(struct work_struct *work)
{
2533
	struct drm_i915_private *dev_priv =
2534
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2535
	struct drm_device *dev = &dev_priv->drm;
2536

2537
	/* Come back later if the device is busy... */
2538
	if (mutex_trylock(&dev->struct_mutex)) {
2539
		i915_gem_retire_requests(dev_priv);
2540
		mutex_unlock(&dev->struct_mutex);
2541
	}
2542 2543 2544 2545 2546

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2547 2548
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2549 2550
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2551
				   round_jiffies_up_relative(HZ));
2552
	}
2553
}
2554

2555 2556 2557 2558
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2559
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2560
	struct drm_device *dev = &dev_priv->drm;
2561
	struct intel_engine_cs *engine;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2584

2585
	for_each_engine(engine, dev_priv)
2586
		i915_gem_batch_pool_fini(&engine->batch_pool);
2587

2588 2589 2590
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2591

2592 2593 2594 2595
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2596
	stuck_engines = intel_kick_waiters(dev_priv);
2597 2598 2599
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2600

2601 2602 2603 2604 2605
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2606

2607 2608 2609 2610
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2611
	}
2612 2613
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2627 2628
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2629 2630 2631
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2656
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2657 2658
	int i, n = 0;
	int ret;
2659

2660 2661 2662
	if (args->flags != 0)
		return -EINVAL;

2663 2664 2665 2666
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2667 2668
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2669 2670 2671 2672
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2673
	if (!obj->active)
2674
		goto out;
2675

2676
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2677
		struct drm_i915_gem_request *req;
2678

2679 2680
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2681 2682
		if (req)
			requests[n++] = req;
2683 2684
	}

2685 2686
out:
	i915_gem_object_put(obj);
2687 2688
	mutex_unlock(&dev->struct_mutex);

2689 2690
	for (i = 0; i < n; i++) {
		if (ret == 0)
2691 2692 2693
			ret = i915_wait_request(requests[i], true,
						args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						to_rps_client(file));
2694
		i915_gem_request_put(requests[i]);
2695
	}
2696
	return ret;
2697 2698
}

2699
static int
2700
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2701
		       struct drm_i915_gem_request *from)
2702 2703 2704
{
	int ret;

2705
	if (to->engine == from->engine)
2706 2707
		return 0;

2708
	if (!i915.semaphores) {
2709 2710 2711 2712
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2713 2714 2715
		if (ret)
			return ret;
	} else {
2716
		int idx = intel_engine_sync_index(from->engine, to->engine);
2717
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2718 2719
			return 0;

2720
		trace_i915_gem_ring_sync_to(to, from);
2721
		ret = to->engine->semaphore.sync_to(to, from);
2722 2723 2724
		if (ret)
			return ret;

2725
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2726 2727 2728 2729 2730
	}

	return 0;
}

2731 2732 2733 2734
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2735
 * @to: request we are wishing to use
2736 2737
 *
 * This code is meant to abstract object synchronization with the GPU.
2738 2739 2740
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2741 2742 2743 2744 2745 2746 2747
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2748 2749 2750
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2751 2752
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2753
		     struct drm_i915_gem_request *to)
2754
{
C
Chris Wilson 已提交
2755 2756 2757
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2758

C
Chris Wilson 已提交
2759
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2760

C
Chris Wilson 已提交
2761 2762 2763
	active_mask = obj->active;
	if (!active_mask)
		return 0;
2764

C
Chris Wilson 已提交
2765 2766
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2767
	} else {
C
Chris Wilson 已提交
2768 2769
		active_mask = 1;
		active = &obj->last_write;
2770
	}
C
Chris Wilson 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2781
		ret = __i915_gem_object_sync(to, request);
2782 2783 2784
		if (ret)
			return ret;
	}
2785

2786
	return 0;
2787 2788
}

2789 2790 2791 2792 2793 2794 2795
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2796 2797 2798
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2810 2811
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2812
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2813 2814 2815 2816 2817 2818 2819 2820

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2821
int i915_vma_unbind(struct i915_vma *vma)
2822
{
2823
	struct drm_i915_gem_object *obj = vma->obj;
2824
	unsigned long active;
2825
	int ret;
2826

2827 2828 2829 2830
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2831
	if (active) {
2832 2833
		int idx;

2834 2835 2836 2837 2838
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2839
		__i915_vma_pin(vma);
2840

2841 2842 2843 2844
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2845
				break;
2846 2847
		}

2848
		__i915_vma_unpin(vma);
2849 2850 2851
		if (ret)
			return ret;

2852 2853 2854
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2855
	if (i915_vma_is_pinned(vma))
2856 2857
		return -EBUSY;

2858 2859
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2860

2861 2862
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2863

2864 2865
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2866
		i915_gem_object_finish_gtt(obj);
2867

2868 2869 2870 2871
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2872 2873

		__i915_vma_iounmap(vma);
2874
	}
2875

2876 2877 2878 2879
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2880
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2881

2882 2883 2884
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2885
	if (i915_vma_is_ggtt(vma)) {
2886 2887 2888 2889 2890 2891
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2892
		vma->ggtt_view.pages = NULL;
2893
	}
2894

B
Ben Widawsky 已提交
2895
	/* Since the unbound list is global, only move to that list if
2896
	 * no more VMAs exist. */
2897 2898 2899
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2900

2901 2902 2903 2904 2905 2906
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2907
destroy:
2908
	if (unlikely(i915_vma_is_closed(vma)))
2909 2910
		i915_vma_destroy(vma);

2911
	return 0;
2912 2913
}

2914
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
2915
{
2916
	struct intel_engine_cs *engine;
2917
	int ret;
2918

2919
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2920

2921
	for_each_engine(engine, dev_priv) {
2922 2923 2924
		if (engine->last_context == NULL)
			continue;

2925
		ret = intel_engine_idle(engine);
2926 2927 2928
		if (ret)
			return ret;
	}
2929

2930
	return 0;
2931 2932
}

2933
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2934 2935
				     unsigned long cache_level)
{
2936
	struct drm_mm_node *gtt_space = &vma->node;
2937 2938
	struct drm_mm_node *other;

2939 2940 2941 2942 2943 2944
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2945
	 */
2946
	if (vma->vm->mm.color_adjust == NULL)
2947 2948
		return true;

2949
	if (!drm_mm_node_allocated(gtt_space))
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2966
/**
2967 2968
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2969
 * @size: requested size in bytes (can be larger than the VMA)
2970
 * @alignment: required alignment
2971
 * @flags: mask of PIN_* flags to use
2972 2973 2974 2975 2976 2977 2978
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
2979
 */
2980 2981
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2982
{
2983 2984
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
2985 2986
	u64 start, end;
	u64 min_alignment;
2987
	int ret;
2988

2989
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
2990
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
		size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);

	min_alignment =
		i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
3004
		return -EINVAL;
3005
	}
3006

3007
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3008 3009

	end = vma->vm->total;
3010
	if (flags & PIN_MAPPABLE)
3011
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3012
	if (flags & PIN_ZONE_4G)
3013
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3014

3015 3016 3017
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3018
	 */
3019
	if (size > end) {
3020
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3021
			  size, obj->base.size,
3022
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3023
			  end);
3024
		return -E2BIG;
3025 3026
	}

3027
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3028
	if (ret)
3029
		return ret;
C
Chris Wilson 已提交
3030

3031 3032
	i915_gem_object_pin_pages(obj);

3033
	if (flags & PIN_OFFSET_FIXED) {
3034
		u64 offset = flags & PIN_OFFSET_MASK;
3035
		if (offset & (alignment - 1) || offset > end - size) {
3036
			ret = -EINVAL;
3037
			goto err_unpin;
3038
		}
3039

3040 3041 3042
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3043
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3044 3045 3046
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3047 3048 3049
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3050
		}
3051
	} else {
3052 3053
		u32 search_flag, alloc_flag;

3054 3055 3056 3057 3058 3059 3060
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3061

3062 3063 3064 3065 3066 3067 3068 3069 3070
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3071
search_free:
3072 3073
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3074 3075 3076 3077 3078 3079
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3080
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3081 3082 3083 3084 3085
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3086

3087
			goto err_unpin;
3088
		}
3089
	}
3090
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3091

3092
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3093
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3094
	obj->bind_count++;
3095

3096
	return 0;
B
Ben Widawsky 已提交
3097

3098
err_unpin:
B
Ben Widawsky 已提交
3099
	i915_gem_object_unpin_pages(obj);
3100
	return ret;
3101 3102
}

3103
bool
3104 3105
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3106 3107 3108 3109 3110
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3111
	if (obj->pages == NULL)
3112
		return false;
3113

3114 3115 3116 3117
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3118
	if (obj->stolen || obj->phys_handle)
3119
		return false;
3120

3121 3122 3123 3124 3125 3126 3127 3128
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3129 3130
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3131
		return false;
3132
	}
3133

C
Chris Wilson 已提交
3134
	trace_i915_gem_object_clflush(obj);
3135
	drm_clflush_sg(obj->pages);
3136
	obj->cache_dirty = false;
3137 3138

	return true;
3139 3140 3141 3142
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3143
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3144
{
C
Chris Wilson 已提交
3145 3146
	uint32_t old_write_domain;

3147
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3148 3149
		return;

3150
	/* No actual flushing is required for the GTT write domain.  Writes
3151 3152
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3153 3154 3155 3156
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3157
	 */
3158 3159
	wmb();

3160 3161
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3162

3163
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3164

C
Chris Wilson 已提交
3165
	trace_i915_gem_object_change_domain(obj,
3166
					    obj->base.read_domains,
C
Chris Wilson 已提交
3167
					    old_write_domain);
3168 3169 3170 3171
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3172
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3173
{
C
Chris Wilson 已提交
3174
	uint32_t old_write_domain;
3175

3176
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3177 3178
		return;

3179
	if (i915_gem_clflush_object(obj, obj->pin_display))
3180
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3181

3182 3183
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3184

3185
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3186

C
Chris Wilson 已提交
3187
	trace_i915_gem_object_change_domain(obj,
3188
					    obj->base.read_domains,
C
Chris Wilson 已提交
3189
					    old_write_domain);
3190 3191
}

3192 3193
/**
 * Moves a single object to the GTT read, and possibly write domain.
3194 3195
 * @obj: object to act on
 * @write: ask for write access or read only
3196 3197 3198 3199
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3200
int
3201
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3202
{
C
Chris Wilson 已提交
3203
	uint32_t old_write_domain, old_read_domains;
3204
	struct i915_vma *vma;
3205
	int ret;
3206

3207
	ret = i915_gem_object_wait_rendering(obj, !write);
3208 3209 3210
	if (ret)
		return ret;

3211 3212 3213
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3226
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3227

3228 3229 3230 3231 3232 3233 3234
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3235 3236
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3237

3238 3239 3240
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3241 3242
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3243
	if (write) {
3244 3245 3246
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3247 3248
	}

C
Chris Wilson 已提交
3249 3250 3251 3252
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3253
	/* And bump the LRU for this access */
3254
	vma = i915_gem_obj_to_ggtt(obj);
3255 3256 3257 3258
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3259

3260 3261 3262
	return 0;
}

3263 3264
/**
 * Changes the cache-level of an object across all VMA.
3265 3266
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3278 3279 3280
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3281
	struct i915_vma *vma;
3282
	int ret = 0;
3283 3284

	if (obj->cache_level == cache_level)
3285
		goto out;
3286

3287 3288 3289 3290 3291
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3292 3293
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3294 3295 3296
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3297
		if (i915_vma_is_pinned(vma)) {
3298 3299 3300 3301
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3314 3315
	}

3316 3317 3318 3319 3320 3321 3322
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3323
	if (obj->bind_count) {
3324 3325 3326 3327
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3328
		ret = i915_gem_object_wait_rendering(obj, false);
3329 3330 3331
		if (ret)
			return ret;

3332
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3349 3350 3351
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3352 3353 3354 3355 3356 3357 3358 3359
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3360 3361
		}

3362
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3363 3364 3365 3366 3367 3368 3369
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3370 3371
	}

3372
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3373 3374 3375
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3376
out:
3377 3378 3379 3380
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3381
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3382
		if (i915_gem_clflush_object(obj, true))
3383
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3384 3385 3386 3387 3388
	}

	return 0;
}

B
Ben Widawsky 已提交
3389 3390
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3391
{
B
Ben Widawsky 已提交
3392
	struct drm_i915_gem_caching *args = data;
3393 3394
	struct drm_i915_gem_object *obj;

3395 3396
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3397
		return -ENOENT;
3398

3399 3400 3401 3402 3403 3404
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3405 3406 3407 3408
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3409 3410 3411 3412
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3413

3414
	i915_gem_object_put_unlocked(obj);
3415
	return 0;
3416 3417
}

B
Ben Widawsky 已提交
3418 3419
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3420
{
3421
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3422
	struct drm_i915_gem_caching *args = data;
3423 3424 3425 3426
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3427 3428
	switch (args->caching) {
	case I915_CACHING_NONE:
3429 3430
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3431
	case I915_CACHING_CACHED:
3432 3433 3434 3435 3436 3437
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3438
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3439 3440
			return -ENODEV;

3441 3442
		level = I915_CACHE_LLC;
		break;
3443 3444 3445
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3446 3447 3448 3449
	default:
		return -EINVAL;
	}

3450 3451
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3452 3453
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3454
		goto rpm_put;
B
Ben Widawsky 已提交
3455

3456 3457
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3458 3459 3460 3461 3462 3463
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3464
	i915_gem_object_put(obj);
3465 3466
unlock:
	mutex_unlock(&dev->struct_mutex);
3467 3468 3469
rpm_put:
	intel_runtime_pm_put(dev_priv);

3470 3471 3472
	return ret;
}

3473
/*
3474 3475 3476
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3477 3478
 */
int
3479 3480
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3481
				     const struct i915_ggtt_view *view)
3482
{
3483
	u32 old_read_domains, old_write_domain;
3484 3485
	int ret;

3486 3487 3488
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3489
	obj->pin_display++;
3490

3491 3492 3493 3494 3495 3496 3497 3498 3499
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3500 3501
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3502
	if (ret)
3503
		goto err_unpin_display;
3504

3505 3506 3507 3508
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3509
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3510 3511
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3512
	if (ret)
3513
		goto err_unpin_display;
3514

3515
	i915_gem_object_flush_cpu_write_domain(obj);
3516

3517
	old_write_domain = obj->base.write_domain;
3518
	old_read_domains = obj->base.read_domains;
3519 3520 3521 3522

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3523
	obj->base.write_domain = 0;
3524
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3525 3526 3527

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3528
					    old_write_domain);
3529 3530

	return 0;
3531 3532

err_unpin_display:
3533
	obj->pin_display--;
3534 3535 3536 3537
	return ret;
}

void
3538 3539
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3540
{
3541 3542 3543
	if (WARN_ON(obj->pin_display == 0))
		return;

3544 3545
	i915_gem_object_ggtt_unpin_view(obj, view);

3546
	obj->pin_display--;
3547 3548
}

3549 3550
/**
 * Moves a single object to the CPU read, and possibly write domain.
3551 3552
 * @obj: object to act on
 * @write: requesting write or read-only access
3553 3554 3555 3556
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3557
int
3558
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3559
{
C
Chris Wilson 已提交
3560
	uint32_t old_write_domain, old_read_domains;
3561 3562
	int ret;

3563
	ret = i915_gem_object_wait_rendering(obj, !write);
3564 3565 3566
	if (ret)
		return ret;

3567 3568 3569
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3570
	i915_gem_object_flush_gtt_write_domain(obj);
3571

3572 3573
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3574

3575
	/* Flush the CPU cache if it's still invalid. */
3576
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3577
		i915_gem_clflush_object(obj, false);
3578

3579
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3580 3581 3582 3583 3584
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3585
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3586 3587 3588 3589 3590

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3591 3592
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3593
	}
3594

C
Chris Wilson 已提交
3595 3596 3597 3598
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3599 3600 3601
	return 0;
}

3602 3603 3604
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3605 3606 3607 3608
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3609 3610 3611
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3612
static int
3613
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3614
{
3615
	struct drm_i915_private *dev_priv = to_i915(dev);
3616
	struct drm_i915_file_private *file_priv = file->driver_priv;
3617
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3618
	struct drm_i915_gem_request *request, *target = NULL;
3619
	int ret;
3620

3621 3622 3623 3624
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3625 3626 3627
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3628

3629
	spin_lock(&file_priv->mm.lock);
3630
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3631 3632
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3633

3634 3635 3636 3637 3638 3639 3640
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3641
		target = request;
3642
	}
3643
	if (target)
3644
		i915_gem_request_get(target);
3645
	spin_unlock(&file_priv->mm.lock);
3646

3647
	if (target == NULL)
3648
		return 0;
3649

3650
	ret = i915_wait_request(target, true, NULL, NULL);
3651
	i915_gem_request_put(target);
3652

3653 3654 3655
	return ret;
}

3656
static bool
3657
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3658 3659 3660
{
	struct drm_i915_gem_object *obj = vma->obj;

3661 3662 3663
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3664 3665 3666 3667
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3668 3669 3670 3671 3672 3673 3674 3675 3676
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3677 3678 3679 3680
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3681 3682 3683
	return false;
}

3684 3685 3686
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3687
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3688 3689 3690
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3691
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3692 3693
					    obj->base.size,
					    obj->tiling_mode);
3694
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3695 3696 3697
						      obj->base.size,
						      obj->tiling_mode,
						      true);
3698 3699 3700 3701 3702

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3703
		    dev_priv->ggtt.mappable_end);
3704 3705 3706 3707

	obj->map_and_fenceable = mappable && fenceable;
}

3708 3709
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3710
{
3711
	unsigned int bound = vma->flags;
3712 3713
	int ret;

3714
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3715
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3716

3717 3718 3719 3720
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3721

3722
	if ((bound & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)) == 0) {
3723 3724 3725
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3726
	}
3727

3728
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3729
	if (ret)
3730
		goto err;
3731

3732
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3733
		__i915_vma_set_map_and_fenceable(vma);
3734

3735
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3736 3737
	return 0;

3738 3739 3740
err:
	__i915_vma_unpin(vma);
	return ret;
3741 3742 3743 3744 3745
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3746
			 u64 size,
3747 3748
			 u64 alignment,
			 u64 flags)
3749
{
3750 3751
	struct i915_vma *vma;
	int ret;
3752

3753
	BUG_ON(!view);
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
			return -ENOSPC;

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
		     " obj->map_and_fenceable=%d\n",
		     upper_32_bits(vma->node.start),
		     lower_32_bits(vma->node.start),
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;
	}

	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3779 3780
}

3781
void
3782 3783
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3784
{
3785
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3786

3787
	WARN_ON(!i915_vma_is_pinned(vma));
3788
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
3789

3790
	__i915_vma_unpin(vma);
3791 3792 3793 3794
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3795
		    struct drm_file *file)
3796 3797
{
	struct drm_i915_gem_busy *args = data;
3798
	struct drm_i915_gem_object *obj;
3799 3800
	int ret;

3801
	ret = i915_mutex_lock_interruptible(dev);
3802
	if (ret)
3803
		return ret;
3804

3805 3806
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3807 3808
		ret = -ENOENT;
		goto unlock;
3809
	}
3810

3811 3812
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3813
	 * become non-busy without any further actions.
3814
	 */
3815 3816
	args->busy = 0;
	if (obj->active) {
3817
		struct drm_i915_gem_request *req;
3818 3819
		int i;

3820
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3821 3822
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3823
			if (req)
3824
				args->busy |= 1 << (16 + req->engine->exec_id);
3825
		}
3826 3827
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3828 3829
		if (req)
			args->busy |= req->engine->exec_id;
3830
	}
3831

3832
	i915_gem_object_put(obj);
3833
unlock:
3834
	mutex_unlock(&dev->struct_mutex);
3835
	return ret;
3836 3837 3838 3839 3840 3841
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3842
	return i915_gem_ring_throttle(dev, file_priv);
3843 3844
}

3845 3846 3847 3848
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3849
	struct drm_i915_private *dev_priv = to_i915(dev);
3850
	struct drm_i915_gem_madvise *args = data;
3851
	struct drm_i915_gem_object *obj;
3852
	int ret;
3853 3854 3855 3856 3857 3858 3859 3860 3861

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3862 3863 3864 3865
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3866 3867
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3868 3869
		ret = -ENOENT;
		goto unlock;
3870 3871
	}

B
Ben Widawsky 已提交
3872
	if (i915_gem_obj_is_pinned(obj)) {
3873 3874
		ret = -EINVAL;
		goto out;
3875 3876
	}

3877 3878 3879 3880 3881 3882 3883 3884 3885
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3886 3887
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3888

C
Chris Wilson 已提交
3889
	/* if the object is no longer attached, discard its backing storage */
3890
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3891 3892
		i915_gem_object_truncate(obj);

3893
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3894

3895
out:
3896
	i915_gem_object_put(obj);
3897
unlock:
3898
	mutex_unlock(&dev->struct_mutex);
3899
	return ret;
3900 3901
}

3902 3903
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3904
{
3905 3906
	int i;

3907
	INIT_LIST_HEAD(&obj->global_list);
3908
	for (i = 0; i < I915_NUM_ENGINES; i++)
3909 3910 3911 3912 3913
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3914
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3915
	INIT_LIST_HEAD(&obj->vma_list);
3916
	INIT_LIST_HEAD(&obj->batch_pool_link);
3917

3918 3919
	obj->ops = ops;

3920 3921 3922
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3923
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3924 3925
}

3926
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3927
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3928 3929 3930 3931
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3932
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3933
						  size_t size)
3934
{
3935
	struct drm_i915_gem_object *obj;
3936
	struct address_space *mapping;
D
Daniel Vetter 已提交
3937
	gfp_t mask;
3938
	int ret;
3939

3940
	obj = i915_gem_object_alloc(dev);
3941
	if (obj == NULL)
3942
		return ERR_PTR(-ENOMEM);
3943

3944 3945 3946
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3947

3948 3949 3950 3951 3952 3953 3954
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
3955
	mapping = file_inode(obj->base.filp)->i_mapping;
3956
	mapping_set_gfp_mask(mapping, mask);
3957

3958
	i915_gem_object_init(obj, &i915_gem_object_ops);
3959

3960 3961
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3962

3963 3964
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3980 3981
	trace_i915_gem_object_create(obj);

3982
	return obj;
3983 3984 3985 3986 3987

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
3988 3989
}

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4014
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4015
{
4016
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4017
	struct drm_device *dev = obj->base.dev;
4018
	struct drm_i915_private *dev_priv = to_i915(dev);
4019
	struct i915_vma *vma, *next;
4020

4021 4022
	intel_runtime_pm_get(dev_priv);

4023 4024
	trace_i915_gem_object_destroy(obj);

4025 4026 4027 4028 4029 4030 4031
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4032
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4033
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4034
		GEM_BUG_ON(i915_vma_is_active(vma));
4035
		vma->flags &= ~I915_VMA_PIN_MASK;
4036
		i915_vma_close(vma);
4037
	}
4038
	GEM_BUG_ON(obj->bind_count);
4039

B
Ben Widawsky 已提交
4040 4041 4042 4043 4044
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4045 4046
	WARN_ON(obj->frontbuffer_bits);

4047 4048 4049 4050 4051
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4052 4053
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4054
	if (discard_backing_storage(obj))
4055
		obj->madv = I915_MADV_DONTNEED;
4056
	i915_gem_object_put_pages(obj);
4057

4058 4059
	BUG_ON(obj->pages);

4060 4061
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4062

4063 4064 4065
	if (obj->ops->release)
		obj->ops->release(obj);

4066 4067
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4068

4069
	kfree(obj->bit_17);
4070
	i915_gem_object_free(obj);
4071 4072

	intel_runtime_pm_put(dev_priv);
4073 4074
}

4075 4076
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4077 4078
{
	struct i915_vma *vma;
4079
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4080 4081
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4082
			return vma;
4083 4084 4085 4086 4087 4088 4089 4090
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4091

4092
	GEM_BUG_ON(!view);
4093

4094
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4095 4096
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4097
			return vma;
4098 4099 4100
	return NULL;
}

4101
static void
4102
i915_gem_stop_engines(struct drm_device *dev)
4103
{
4104
	struct drm_i915_private *dev_priv = to_i915(dev);
4105
	struct intel_engine_cs *engine;
4106

4107
	for_each_engine(engine, dev_priv)
4108
		dev_priv->gt.stop_engine(engine);
4109 4110
}

4111
int
4112
i915_gem_suspend(struct drm_device *dev)
4113
{
4114
	struct drm_i915_private *dev_priv = to_i915(dev);
4115
	int ret = 0;
4116

4117 4118
	intel_suspend_gt_powersave(dev_priv);

4119
	mutex_lock(&dev->struct_mutex);
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4133
	ret = i915_gem_wait_for_idle(dev_priv);
4134
	if (ret)
4135
		goto err;
4136

4137
	i915_gem_retire_requests(dev_priv);
4138

4139 4140 4141 4142 4143
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4144
	i915_gem_stop_engines(dev);
4145
	i915_gem_context_lost(dev_priv);
4146 4147
	mutex_unlock(&dev->struct_mutex);

4148
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4149 4150
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4151

4152 4153 4154
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4155
	WARN_ON(dev_priv->gt.awake);
4156

4157
	return 0;
4158 4159 4160 4161

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4162 4163
}

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4181 4182
void i915_gem_init_swizzling(struct drm_device *dev)
{
4183
	struct drm_i915_private *dev_priv = to_i915(dev);
4184

4185
	if (INTEL_INFO(dev)->gen < 5 ||
4186 4187 4188 4189 4190 4191
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4192 4193 4194
	if (IS_GEN5(dev))
		return;

4195 4196
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4197
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4198
	else if (IS_GEN7(dev))
4199
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4200 4201
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4202 4203
	else
		BUG();
4204
}
D
Daniel Vetter 已提交
4205

4206 4207
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4208
	struct drm_i915_private *dev_priv = to_i915(dev);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4233 4234 4235
int
i915_gem_init_hw(struct drm_device *dev)
{
4236
	struct drm_i915_private *dev_priv = to_i915(dev);
4237
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4238
	int ret;
4239

4240 4241 4242
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4243
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4244
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4245

4246 4247 4248
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4249

4250
	if (HAS_PCH_NOP(dev)) {
4251 4252 4253 4254 4255 4256 4257 4258 4259
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4260 4261
	}

4262 4263
	i915_gem_init_swizzling(dev);

4264 4265 4266 4267 4268 4269 4270 4271
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4272
	BUG_ON(!dev_priv->kernel_context);
4273

4274 4275 4276 4277 4278 4279 4280
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4281
	for_each_engine(engine, dev_priv) {
4282
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4283
		if (ret)
4284
			goto out;
D
Daniel Vetter 已提交
4285
	}
4286

4287 4288
	intel_mocs_init_l3cc_table(dev);

4289
	/* We can't enable contexts until all firmware is loaded */
4290 4291 4292
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4293

4294 4295
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4296
	return ret;
4297 4298
}

4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4320 4321
int i915_gem_init(struct drm_device *dev)
{
4322
	struct drm_i915_private *dev_priv = to_i915(dev);
4323 4324 4325
	int ret;

	mutex_lock(&dev->struct_mutex);
4326

4327
	if (!i915.enable_execlists) {
4328 4329
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4330
	} else {
4331 4332
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4333 4334
	}

4335 4336 4337 4338 4339 4340 4341 4342
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4343
	i915_gem_init_userptr(dev_priv);
4344 4345 4346 4347

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4348

4349
	ret = i915_gem_context_init(dev);
4350 4351
	if (ret)
		goto out_unlock;
4352

4353
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4354
	if (ret)
4355
		goto out_unlock;
4356

4357
	ret = i915_gem_init_hw(dev);
4358
	if (ret == -EIO) {
4359
		/* Allow engine initialisation to fail by marking the GPU as
4360 4361 4362 4363
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4364
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4365
		ret = 0;
4366
	}
4367 4368

out_unlock:
4369
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4370
	mutex_unlock(&dev->struct_mutex);
4371

4372
	return ret;
4373 4374
}

4375
void
4376
i915_gem_cleanup_engines(struct drm_device *dev)
4377
{
4378
	struct drm_i915_private *dev_priv = to_i915(dev);
4379
	struct intel_engine_cs *engine;
4380

4381
	for_each_engine(engine, dev_priv)
4382
		dev_priv->gt.cleanup_engine(engine);
4383 4384
}

4385
static void
4386
init_engine_lists(struct intel_engine_cs *engine)
4387
{
4388
	INIT_LIST_HEAD(&engine->request_list);
4389 4390
}

4391 4392 4393
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4394
	struct drm_device *dev = &dev_priv->drm;
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4405
	if (intel_vgpu_active(dev_priv))
4406 4407 4408 4409 4410 4411 4412 4413 4414
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4415
void
4416
i915_gem_load_init(struct drm_device *dev)
4417
{
4418
	struct drm_i915_private *dev_priv = to_i915(dev);
4419 4420
	int i;

4421
	dev_priv->objects =
4422 4423 4424 4425
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4426 4427 4428 4429 4430
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4431 4432 4433 4434 4435
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4436

4437
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4438 4439
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4440
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4441 4442
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4443
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4444
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4445
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4446
			  i915_gem_retire_work_handler);
4447
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4448
			  i915_gem_idle_work_handler);
4449
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4450
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4451

4452 4453
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4454
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4455

4456
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4457

4458 4459
	dev_priv->mm.interruptible = true;

4460
	mutex_init(&dev_priv->fb_tracking.lock);
4461
}
4462

4463 4464 4465 4466 4467 4468 4469 4470 4471
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4500
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4501
{
4502
	struct drm_i915_file_private *file_priv = file->driver_priv;
4503
	struct drm_i915_gem_request *request;
4504 4505 4506 4507 4508

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4509
	spin_lock(&file_priv->mm.lock);
4510
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4511
		request->file_priv = NULL;
4512
	spin_unlock(&file_priv->mm.lock);
4513

4514
	if (!list_empty(&file_priv->rps.link)) {
4515
		spin_lock(&to_i915(dev)->rps.client_lock);
4516
		list_del(&file_priv->rps.link);
4517
		spin_unlock(&to_i915(dev)->rps.client_lock);
4518
	}
4519 4520 4521 4522 4523
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4524
	int ret;
4525 4526 4527 4528 4529 4530 4531 4532

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4533
	file_priv->dev_priv = to_i915(dev);
4534
	file_priv->file = file;
4535
	INIT_LIST_HEAD(&file_priv->rps.link);
4536 4537 4538 4539

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4540
	file_priv->bsd_engine = -1;
4541

4542 4543 4544
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4545

4546
	return ret;
4547 4548
}

4549 4550
/**
 * i915_gem_track_fb - update frontbuffer tracking
4551 4552 4553
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4554 4555 4556 4557
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4575
/* All the new VM stuff */
4576 4577
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4578
{
4579
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4580 4581
	struct i915_vma *vma;

4582
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4583

4584
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4585
		if (i915_vma_is_ggtt(vma) &&
4586 4587 4588
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4589 4590
			return vma->node.start;
	}
4591

4592 4593
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4594 4595 4596
	return -1;
}

4597 4598
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4599 4600 4601
{
	struct i915_vma *vma;

4602
	list_for_each_entry(vma, &o->vma_list, obj_link)
4603 4604
		if (i915_vma_is_ggtt(vma) &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4605 4606
			return vma->node.start;

4607
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4608 4609 4610 4611 4612 4613 4614 4615
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4616
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4617
		if (i915_vma_is_ggtt(vma) &&
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4628
				  const struct i915_ggtt_view *view)
4629 4630 4631
{
	struct i915_vma *vma;

4632
	list_for_each_entry(vma, &o->vma_list, obj_link)
4633
		if (i915_vma_is_ggtt(vma) &&
4634
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4635
		    drm_mm_node_allocated(&vma->node))
4636 4637 4638 4639 4640
			return true;

	return false;
}

4641
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4642 4643 4644
{
	struct i915_vma *vma;

4645
	GEM_BUG_ON(list_empty(&o->vma_list));
4646

4647
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4648
		if (i915_vma_is_ggtt(vma) &&
4649
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4650
			return vma->node.size;
4651
	}
4652

4653 4654 4655
	return 0;
}

4656
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4657 4658
{
	struct i915_vma *vma;
4659
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4660
		if (i915_vma_is_pinned(vma))
4661
			return true;
4662

4663
	return false;
4664
}
4665

4666 4667 4668 4669 4670 4671 4672
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4673
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4674 4675 4676 4677 4678 4679 4680
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4691
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4692
	if (IS_ERR(obj))
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4706
	obj->dirty = 1;		/* Backing store is now out of date */
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4718
	i915_gem_object_put(obj);
4719 4720
	return ERR_PTR(ret);
}