i915_gem.c 131.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
521 522

		i915_gem_object_retire(obj);
523 524 525 526 527 528 529 530 531 532 533
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

534 535 536
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
537
static int
538 539 540 541 542 543 544
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

545
	if (unlikely(page_do_bit17_swizzling))
546 547 548 549 550 551 552 553 554 555 556
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

557
	return ret ? -EFAULT : 0;
558 559
}

560 561 562 563
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
564
	if (unlikely(swizzled)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

582 583 584 585 586 587 588 589 590 591 592 593
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
594 595 596
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
597 598 599 600 601 602 603 604 605 606 607

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

608
	return ret ? - EFAULT : 0;
609 610
}

611
static int
612 613 614 615
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
616
{
617
	char __user *user_data;
618
	ssize_t remain;
619
	loff_t offset;
620
	int shmem_page_offset, page_length, ret = 0;
621
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622
	int prefaulted = 0;
623
	int needs_clflush = 0;
624
	struct sg_page_iter sg_iter;
625

V
Ville Syrjälä 已提交
626
	user_data = to_user_ptr(args->data_ptr);
627 628
	remain = args->size;

629
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630

631
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 633 634
	if (ret)
		return ret;

635
	offset = args->offset;
636

637 638
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
639
		struct page *page = sg_page_iter_page(&sg_iter);
640 641 642 643

		if (remain <= 0)
			break;

644 645 646 647 648
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
649
		shmem_page_offset = offset_in_page(offset);
650 651 652 653
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

654 655 656
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

657 658 659 660 661
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
662 663 664

		mutex_unlock(&dev->struct_mutex);

665
		if (likely(!i915.prefault_disable) && !prefaulted) {
666
			ret = fault_in_multipages_writeable(user_data, remain);
667 668 669 670 671 672 673
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
674

675 676 677
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
678

679
		mutex_lock(&dev->struct_mutex);
680 681

		if (ret)
682 683
			goto out;

684
next_page:
685
		remain -= page_length;
686
		user_data += page_length;
687 688 689
		offset += page_length;
	}

690
out:
691 692
	i915_gem_object_unpin_pages(obj);

693 694 695
	return ret;
}

696 697 698 699 700 701 702
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703
		     struct drm_file *file)
704 705
{
	struct drm_i915_gem_pread *args = data;
706
	struct drm_i915_gem_object *obj;
707
	int ret = 0;
708

709 710 711 712
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
713
		       to_user_ptr(args->data_ptr),
714 715 716
		       args->size))
		return -EFAULT;

717
	ret = i915_mutex_lock_interruptible(dev);
718
	if (ret)
719
		return ret;
720

721
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722
	if (&obj->base == NULL) {
723 724
		ret = -ENOENT;
		goto unlock;
725
	}
726

727
	/* Bounds check source.  */
728 729
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
730
		ret = -EINVAL;
731
		goto out;
C
Chris Wilson 已提交
732 733
	}

734 735 736 737 738 739 740 741
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
742 743
	trace_i915_gem_object_pread(obj, args->offset, args->size);

744
	ret = i915_gem_shmem_pread(dev, obj, args, file);
745

746
out:
747
	drm_gem_object_unreference(&obj->base);
748
unlock:
749
	mutex_unlock(&dev->struct_mutex);
750
	return ret;
751 752
}

753 754
/* This is the fast write path which cannot handle
 * page faults in the source data
755
 */
756 757 758 759 760 761

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
762
{
763 764
	void __iomem *vaddr_atomic;
	void *vaddr;
765
	unsigned long unwritten;
766

P
Peter Zijlstra 已提交
767
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 769 770
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771
						      user_data, length);
P
Peter Zijlstra 已提交
772
	io_mapping_unmap_atomic(vaddr_atomic);
773
	return unwritten;
774 775
}

776 777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
780
static int
781 782
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
783
			 struct drm_i915_gem_pwrite *args,
784
			 struct drm_file *file)
785
{
786
	struct drm_i915_private *dev_priv = dev->dev_private;
787
	ssize_t remain;
788
	loff_t offset, page_base;
789
	char __user *user_data;
D
Daniel Vetter 已提交
790 791
	int page_offset, page_length, ret;

792
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
793 794 795 796 797 798 799 800 801 802
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
803

V
Ville Syrjälä 已提交
804
	user_data = to_user_ptr(args->data_ptr);
805 806
	remain = args->size;

807
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808

809 810
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

811 812 813
	while (remain > 0) {
		/* Operation in this page
		 *
814 815 816
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
817
		 */
818 819
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
820 821 822 823 824
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
825 826
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
827
		 */
B
Ben Widawsky 已提交
828
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
829 830
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
831
			goto out_flush;
D
Daniel Vetter 已提交
832
		}
833

834 835 836
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
837 838
	}

839 840
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955 956
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155 1156
	}

	return 0;
}

/*
1157
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158
 */
1159
int
1160
i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 1162 1163
{
	int ret;

1164
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 1166

	ret = 0;
1167
	if (req == req->ring->outstanding_lazy_request)
1168
		ret = i915_add_request(req->ring);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184
static int __i915_spin_request(struct drm_i915_gem_request *rq)
1185
{
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	unsigned long timeout;

	if (i915_gem_request_get_ring(rq)->irq_refcount)
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
		if (i915_gem_request_completed(rq, true))
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1198

1199 1200 1201 1202 1203 1204
		cpu_relax_lowlatency();
	}
	if (i915_gem_request_completed(rq, false))
		return 0;

	return -EAGAIN;
1205 1206
}

1207
/**
1208 1209 1210
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1211 1212 1213
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1214 1215 1216 1217 1218 1219 1220
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1221
 * Returns 0 if the request was found within the alloted time. Else returns the
1222 1223
 * errno with remaining time filled in timeout argument.
 */
1224
int __i915_wait_request(struct drm_i915_gem_request *req,
1225
			unsigned reset_counter,
1226
			bool interruptible,
1227
			s64 *timeout,
1228
			struct drm_i915_file_private *file_priv)
1229
{
1230
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1231
	struct drm_device *dev = ring->dev;
1232
	struct drm_i915_private *dev_priv = dev->dev_private;
1233 1234
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1235
	DEFINE_WAIT(wait);
1236
	unsigned long timeout_expire;
1237
	s64 before, now;
1238 1239
	int ret;

1240
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1241

1242
	if (i915_gem_request_completed(req, true))
1243 1244
		return 0;

1245 1246
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1247

1248
	if (INTEL_INFO(dev)->gen >= 6)
1249
		gen6_rps_boost(dev_priv, file_priv);
1250

1251
	/* Record current time in case interrupted by signal, or wedged */
1252
	trace_i915_gem_request_wait_begin(req);
1253
	before = ktime_get_raw_ns();
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1265 1266
	for (;;) {
		struct timer_list timer;
1267

1268 1269
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1270

1271 1272
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1273 1274 1275 1276 1277 1278 1279 1280
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1281

1282
		if (i915_gem_request_completed(req, false)) {
1283 1284 1285
			ret = 0;
			break;
		}
1286

1287 1288 1289 1290 1291
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1292
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1293 1294 1295 1296 1297 1298
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1299 1300
			unsigned long expire;

1301
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1302
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1303 1304 1305
			mod_timer(&timer, expire);
		}

1306
		io_schedule();
1307 1308 1309 1310 1311 1312

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1313 1314
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1315 1316

	finish_wait(&ring->irq_queue, &wait);
1317

1318 1319 1320 1321
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1322
	if (timeout) {
1323 1324 1325
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1336 1337
	}

1338
	return ret;
1339 1340 1341
}

/**
1342
 * Waits for a request to be signaled, and cleans up the
1343 1344 1345
 * request and object lists appropriately for that event.
 */
int
1346
i915_wait_request(struct drm_i915_gem_request *req)
1347
{
1348 1349 1350
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1351
	unsigned reset_counter;
1352 1353
	int ret;

1354 1355 1356 1357 1358 1359
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1360 1361
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1362
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1363 1364 1365
	if (ret)
		return ret;

1366
	ret = i915_gem_check_olr(req);
1367 1368 1369
	if (ret)
		return ret;

1370
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1371
	i915_gem_request_reference(req);
1372 1373
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1374 1375
	i915_gem_request_unreference(req);
	return ret;
1376 1377
}

1378
static int
1379
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1380
{
1381 1382
	if (!obj->active)
		return 0;
1383 1384 1385 1386

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1387 1388
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1389 1390
	 * we know we have passed the last write.
	 */
1391
	i915_gem_request_assign(&obj->last_write_req, NULL);
1392 1393 1394 1395

	return 0;
}

1396 1397 1398 1399 1400 1401 1402 1403
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1404
	struct drm_i915_gem_request *req;
1405 1406
	int ret;

1407 1408
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1409 1410
		return 0;

1411
	ret = i915_wait_request(req);
1412 1413 1414
	if (ret)
		return ret;

1415
	return i915_gem_object_wait_rendering__tail(obj);
1416 1417
}

1418 1419 1420 1421 1422
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1423
					    struct drm_i915_file_private *file_priv,
1424 1425
					    bool readonly)
{
1426
	struct drm_i915_gem_request *req;
1427 1428
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1429
	unsigned reset_counter;
1430 1431 1432 1433 1434
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1435 1436
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1437 1438
		return 0;

1439
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1440 1441 1442
	if (ret)
		return ret;

1443
	ret = i915_gem_check_olr(req);
1444 1445 1446
	if (ret)
		return ret;

1447
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1448
	i915_gem_request_reference(req);
1449
	mutex_unlock(&dev->struct_mutex);
1450
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1451
	mutex_lock(&dev->struct_mutex);
1452
	i915_gem_request_unreference(req);
1453 1454
	if (ret)
		return ret;
1455

1456
	return i915_gem_object_wait_rendering__tail(obj);
1457 1458
}

1459
/**
1460 1461
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1462 1463 1464
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1465
			  struct drm_file *file)
1466 1467
{
	struct drm_i915_gem_set_domain *args = data;
1468
	struct drm_i915_gem_object *obj;
1469 1470
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1471 1472
	int ret;

1473
	/* Only handle setting domains to types used by the CPU. */
1474
	if (write_domain & I915_GEM_GPU_DOMAINS)
1475 1476
		return -EINVAL;

1477
	if (read_domains & I915_GEM_GPU_DOMAINS)
1478 1479 1480 1481 1482 1483 1484 1485
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1486
	ret = i915_mutex_lock_interruptible(dev);
1487
	if (ret)
1488
		return ret;
1489

1490
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1491
	if (&obj->base == NULL) {
1492 1493
		ret = -ENOENT;
		goto unlock;
1494
	}
1495

1496 1497 1498 1499
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1500 1501 1502
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1503 1504 1505
	if (ret)
		goto unref;

1506
	if (read_domains & I915_GEM_DOMAIN_GTT)
1507
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1508
	else
1509
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1510

1511
unref:
1512
	drm_gem_object_unreference(&obj->base);
1513
unlock:
1514 1515 1516 1517 1518 1519 1520 1521 1522
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523
			 struct drm_file *file)
1524 1525
{
	struct drm_i915_gem_sw_finish *args = data;
1526
	struct drm_i915_gem_object *obj;
1527 1528
	int ret = 0;

1529
	ret = i915_mutex_lock_interruptible(dev);
1530
	if (ret)
1531
		return ret;
1532

1533
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1534
	if (&obj->base == NULL) {
1535 1536
		ret = -ENOENT;
		goto unlock;
1537 1538 1539
	}

	/* Pinned buffers may be scanout, so flush the cache */
1540
	if (obj->pin_display)
1541
		i915_gem_object_flush_cpu_write_domain(obj);
1542

1543
	drm_gem_object_unreference(&obj->base);
1544
unlock:
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1565 1566 1567
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1568
		    struct drm_file *file)
1569 1570 1571 1572 1573
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1574 1575 1576 1577 1578 1579
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1580
	obj = drm_gem_object_lookup(dev, file, args->handle);
1581
	if (obj == NULL)
1582
		return -ENOENT;
1583

1584 1585 1586 1587 1588 1589 1590 1591
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1592
	addr = vm_mmap(obj->filp, 0, args->size,
1593 1594
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1608
	drm_gem_object_unreference_unlocked(obj);
1609 1610 1611 1612 1613 1614 1615 1616
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1635 1636
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1637
	struct drm_i915_private *dev_priv = dev->dev_private;
1638 1639 1640
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1641
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1642

1643 1644
	intel_runtime_pm_get(dev_priv);

1645 1646 1647 1648
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1649 1650 1651
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1652

C
Chris Wilson 已提交
1653 1654
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1655 1656 1657 1658 1659 1660 1661 1662 1663
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1664 1665
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1666
		ret = -EFAULT;
1667 1668 1669
		goto unlock;
	}

1670
	/* Now bind it into the GTT if needed */
1671
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1672 1673
	if (ret)
		goto unlock;
1674

1675 1676 1677
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1678

1679
	ret = i915_gem_object_get_fence(obj);
1680
	if (ret)
1681
		goto unpin;
1682

1683
	/* Finally, remap it using the new GTT offset */
1684 1685
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1686

1687
	if (!obj->fault_mappable) {
1688 1689 1690
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1691 1692
		int i;

1693
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1706
unpin:
B
Ben Widawsky 已提交
1707
	i915_gem_object_ggtt_unpin(obj);
1708
unlock:
1709
	mutex_unlock(&dev->struct_mutex);
1710
out:
1711
	switch (ret) {
1712
	case -EIO:
1713 1714 1715 1716 1717 1718 1719
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1720 1721 1722
			ret = VM_FAULT_SIGBUS;
			break;
		}
1723
	case -EAGAIN:
D
Daniel Vetter 已提交
1724 1725 1726 1727
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1728
		 */
1729 1730
	case 0:
	case -ERESTARTSYS:
1731
	case -EINTR:
1732 1733 1734 1735 1736
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1737 1738
		ret = VM_FAULT_NOPAGE;
		break;
1739
	case -ENOMEM:
1740 1741
		ret = VM_FAULT_OOM;
		break;
1742
	case -ENOSPC:
1743
	case -EFAULT:
1744 1745
		ret = VM_FAULT_SIGBUS;
		break;
1746
	default:
1747
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1748 1749
		ret = VM_FAULT_SIGBUS;
		break;
1750
	}
1751 1752 1753

	intel_runtime_pm_put(dev_priv);
	return ret;
1754 1755
}

1756 1757 1758 1759
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1760
 * Preserve the reservation of the mmapping with the DRM core code, but
1761 1762 1763 1764 1765 1766 1767 1768 1769
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1770
void
1771
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1772
{
1773 1774
	if (!obj->fault_mappable)
		return;
1775

1776 1777
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1778
	obj->fault_mappable = false;
1779 1780
}

1781 1782 1783 1784 1785 1786 1787 1788 1789
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1790
uint32_t
1791
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1792
{
1793
	uint32_t gtt_size;
1794 1795

	if (INTEL_INFO(dev)->gen >= 4 ||
1796 1797
	    tiling_mode == I915_TILING_NONE)
		return size;
1798 1799 1800

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1801
		gtt_size = 1024*1024;
1802
	else
1803
		gtt_size = 512*1024;
1804

1805 1806
	while (gtt_size < size)
		gtt_size <<= 1;
1807

1808
	return gtt_size;
1809 1810
}

1811 1812 1813 1814 1815
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1816
 * potential fence register mapping.
1817
 */
1818 1819 1820
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1821 1822 1823 1824 1825
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1826
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1827
	    tiling_mode == I915_TILING_NONE)
1828 1829
		return 4096;

1830 1831 1832 1833
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1834
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1835 1836
}

1837 1838 1839 1840 1841
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1842
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1843 1844
		return 0;

1845 1846
	dev_priv->mm.shrinker_no_lock_stealing = true;

1847 1848
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1849
		goto out;
1850 1851 1852 1853 1854 1855 1856 1857

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1858 1859 1860 1861 1862
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1863 1864
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1865
		goto out;
1866 1867

	i915_gem_shrink_all(dev_priv);
1868 1869 1870 1871 1872
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1873 1874 1875 1876 1877 1878 1879
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1880
int
1881 1882
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1883
		  uint32_t handle,
1884
		  uint64_t *offset)
1885
{
1886
	struct drm_i915_private *dev_priv = dev->dev_private;
1887
	struct drm_i915_gem_object *obj;
1888 1889
	int ret;

1890
	ret = i915_mutex_lock_interruptible(dev);
1891
	if (ret)
1892
		return ret;
1893

1894
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1895
	if (&obj->base == NULL) {
1896 1897 1898
		ret = -ENOENT;
		goto unlock;
	}
1899

B
Ben Widawsky 已提交
1900
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1901
		ret = -E2BIG;
1902
		goto out;
1903 1904
	}

1905
	if (obj->madv != I915_MADV_WILLNEED) {
1906
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1907
		ret = -EFAULT;
1908
		goto out;
1909 1910
	}

1911 1912 1913
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1914

1915
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1916

1917
out:
1918
	drm_gem_object_unreference(&obj->base);
1919
unlock:
1920
	mutex_unlock(&dev->struct_mutex);
1921
	return ret;
1922 1923
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1945
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1946 1947
}

D
Daniel Vetter 已提交
1948 1949 1950
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1951
{
1952
	i915_gem_object_free_mmap_offset(obj);
1953

1954 1955
	if (obj->base.filp == NULL)
		return;
1956

D
Daniel Vetter 已提交
1957 1958 1959 1960 1961
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1962
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1963 1964
	obj->madv = __I915_MADV_PURGED;
}
1965

1966 1967 1968
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1969
{
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1984 1985
}

1986
static void
1987
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1988
{
1989 1990
	struct sg_page_iter sg_iter;
	int ret;
1991

1992
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1993

C
Chris Wilson 已提交
1994 1995 1996 1997 1998 1999
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2000
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2001 2002 2003
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2004
	if (i915_gem_object_needs_bit17_swizzle(obj))
2005 2006
		i915_gem_object_save_bit_17_swizzle(obj);

2007 2008
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2009

2010
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2011
		struct page *page = sg_page_iter_page(&sg_iter);
2012

2013
		if (obj->dirty)
2014
			set_page_dirty(page);
2015

2016
		if (obj->madv == I915_MADV_WILLNEED)
2017
			mark_page_accessed(page);
2018

2019
		page_cache_release(page);
2020
	}
2021
	obj->dirty = 0;
2022

2023 2024
	sg_free_table(obj->pages);
	kfree(obj->pages);
2025
}
C
Chris Wilson 已提交
2026

2027
int
2028 2029 2030 2031
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2032
	if (obj->pages == NULL)
2033 2034
		return 0;

2035 2036 2037
	if (obj->pages_pin_count)
		return -EBUSY;

2038
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2039

2040 2041 2042
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2043
	list_del(&obj->global_list);
2044

2045
	ops->put_pages(obj);
2046
	obj->pages = NULL;
2047

2048
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2049 2050 2051 2052

	return 0;
}

2053
static int
C
Chris Wilson 已提交
2054
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2055
{
C
Chris Wilson 已提交
2056
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2057 2058
	int page_count, i;
	struct address_space *mapping;
2059 2060
	struct sg_table *st;
	struct scatterlist *sg;
2061
	struct sg_page_iter sg_iter;
2062
	struct page *page;
2063
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2064
	gfp_t gfp;
2065

C
Chris Wilson 已提交
2066 2067 2068 2069 2070 2071 2072
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2073 2074 2075 2076
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2077
	page_count = obj->base.size / PAGE_SIZE;
2078 2079
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2080
		return -ENOMEM;
2081
	}
2082

2083 2084 2085 2086 2087
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2088
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2089
	gfp = mapping_gfp_mask(mapping);
2090
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2091
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2092 2093 2094
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2095 2096
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2097 2098 2099 2100 2101
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2102 2103 2104 2105 2106 2107 2108 2109
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2110
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2111 2112 2113
			if (IS_ERR(page))
				goto err_pages;
		}
2114 2115 2116 2117 2118 2119 2120 2121
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2122 2123 2124 2125 2126 2127 2128 2129 2130
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2131 2132 2133

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2134
	}
2135 2136 2137 2138
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2139 2140
	obj->pages = st;

2141
	if (i915_gem_object_needs_bit17_swizzle(obj))
2142 2143
		i915_gem_object_do_bit_17_swizzle(obj);

2144 2145 2146 2147
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2148 2149 2150
	return 0;

err_pages:
2151 2152
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2153
		page_cache_release(sg_page_iter_page(&sg_iter));
2154 2155
	sg_free_table(st);
	kfree(st);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2185
	if (obj->pages)
2186 2187
		return 0;

2188
	if (obj->madv != I915_MADV_WILLNEED) {
2189
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2190
		return -EFAULT;
2191 2192
	}

2193 2194
	BUG_ON(obj->pages_pin_count);

2195 2196 2197 2198
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2199
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2200 2201 2202 2203

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2204
	return 0;
2205 2206
}

B
Ben Widawsky 已提交
2207
static void
2208
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2209
			       struct intel_engine_cs *ring)
2210
{
2211 2212
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2213

2214
	BUG_ON(ring == NULL);
2215 2216 2217 2218 2219

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2220 2221
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2222
	}
2223 2224

	/* Add a reference if we're newly entering the active list. */
2225 2226 2227
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2228
	}
2229

2230
	list_move_tail(&obj->ring_list, &ring->active_list);
2231

2232
	i915_gem_request_assign(&obj->last_read_req, req);
2233 2234
}

B
Ben Widawsky 已提交
2235
void i915_vma_move_to_active(struct i915_vma *vma,
2236
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2237 2238 2239 2240 2241
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2242 2243
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2244
{
2245
	struct i915_vma *vma;
2246

2247
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2248
	BUG_ON(!obj->active);
2249

2250 2251 2252
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2253
	}
2254

2255 2256
	intel_fb_obj_flush(obj, true);

2257
	list_del_init(&obj->ring_list);
2258

2259 2260
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2261 2262
	obj->base.write_domain = 0;

2263
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2264 2265 2266 2267 2268

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2269
}
2270

2271 2272 2273
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2274
	if (obj->last_read_req == NULL)
2275 2276
		return;

2277
	if (i915_gem_request_completed(obj->last_read_req, true))
2278 2279 2280
		i915_gem_object_move_to_inactive(obj);
}

2281
static int
2282
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2283
{
2284
	struct drm_i915_private *dev_priv = dev->dev_private;
2285
	struct intel_engine_cs *ring;
2286
	int ret, i, j;
2287

2288
	/* Carefully retire all requests without writing to the rings */
2289
	for_each_ring(ring, dev_priv, i) {
2290 2291 2292
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2293 2294
	}
	i915_gem_retire_requests(dev);
2295 2296

	/* Finally reset hw state */
2297
	for_each_ring(ring, dev_priv, i) {
2298
		intel_ring_init_seqno(ring, seqno);
2299

2300 2301
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2302
	}
2303

2304
	return 0;
2305 2306
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2333 2334
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2335
{
2336 2337 2338 2339
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2340
		int ret = i915_gem_init_seqno(dev, 0);
2341 2342
		if (ret)
			return ret;
2343

2344 2345
		dev_priv->next_seqno = 1;
	}
2346

2347
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2348
	return 0;
2349 2350
}

2351
int __i915_add_request(struct intel_engine_cs *ring,
2352
		       struct drm_file *file,
2353
		       struct drm_i915_gem_object *obj)
2354
{
2355
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2356
	struct drm_i915_gem_request *request;
2357
	struct intel_ringbuffer *ringbuf;
2358
	u32 request_start;
2359 2360
	int ret;

2361
	request = ring->outstanding_lazy_request;
2362 2363 2364 2365
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2366
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2367 2368 2369 2370
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2371 2372 2373 2374 2375 2376 2377
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2378
	if (i915.enable_execlists) {
2379
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2380 2381 2382 2383 2384 2385 2386
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2387

2388 2389 2390 2391 2392
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2393
	request->postfix = intel_ring_get_tail(ringbuf);
2394

2395
	if (i915.enable_execlists) {
2396
		ret = ring->emit_request(ringbuf, request);
2397 2398 2399 2400 2401 2402
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2403 2404

		request->tail = intel_ring_get_tail(ringbuf);
2405
	}
2406

2407 2408 2409 2410 2411 2412 2413 2414
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2415
	request->batch_obj = obj;
2416

2417 2418 2419 2420 2421 2422 2423 2424
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2425

2426
	request->emitted_jiffies = jiffies;
2427
	list_add_tail(&request->list, &ring->request_list);
2428
	request->file_priv = NULL;
2429

C
Chris Wilson 已提交
2430 2431 2432
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2433
		spin_lock(&file_priv->mm.lock);
2434
		request->file_priv = file_priv;
2435
		list_add_tail(&request->client_list,
2436
			      &file_priv->mm.request_list);
2437
		spin_unlock(&file_priv->mm.lock);
2438 2439

		request->pid = get_pid(task_pid(current));
2440
	}
2441

2442
	trace_i915_gem_request_add(request);
2443
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2444

2445
	i915_queue_hangcheck(ring->dev);
2446

2447 2448 2449 2450
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2451

2452
	return 0;
2453 2454
}

2455 2456
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2457
{
2458
	struct drm_i915_file_private *file_priv = request->file_priv;
2459

2460 2461
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2462

2463
	spin_lock(&file_priv->mm.lock);
2464 2465
	list_del(&request->client_list);
	request->file_priv = NULL;
2466
	spin_unlock(&file_priv->mm.lock);
2467 2468
}

2469
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2470
				   const struct intel_context *ctx)
2471
{
2472
	unsigned long elapsed;
2473

2474 2475 2476
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2477 2478
		return true;

2479 2480
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2481
		if (!i915_gem_context_is_default(ctx)) {
2482
			DRM_DEBUG("context hanging too fast, banning!\n");
2483
			return true;
2484 2485 2486
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2487
			return true;
2488
		}
2489 2490 2491 2492 2493
	}

	return false;
}

2494
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2495
				  struct intel_context *ctx,
2496
				  const bool guilty)
2497
{
2498 2499 2500 2501
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2502

2503 2504 2505
	hs = &ctx->hang_stats;

	if (guilty) {
2506
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2507 2508 2509 2510
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2511 2512 2513
	}
}

2514 2515 2516 2517 2518
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2519 2520
	put_pid(request->pid);

2521 2522 2523 2524 2525 2526 2527 2528 2529
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2530 2531
	if (ctx) {
		if (i915.enable_execlists) {
2532
			struct intel_engine_cs *ring = req->ring;
2533

2534 2535 2536
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2537

2538 2539
		i915_gem_context_unreference(ctx);
	}
2540

2541
	kmem_cache_free(req->i915->requests, req);
2542 2543
}

2544 2545 2546
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2547 2548
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
	struct drm_i915_gem_request *rq;
2549 2550 2551 2552 2553
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

2554 2555
	rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (rq == NULL)
2556 2557
		return -ENOMEM;

2558 2559 2560 2561
	kref_init(&rq->ref);
	rq->i915 = dev_priv;

	ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2562
	if (ret) {
2563
		kfree(rq);
2564 2565 2566
		return ret;
	}

2567
	rq->ring = ring;
2568 2569

	if (i915.enable_execlists)
2570
		ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2571
	else
2572
		ret = intel_ring_alloc_request_extras(rq);
2573
	if (ret) {
2574
		kfree(rq);
2575 2576 2577
		return ret;
	}

2578
	ring->outstanding_lazy_request = rq;
2579
	return 0;
2580 2581
}

2582
struct drm_i915_gem_request *
2583
i915_gem_find_active_request(struct intel_engine_cs *ring)
2584
{
2585 2586 2587
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2588
		if (i915_gem_request_completed(request, false))
2589
			continue;
2590

2591
		return request;
2592
	}
2593 2594 2595 2596 2597

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2598
				       struct intel_engine_cs *ring)
2599 2600 2601 2602
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2603
	request = i915_gem_find_active_request(ring);
2604 2605 2606 2607 2608 2609

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2610
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2611 2612

	list_for_each_entry_continue(request, &ring->request_list, list)
2613
		i915_set_reset_status(dev_priv, request->ctx, false);
2614
}
2615

2616
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2617
					struct intel_engine_cs *ring)
2618
{
2619
	while (!list_empty(&ring->active_list)) {
2620
		struct drm_i915_gem_object *obj;
2621

2622 2623 2624
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2625

2626
		i915_gem_object_move_to_inactive(obj);
2627
	}
2628

2629 2630 2631 2632 2633 2634
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2635
		struct drm_i915_gem_request *submit_req;
2636 2637

		submit_req = list_first_entry(&ring->execlist_queue,
2638
				struct drm_i915_gem_request,
2639 2640
				execlist_link);
		list_del(&submit_req->execlist_link);
2641 2642 2643 2644

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2645
		i915_gem_request_unreference(submit_req);
2646 2647
	}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2664

2665 2666
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2667 2668
}

2669
void i915_gem_restore_fences(struct drm_device *dev)
2670 2671 2672 2673
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2674
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2675
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2676

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2687 2688 2689
	}
}

2690
void i915_gem_reset(struct drm_device *dev)
2691
{
2692
	struct drm_i915_private *dev_priv = dev->dev_private;
2693
	struct intel_engine_cs *ring;
2694
	int i;
2695

2696 2697 2698 2699 2700 2701 2702 2703
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2704
	for_each_ring(ring, dev_priv, i)
2705
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2706

2707 2708
	i915_gem_context_reset(dev);

2709
	i915_gem_restore_fences(dev);
2710 2711 2712 2713 2714
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2715
void
2716
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2717
{
C
Chris Wilson 已提交
2718
	if (list_empty(&ring->request_list))
2719 2720
		return;

C
Chris Wilson 已提交
2721
	WARN_ON(i915_verify_lists(ring->dev));
2722

2723 2724 2725 2726
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2727
	 */
2728
	while (!list_empty(&ring->request_list)) {
2729 2730
		struct drm_i915_gem_request *request;

2731
		request = list_first_entry(&ring->request_list,
2732 2733 2734
					   struct drm_i915_gem_request,
					   list);

2735
		if (!i915_gem_request_completed(request, true))
2736 2737
			break;

2738
		trace_i915_gem_request_retire(request);
2739

2740 2741 2742 2743 2744
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2745
		request->ringbuf->last_retired_head = request->postfix;
2746

2747
		i915_gem_free_request(request);
2748
	}
2749

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_gem_request_completed(obj->last_read_req, true))
			break;

		i915_gem_object_move_to_inactive(obj);
	}

2767 2768
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2769
		ring->irq_put(ring);
2770
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2771
	}
2772

C
Chris Wilson 已提交
2773
	WARN_ON(i915_verify_lists(ring->dev));
2774 2775
}

2776
bool
2777 2778
i915_gem_retire_requests(struct drm_device *dev)
{
2779
	struct drm_i915_private *dev_priv = dev->dev_private;
2780
	struct intel_engine_cs *ring;
2781
	bool idle = true;
2782
	int i;
2783

2784
	for_each_ring(ring, dev_priv, i) {
2785
		i915_gem_retire_requests_ring(ring);
2786
		idle &= list_empty(&ring->request_list);
2787 2788 2789 2790 2791 2792 2793 2794 2795
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2796 2797 2798 2799 2800 2801 2802 2803
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2804 2805
}

2806
static void
2807 2808
i915_gem_retire_work_handler(struct work_struct *work)
{
2809 2810 2811
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2812
	bool idle;
2813

2814
	/* Come back later if the device is busy... */
2815 2816 2817 2818
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2819
	}
2820
	if (!idle)
2821 2822
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2823
}
2824

2825 2826 2827 2828 2829
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2830
	struct drm_device *dev = dev_priv->dev;
2831 2832
	struct intel_engine_cs *ring;
	int i;
2833

2834 2835 2836
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2837 2838 2839 2840 2841 2842 2843 2844 2845

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2846

2847 2848
		mutex_unlock(&dev->struct_mutex);
	}
2849 2850
}

2851 2852 2853 2854 2855 2856 2857 2858
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2859
	struct intel_engine_cs *ring;
2860 2861 2862
	int ret;

	if (obj->active) {
2863 2864
		ring = i915_gem_request_get_ring(obj->last_read_req);

2865
		ret = i915_gem_check_olr(obj->last_read_req);
2866 2867 2868
		if (ret)
			return ret;

2869
		i915_gem_retire_requests_ring(ring);
2870 2871 2872 2873 2874
	}

	return 0;
}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2900
	struct drm_i915_private *dev_priv = dev->dev_private;
2901 2902
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2903
	struct drm_i915_gem_request *req;
2904
	unsigned reset_counter;
2905 2906
	int ret = 0;

2907 2908 2909
	if (args->flags != 0)
		return -EINVAL;

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2920 2921
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2922 2923 2924
	if (ret)
		goto out;

2925 2926
	if (!obj->active || !obj->last_read_req)
		goto out;
2927

2928
	req = obj->last_read_req;
2929 2930

	/* Do this after OLR check to make sure we make forward progress polling
2931
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2932
	 */
2933
	if (args->timeout_ns == 0) {
2934 2935 2936 2937 2938
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2939
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2940
	i915_gem_request_reference(req);
2941 2942
	mutex_unlock(&dev->struct_mutex);

2943 2944
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2945
				  file->driver_priv);
2946
	i915_gem_request_unreference__unlocked(req);
2947
	return ret;
2948 2949 2950 2951 2952 2953 2954

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2967 2968
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2969
		     struct intel_engine_cs *to)
2970
{
2971
	struct intel_engine_cs *from;
2972 2973 2974
	u32 seqno;
	int ret, idx;

2975 2976
	from = i915_gem_request_get_ring(obj->last_read_req);

2977 2978 2979
	if (from == NULL || to == from)
		return 0;

2980
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2981
		return i915_gem_object_wait_rendering(obj, false);
2982 2983 2984

	idx = intel_ring_sync_index(from, to);

2985
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2986 2987
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2988
	if (seqno <= from->semaphore.sync_seqno[idx])
2989 2990
		return 0;

2991
	ret = i915_gem_check_olr(obj->last_read_req);
2992 2993
	if (ret)
		return ret;
2994

2995
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2996
	ret = to->semaphore.sync_to(to, from, seqno);
2997
	if (!ret)
2998
		/* We use last_read_req because sync_to()
2999 3000 3001
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3002 3003
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3004

3005
	return ret;
3006 3007
}

3008 3009 3010 3011 3012 3013 3014
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3015 3016 3017
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3018 3019 3020
	/* Wait for any direct GTT access to complete */
	mb();

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3032
int i915_vma_unbind(struct i915_vma *vma)
3033
{
3034
	struct drm_i915_gem_object *obj = vma->obj;
3035
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3036
	int ret;
3037

3038
	if (list_empty(&vma->vma_link))
3039 3040
		return 0;

3041 3042 3043 3044
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3045

B
Ben Widawsky 已提交
3046
	if (vma->pin_count)
3047
		return -EBUSY;
3048

3049 3050
	BUG_ON(obj->pages == NULL);

3051
	ret = i915_gem_object_finish_gpu(obj);
3052
	if (ret)
3053 3054 3055 3056 3057 3058
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3059 3060
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3061
		i915_gem_object_finish_gtt(obj);
3062

3063 3064 3065 3066 3067
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3068

3069
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3070

3071
	vma->vm->unbind_vma(vma);
3072
	vma->bound = 0;
3073

3074
	list_del_init(&vma->mm_list);
3075 3076 3077 3078 3079 3080 3081 3082 3083
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3084

B
Ben Widawsky 已提交
3085 3086 3087 3088
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3089
	 * no more VMAs exist. */
3090
	if (list_empty(&obj->vma_list)) {
3091 3092 3093 3094
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3095
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3096
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3097
	}
3098

3099 3100 3101 3102 3103 3104
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3105
	return 0;
3106 3107
}

3108
int i915_gpu_idle(struct drm_device *dev)
3109
{
3110
	struct drm_i915_private *dev_priv = dev->dev_private;
3111
	struct intel_engine_cs *ring;
3112
	int ret, i;
3113 3114

	/* Flush everything onto the inactive list. */
3115
	for_each_ring(ring, dev_priv, i) {
3116 3117 3118 3119 3120
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3121

3122
		ret = intel_ring_idle(ring);
3123 3124 3125
		if (ret)
			return ret;
	}
3126

3127
	return 0;
3128 3129
}

3130 3131
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3132
{
3133
	struct drm_i915_private *dev_priv = dev->dev_private;
3134 3135
	int fence_reg;
	int fence_pitch_shift;
3136

3137 3138 3139 3140 3141 3142 3143 3144
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3159
	if (obj) {
3160
		u32 size = i915_gem_obj_ggtt_size(obj);
3161
		uint64_t val;
3162

3163 3164 3165 3166 3167 3168 3169
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3170
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3171
				 0xfffff000) << 32;
3172
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3173
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3174 3175 3176
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3187 3188
}

3189 3190
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3191
{
3192
	struct drm_i915_private *dev_priv = dev->dev_private;
3193
	u32 val;
3194

3195
	if (obj) {
3196
		u32 size = i915_gem_obj_ggtt_size(obj);
3197 3198
		int pitch_val;
		int tile_width;
3199

3200
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3201
		     (size & -size) != size ||
3202 3203 3204
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3215
		val = i915_gem_obj_ggtt_offset(obj);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3231 3232
}

3233 3234
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3235
{
3236
	struct drm_i915_private *dev_priv = dev->dev_private;
3237 3238
	uint32_t val;

3239
	if (obj) {
3240
		u32 size = i915_gem_obj_ggtt_size(obj);
3241
		uint32_t pitch_val;
3242

3243
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3244
		     (size & -size) != size ||
3245 3246 3247
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3248

3249 3250
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3251

3252
		val = i915_gem_obj_ggtt_offset(obj);
3253 3254 3255 3256 3257 3258 3259
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3260

3261 3262 3263 3264
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3265 3266 3267 3268 3269
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3270 3271 3272
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3273 3274 3275 3276 3277 3278 3279 3280
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3281 3282 3283 3284
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3285 3286 3287 3288 3289 3290
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3291 3292 3293 3294 3295 3296

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3297 3298
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3309
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310 3311 3312
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3313 3314

	if (enable) {
3315
		obj->fence_reg = reg;
3316 3317 3318 3319 3320 3321 3322
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3323
	obj->fence_dirty = false;
3324 3325
}

3326
static int
3327
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3328
{
3329
	if (obj->last_fenced_req) {
3330
		int ret = i915_wait_request(obj->last_fenced_req);
3331 3332
		if (ret)
			return ret;
3333

3334
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3335 3336 3337 3338 3339 3340 3341 3342
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3343
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3344
	struct drm_i915_fence_reg *fence;
3345 3346
	int ret;

3347
	ret = i915_gem_object_wait_fence(obj);
3348 3349 3350
	if (ret)
		return ret;

3351 3352
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3353

3354 3355
	fence = &dev_priv->fence_regs[obj->fence_reg];

3356 3357 3358
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3359
	i915_gem_object_fence_lost(obj);
3360
	i915_gem_object_update_fence(obj, fence, false);
3361 3362 3363 3364 3365

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3366
i915_find_fence_reg(struct drm_device *dev)
3367 3368
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3369
	struct drm_i915_fence_reg *reg, *avail;
3370
	int i;
3371 3372

	/* First try to find a free reg */
3373
	avail = NULL;
3374 3375 3376
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3377
			return reg;
3378

3379
		if (!reg->pin_count)
3380
			avail = reg;
3381 3382
	}

3383
	if (avail == NULL)
3384
		goto deadlock;
3385 3386

	/* None available, try to steal one or wait for a user to finish */
3387
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3388
		if (reg->pin_count)
3389 3390
			continue;

C
Chris Wilson 已提交
3391
		return reg;
3392 3393
	}

3394 3395 3396 3397 3398 3399
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3400 3401
}

3402
/**
3403
 * i915_gem_object_get_fence - set up fencing for an object
3404 3405 3406 3407 3408 3409 3410 3411 3412
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3413 3414
 *
 * For an untiled surface, this removes any existing fence.
3415
 */
3416
int
3417
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3418
{
3419
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3420
	struct drm_i915_private *dev_priv = dev->dev_private;
3421
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3422
	struct drm_i915_fence_reg *reg;
3423
	int ret;
3424

3425 3426 3427
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3428
	if (obj->fence_dirty) {
3429
		ret = i915_gem_object_wait_fence(obj);
3430 3431 3432
		if (ret)
			return ret;
	}
3433

3434
	/* Just update our place in the LRU if our fence is getting reused. */
3435 3436
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3437
		if (!obj->fence_dirty) {
3438 3439 3440 3441 3442
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3443 3444 3445
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3446
		reg = i915_find_fence_reg(dev);
3447 3448
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3449

3450 3451 3452
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3453
			ret = i915_gem_object_wait_fence(old);
3454 3455 3456
			if (ret)
				return ret;

3457
			i915_gem_object_fence_lost(old);
3458
		}
3459
	} else
3460 3461
		return 0;

3462 3463
	i915_gem_object_update_fence(obj, reg, enable);

3464
	return 0;
3465 3466
}

3467
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3468 3469
				     unsigned long cache_level)
{
3470
	struct drm_mm_node *gtt_space = &vma->node;
3471 3472
	struct drm_mm_node *other;

3473 3474 3475 3476 3477 3478
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3479
	 */
3480
	if (vma->vm->mm.color_adjust == NULL)
3481 3482
		return true;

3483
	if (!drm_mm_node_allocated(gtt_space))
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3500 3501 3502
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3503
static struct i915_vma *
3504 3505
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3506
			   const struct i915_ggtt_view *ggtt_view,
3507
			   unsigned alignment,
3508
			   uint64_t flags)
3509
{
3510
	struct drm_device *dev = obj->base.dev;
3511
	struct drm_i915_private *dev_priv = dev->dev_private;
3512
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3513 3514 3515
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3516
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3517
	struct i915_vma *vma;
3518
	int ret;
3519

3520 3521 3522
	if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return ERR_PTR(-EINVAL);

3523 3524 3525 3526 3527
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3528
						     obj->tiling_mode, true);
3529
	unfenced_alignment =
3530
		i915_gem_get_gtt_alignment(dev,
3531 3532
					   obj->base.size,
					   obj->tiling_mode, false);
3533

3534
	if (alignment == 0)
3535
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3536
						unfenced_alignment;
3537
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3538
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3539
		return ERR_PTR(-EINVAL);
3540 3541
	}

3542
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3543

3544 3545 3546
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3547 3548
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3549
			  obj->base.size,
3550
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3551
			  end);
3552
		return ERR_PTR(-E2BIG);
3553 3554
	}

3555
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3556
	if (ret)
3557
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3558

3559 3560
	i915_gem_object_pin_pages(obj);

3561 3562 3563
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3564
	if (IS_ERR(vma))
3565
		goto err_unpin;
B
Ben Widawsky 已提交
3566

3567
search_free:
3568
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3569
						  size, alignment,
3570 3571
						  obj->cache_level,
						  start, end,
3572 3573
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3574
	if (ret) {
3575
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3576 3577 3578
					       obj->cache_level,
					       start, end,
					       flags);
3579 3580
		if (ret == 0)
			goto search_free;
3581

3582
		goto err_free_vma;
3583
	}
3584
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3585
		ret = -EINVAL;
3586
		goto err_remove_node;
3587 3588
	}

3589
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3590
	if (ret)
3591
		goto err_remove_node;
3592

3593
	trace_i915_vma_bind(vma, flags);
3594
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3595 3596 3597
	if (ret)
		goto err_finish_gtt;

3598
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3599
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3600

3601
	return vma;
B
Ben Widawsky 已提交
3602

3603 3604
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3605
err_remove_node:
3606
	drm_mm_remove_node(&vma->node);
3607
err_free_vma:
B
Ben Widawsky 已提交
3608
	i915_gem_vma_destroy(vma);
3609
	vma = ERR_PTR(ret);
3610
err_unpin:
B
Ben Widawsky 已提交
3611
	i915_gem_object_unpin_pages(obj);
3612
	return vma;
3613 3614
}

3615
bool
3616 3617
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3618 3619 3620 3621 3622
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3623
	if (obj->pages == NULL)
3624
		return false;
3625

3626 3627 3628 3629
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3630
	if (obj->stolen || obj->phys_handle)
3631
		return false;
3632

3633 3634 3635 3636 3637 3638 3639 3640
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3641 3642
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3643
		return false;
3644
	}
3645

C
Chris Wilson 已提交
3646
	trace_i915_gem_object_clflush(obj);
3647
	drm_clflush_sg(obj->pages);
3648
	obj->cache_dirty = false;
3649 3650

	return true;
3651 3652 3653 3654
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3655
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3656
{
C
Chris Wilson 已提交
3657 3658
	uint32_t old_write_domain;

3659
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3660 3661
		return;

3662
	/* No actual flushing is required for the GTT write domain.  Writes
3663 3664
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3665 3666 3667 3668
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3669
	 */
3670 3671
	wmb();

3672 3673
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3674

3675 3676
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3677
	trace_i915_gem_object_change_domain(obj,
3678
					    obj->base.read_domains,
C
Chris Wilson 已提交
3679
					    old_write_domain);
3680 3681 3682 3683
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3684
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3685
{
C
Chris Wilson 已提交
3686
	uint32_t old_write_domain;
3687

3688
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3689 3690
		return;

3691
	if (i915_gem_clflush_object(obj, obj->pin_display))
3692 3693
		i915_gem_chipset_flush(obj->base.dev);

3694 3695
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3696

3697 3698
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3699
	trace_i915_gem_object_change_domain(obj,
3700
					    obj->base.read_domains,
C
Chris Wilson 已提交
3701
					    old_write_domain);
3702 3703
}

3704 3705 3706 3707 3708 3709
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3710
int
3711
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3712
{
C
Chris Wilson 已提交
3713
	uint32_t old_write_domain, old_read_domains;
3714
	struct i915_vma *vma;
3715
	int ret;
3716

3717 3718 3719
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3720
	ret = i915_gem_object_wait_rendering(obj, !write);
3721 3722 3723
	if (ret)
		return ret;

3724
	i915_gem_object_retire(obj);
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3738
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3739

3740 3741 3742 3743 3744 3745 3746
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3747 3748
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3749

3750 3751 3752
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3753 3754
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3755
	if (write) {
3756 3757 3758
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3759 3760
	}

3761
	if (write)
3762
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3763

C
Chris Wilson 已提交
3764 3765 3766 3767
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3768
	/* And bump the LRU for this access */
3769 3770
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3771
		list_move_tail(&vma->mm_list,
3772
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3773

3774 3775 3776
	return 0;
}

3777 3778 3779
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3780
	struct drm_device *dev = obj->base.dev;
3781
	struct i915_vma *vma, *next;
3782 3783 3784 3785 3786
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3787
	if (i915_gem_obj_is_pinned(obj)) {
3788 3789 3790 3791
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3792
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3793
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3794
			ret = i915_vma_unbind(vma);
3795 3796 3797
			if (ret)
				return ret;
		}
3798 3799
	}

3800
	if (i915_gem_obj_bound_any(obj)) {
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3811
		if (INTEL_INFO(dev)->gen < 6) {
3812 3813 3814 3815 3816
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3817
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3818 3819
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
3820
						    PIN_UPDATE);
3821 3822 3823
				if (ret)
					return ret;
			}
3824 3825
	}

3826 3827 3828 3829
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3830 3831 3832 3833 3834
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3835 3836 3837 3838 3839
	}

	return 0;
}

B
Ben Widawsky 已提交
3840 3841
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3842
{
B
Ben Widawsky 已提交
3843
	struct drm_i915_gem_caching *args = data;
3844 3845 3846
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3847 3848
	if (&obj->base == NULL)
		return -ENOENT;
3849

3850 3851 3852 3853 3854 3855
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3856 3857 3858 3859
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3860 3861 3862 3863
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3864

3865 3866
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3867 3868
}

B
Ben Widawsky 已提交
3869 3870
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3871
{
B
Ben Widawsky 已提交
3872
	struct drm_i915_gem_caching *args = data;
3873 3874 3875 3876
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3877 3878
	switch (args->caching) {
	case I915_CACHING_NONE:
3879 3880
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3881
	case I915_CACHING_CACHED:
3882 3883
		level = I915_CACHE_LLC;
		break;
3884 3885 3886
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3887 3888 3889 3890
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3891 3892 3893 3894
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3909
/*
3910 3911 3912
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3913 3914
 */
int
3915 3916
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3917 3918
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
3919
{
3920
	u32 old_read_domains, old_write_domain;
3921 3922
	int ret;

3923
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3924 3925
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3926 3927 3928
			return ret;
	}

3929 3930 3931
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3932
	obj->pin_display++;
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3943 3944
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3945
	if (ret)
3946
		goto err_unpin_display;
3947

3948 3949 3950 3951
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3952 3953 3954
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3955
	if (ret)
3956
		goto err_unpin_display;
3957

3958
	i915_gem_object_flush_cpu_write_domain(obj);
3959

3960
	old_write_domain = obj->base.write_domain;
3961
	old_read_domains = obj->base.read_domains;
3962 3963 3964 3965

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3966
	obj->base.write_domain = 0;
3967
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3968 3969 3970

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3971
					    old_write_domain);
3972 3973

	return 0;
3974 3975

err_unpin_display:
3976
	obj->pin_display--;
3977 3978 3979 3980
	return ret;
}

void
3981 3982
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3983
{
3984 3985 3986
	if (WARN_ON(obj->pin_display == 0))
		return;

3987 3988
	i915_gem_object_ggtt_unpin_view(obj, view);

3989
	obj->pin_display--;
3990 3991
}

3992
int
3993
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3994
{
3995 3996
	int ret;

3997
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3998 3999
		return 0;

4000
	ret = i915_gem_object_wait_rendering(obj, false);
4001 4002 4003
	if (ret)
		return ret;

4004 4005
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4006
	return 0;
4007 4008
}

4009 4010 4011 4012 4013 4014
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4015
int
4016
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4017
{
C
Chris Wilson 已提交
4018
	uint32_t old_write_domain, old_read_domains;
4019 4020
	int ret;

4021 4022 4023
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4024
	ret = i915_gem_object_wait_rendering(obj, !write);
4025 4026 4027
	if (ret)
		return ret;

4028
	i915_gem_object_retire(obj);
4029
	i915_gem_object_flush_gtt_write_domain(obj);
4030

4031 4032
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4033

4034
	/* Flush the CPU cache if it's still invalid. */
4035
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4036
		i915_gem_clflush_object(obj, false);
4037

4038
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4039 4040 4041 4042 4043
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4044
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4045 4046 4047 4048 4049

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4050 4051
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4052
	}
4053

4054
	if (write)
4055
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4056

C
Chris Wilson 已提交
4057 4058 4059 4060
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4061 4062 4063
	return 0;
}

4064 4065 4066
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4067 4068 4069 4070
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4071 4072 4073
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4074
static int
4075
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4076
{
4077 4078
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4079
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4080
	struct drm_i915_gem_request *request, *target = NULL;
4081
	unsigned reset_counter;
4082
	int ret;
4083

4084 4085 4086 4087 4088 4089 4090
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4091

4092
	spin_lock(&file_priv->mm.lock);
4093
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4094 4095
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4096

4097
		target = request;
4098
	}
4099
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4100 4101
	if (target)
		i915_gem_request_reference(target);
4102
	spin_unlock(&file_priv->mm.lock);
4103

4104
	if (target == NULL)
4105
		return 0;
4106

4107
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4108 4109
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4110

4111
	i915_gem_request_unreference__unlocked(target);
4112

4113 4114 4115
	return ret;
}

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4135 4136 4137 4138 4139 4140
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4141
{
4142
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4143
	struct i915_vma *vma;
4144
	unsigned bound;
4145 4146
	int ret;

4147 4148 4149
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4150
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4151
		return -EINVAL;
4152

4153 4154 4155
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4156 4157 4158 4159 4160 4161 4162 4163 4164
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4165
	if (vma) {
B
Ben Widawsky 已提交
4166 4167 4168
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4169
		if (i915_vma_misplaced(vma, alignment, flags)) {
4170
			unsigned long offset;
4171
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4172
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4173
			WARN(vma->pin_count,
4174
			     "bo is already pinned in %s with incorrect alignment:"
4175
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4176
			     " obj->map_and_fenceable=%d\n",
4177 4178
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4179
			     alignment,
4180
			     !!(flags & PIN_MAPPABLE),
4181
			     obj->map_and_fenceable);
4182
			ret = i915_vma_unbind(vma);
4183 4184
			if (ret)
				return ret;
4185 4186

			vma = NULL;
4187 4188 4189
		}
	}

4190
	bound = vma ? vma->bound : 0;
4191
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4192 4193
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4194 4195
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4196 4197
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4198 4199 4200
		if (ret)
			return ret;
	}
4201

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4217
		mappable = (vma->node.start + fence_size <=
4218 4219 4220 4221 4222 4223 4224
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4225
	vma->pin_count++;
4226 4227 4228
	return 0;
}

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4250
				      alignment, flags | PIN_GLOBAL);
4251 4252
}

4253
void
4254 4255
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4256
{
4257
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4258

B
Ben Widawsky 已提交
4259
	BUG_ON(!vma);
4260
	WARN_ON(vma->pin_count == 0);
4261
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4262

4263
	--vma->pin_count;
4264 4265
}

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4292 4293
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4294
		    struct drm_file *file)
4295 4296
{
	struct drm_i915_gem_busy *args = data;
4297
	struct drm_i915_gem_object *obj;
4298 4299
	int ret;

4300
	ret = i915_mutex_lock_interruptible(dev);
4301
	if (ret)
4302
		return ret;
4303

4304
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4305
	if (&obj->base == NULL) {
4306 4307
		ret = -ENOENT;
		goto unlock;
4308
	}
4309

4310 4311 4312 4313
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4314
	 */
4315
	ret = i915_gem_object_flush_active(obj);
4316

4317
	args->busy = obj->active;
4318 4319
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4320
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4321 4322
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4323
	}
4324

4325
	drm_gem_object_unreference(&obj->base);
4326
unlock:
4327
	mutex_unlock(&dev->struct_mutex);
4328
	return ret;
4329 4330 4331 4332 4333 4334
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4335
	return i915_gem_ring_throttle(dev, file_priv);
4336 4337
}

4338 4339 4340 4341
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4342
	struct drm_i915_private *dev_priv = dev->dev_private;
4343
	struct drm_i915_gem_madvise *args = data;
4344
	struct drm_i915_gem_object *obj;
4345
	int ret;
4346 4347 4348 4349 4350 4351 4352 4353 4354

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4355 4356 4357 4358
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4359
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4360
	if (&obj->base == NULL) {
4361 4362
		ret = -ENOENT;
		goto unlock;
4363 4364
	}

B
Ben Widawsky 已提交
4365
	if (i915_gem_obj_is_pinned(obj)) {
4366 4367
		ret = -EINVAL;
		goto out;
4368 4369
	}

4370 4371 4372 4373 4374 4375 4376 4377 4378
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4379 4380
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4381

C
Chris Wilson 已提交
4382
	/* if the object is no longer attached, discard its backing storage */
4383
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4384 4385
		i915_gem_object_truncate(obj);

4386
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4387

4388
out:
4389
	drm_gem_object_unreference(&obj->base);
4390
unlock:
4391
	mutex_unlock(&dev->struct_mutex);
4392
	return ret;
4393 4394
}

4395 4396
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4397
{
4398
	INIT_LIST_HEAD(&obj->global_list);
4399
	INIT_LIST_HEAD(&obj->ring_list);
4400
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4401
	INIT_LIST_HEAD(&obj->vma_list);
4402
	INIT_LIST_HEAD(&obj->batch_pool_link);
4403

4404 4405
	obj->ops = ops;

4406 4407 4408 4409 4410 4411
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4412 4413 4414 4415 4416
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4417 4418
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4419
{
4420
	struct drm_i915_gem_object *obj;
4421
	struct address_space *mapping;
D
Daniel Vetter 已提交
4422
	gfp_t mask;
4423

4424
	obj = i915_gem_object_alloc(dev);
4425 4426
	if (obj == NULL)
		return NULL;
4427

4428
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4429
		i915_gem_object_free(obj);
4430 4431
		return NULL;
	}
4432

4433 4434 4435 4436 4437 4438 4439
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4440
	mapping = file_inode(obj->base.filp)->i_mapping;
4441
	mapping_set_gfp_mask(mapping, mask);
4442

4443
	i915_gem_object_init(obj, &i915_gem_object_ops);
4444

4445 4446
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4447

4448 4449
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4465 4466
	trace_i915_gem_object_create(obj);

4467
	return obj;
4468 4469
}

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4494
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4495
{
4496
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4497
	struct drm_device *dev = obj->base.dev;
4498
	struct drm_i915_private *dev_priv = dev->dev_private;
4499
	struct i915_vma *vma, *next;
4500

4501 4502
	intel_runtime_pm_get(dev_priv);

4503 4504
	trace_i915_gem_object_destroy(obj);

4505
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4506 4507 4508 4509
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4510 4511
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4512

4513 4514
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4515

4516
			WARN_ON(i915_vma_unbind(vma));
4517

4518 4519
			dev_priv->mm.interruptible = was_interruptible;
		}
4520 4521
	}

B
Ben Widawsky 已提交
4522 4523 4524 4525 4526
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4527 4528
	WARN_ON(obj->frontbuffer_bits);

4529 4530 4531 4532 4533
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4534 4535
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4536
	if (discard_backing_storage(obj))
4537
		obj->madv = I915_MADV_DONTNEED;
4538
	i915_gem_object_put_pages(obj);
4539
	i915_gem_object_free_mmap_offset(obj);
4540

4541 4542
	BUG_ON(obj->pages);

4543 4544
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4545

4546 4547 4548
	if (obj->ops->release)
		obj->ops->release(obj);

4549 4550
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4551

4552
	kfree(obj->bit_17);
4553
	i915_gem_object_free(obj);
4554 4555

	intel_runtime_pm_put(dev_priv);
4556 4557
}

4558 4559
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4560 4561
{
	struct i915_vma *vma;
4562 4563 4564 4565 4566
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4567
			return vma;
4568 4569 4570 4571 4572 4573 4574 4575 4576
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4577

4578 4579 4580 4581
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4582 4583
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4584
			return vma;
4585 4586 4587
	return NULL;
}

B
Ben Widawsky 已提交
4588 4589
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4590
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4591
	WARN_ON(vma->node.allocated);
4592 4593 4594 4595 4596

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4597 4598
	vm = vma->vm;

4599 4600
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4601

4602
	list_del(&vma->vma_link);
4603

4604
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4605 4606
}

4607 4608 4609 4610
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4611
	struct intel_engine_cs *ring;
4612 4613 4614
	int i;

	for_each_ring(ring, dev_priv, i)
4615
		dev_priv->gt.stop_ring(ring);
4616 4617
}

4618
int
4619
i915_gem_suspend(struct drm_device *dev)
4620
{
4621
	struct drm_i915_private *dev_priv = dev->dev_private;
4622
	int ret = 0;
4623

4624
	mutex_lock(&dev->struct_mutex);
4625
	ret = i915_gpu_idle(dev);
4626
	if (ret)
4627
		goto err;
4628

4629
	i915_gem_retire_requests(dev);
4630

4631
	i915_gem_stop_ringbuffers(dev);
4632 4633
	mutex_unlock(&dev->struct_mutex);

4634
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4635
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4636
	flush_delayed_work(&dev_priv->mm.idle_work);
4637

4638 4639 4640 4641 4642
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4643
	return 0;
4644 4645 4646 4647

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4648 4649
}

4650
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4651
{
4652
	struct drm_device *dev = ring->dev;
4653
	struct drm_i915_private *dev_priv = dev->dev_private;
4654 4655
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4656
	int i, ret;
B
Ben Widawsky 已提交
4657

4658
	if (!HAS_L3_DPF(dev) || !remap_info)
4659
		return 0;
B
Ben Widawsky 已提交
4660

4661 4662 4663
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4664

4665 4666 4667 4668 4669
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4670
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4671 4672 4673
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4674 4675
	}

4676
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4677

4678
	return ret;
B
Ben Widawsky 已提交
4679 4680
}

4681 4682
void i915_gem_init_swizzling(struct drm_device *dev)
{
4683
	struct drm_i915_private *dev_priv = dev->dev_private;
4684

4685
	if (INTEL_INFO(dev)->gen < 5 ||
4686 4687 4688 4689 4690 4691
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4692 4693 4694
	if (IS_GEN5(dev))
		return;

4695 4696
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4697
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4698
	else if (IS_GEN7(dev))
4699
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4700 4701
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4702 4703
	else
		BUG();
4704
}
D
Daniel Vetter 已提交
4705

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4749
int i915_gem_init_rings(struct drm_device *dev)
4750
{
4751
	struct drm_i915_private *dev_priv = dev->dev_private;
4752
	int ret;
4753

4754
	ret = intel_init_render_ring_buffer(dev);
4755
	if (ret)
4756
		return ret;
4757 4758

	if (HAS_BSD(dev)) {
4759
		ret = intel_init_bsd_ring_buffer(dev);
4760 4761
		if (ret)
			goto cleanup_render_ring;
4762
	}
4763

4764
	if (intel_enable_blt(dev)) {
4765 4766 4767 4768 4769
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4770 4771 4772 4773 4774 4775
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4776 4777 4778 4779 4780
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4781

4782
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4783
	if (ret)
4784
		goto cleanup_bsd2_ring;
4785 4786 4787

	return 0;

4788 4789
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4790 4791
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4805
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4806
	struct intel_engine_cs *ring;
4807
	int ret, i;
4808 4809 4810 4811

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4812 4813 4814
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4815
	if (dev_priv->ellc_size)
4816
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4817

4818 4819 4820
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4821

4822
	if (HAS_PCH_NOP(dev)) {
4823 4824 4825 4826 4827 4828 4829 4830 4831
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4832 4833
	}

4834 4835
	i915_gem_init_swizzling(dev);

4836 4837 4838 4839 4840 4841 4842 4843
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4844 4845 4846
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4847
			goto out;
D
Daniel Vetter 已提交
4848
	}
4849

4850 4851 4852
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4853
	ret = i915_ppgtt_init_hw(dev);
4854
	if (ret && ret != -EIO) {
4855
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4856
		i915_gem_cleanup_ringbuffer(dev);
4857 4858
	}

4859
	ret = i915_gem_context_enable(dev_priv);
4860
	if (ret && ret != -EIO) {
4861
		DRM_ERROR("Context enable failed %d\n", ret);
4862
		i915_gem_cleanup_ringbuffer(dev);
4863

4864
		goto out;
4865
	}
D
Daniel Vetter 已提交
4866

4867 4868
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4869
	return ret;
4870 4871
}

4872 4873 4874 4875 4876
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4877 4878 4879
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4880
	mutex_lock(&dev->struct_mutex);
4881 4882 4883

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4884 4885 4886
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4887 4888 4889
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4890
	if (!i915.enable_execlists) {
4891
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4892 4893 4894
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4895
	} else {
4896
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4897 4898 4899
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4900 4901
	}

4902 4903 4904 4905 4906 4907 4908 4909
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4910
	ret = i915_gem_init_userptr(dev);
4911 4912
	if (ret)
		goto out_unlock;
4913

4914
	i915_gem_init_global_gtt(dev);
4915

4916
	ret = i915_gem_context_init(dev);
4917 4918
	if (ret)
		goto out_unlock;
4919

D
Daniel Vetter 已提交
4920 4921
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4922
		goto out_unlock;
4923

4924
	ret = i915_gem_init_hw(dev);
4925 4926 4927 4928 4929 4930 4931 4932
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4933
	}
4934 4935

out_unlock:
4936
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4937
	mutex_unlock(&dev->struct_mutex);
4938

4939
	return ret;
4940 4941
}

4942 4943 4944
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4945
	struct drm_i915_private *dev_priv = dev->dev_private;
4946
	struct intel_engine_cs *ring;
4947
	int i;
4948

4949
	for_each_ring(ring, dev_priv, i)
4950
		dev_priv->gt.cleanup_ring(ring);
4951 4952
}

4953
static void
4954
init_ring_lists(struct intel_engine_cs *ring)
4955 4956 4957 4958 4959
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4960 4961
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4962
{
4963 4964
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4965 4966 4967 4968
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4969
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4970 4971
}

4972 4973 4974
void
i915_gem_load(struct drm_device *dev)
{
4975
	struct drm_i915_private *dev_priv = dev->dev_private;
4976 4977
	int i;

4978
	dev_priv->objects =
4979 4980 4981 4982
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4983 4984 4985 4986 4987
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4988 4989 4990 4991 4992
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4993

B
Ben Widawsky 已提交
4994 4995 4996
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4997
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4998 4999
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5000
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5001 5002
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5003
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5004
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5005 5006
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5007 5008
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5009
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5010

5011 5012
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5013 5014 5015
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5016 5017 5018 5019
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5020 5021 5022 5023
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5024
	/* Initialize fence registers to zero */
5025 5026
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5027

5028
	i915_gem_detect_bit_6_swizzle(dev);
5029
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5030

5031 5032
	dev_priv->mm.interruptible = true;

5033
	i915_gem_shrinker_init(dev_priv);
5034 5035

	mutex_init(&dev_priv->fb_tracking.lock);
5036
}
5037

5038
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5039
{
5040
	struct drm_i915_file_private *file_priv = file->driver_priv;
5041 5042 5043 5044 5045

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5046
	spin_lock(&file_priv->mm.lock);
5047 5048 5049 5050 5051 5052 5053 5054 5055
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5056
	spin_unlock(&file_priv->mm.lock);
5057

5058 5059 5060 5061 5062
	if (!list_empty(&file_priv->rps_boost)) {
		mutex_lock(&to_i915(dev)->rps.hw_lock);
		list_del(&file_priv->rps_boost);
		mutex_unlock(&to_i915(dev)->rps.hw_lock);
	}
5063 5064 5065 5066 5067
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5068
	int ret;
5069 5070 5071 5072 5073 5074 5075 5076 5077

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5078
	file_priv->file = file;
5079
	INIT_LIST_HEAD(&file_priv->rps_boost);
5080 5081 5082 5083

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5084 5085 5086
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5087

5088
	return ret;
5089 5090
}

5091 5092 5093 5094 5095 5096 5097 5098 5099
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5117
/* All the new VM stuff */
5118 5119 5120
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5121 5122 5123 5124
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5125
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5126 5127

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5128 5129 5130 5131
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5132 5133
			return vma->node.start;
	}
5134

5135 5136
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5137 5138 5139
	return -1;
}

5140 5141
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5142
			      const struct i915_ggtt_view *view)
5143
{
5144
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5145 5146 5147
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5148 5149
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5150 5151
			return vma->node.start;

5152
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5173
				  const struct i915_ggtt_view *view)
5174 5175 5176 5177 5178 5179
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5180
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5181
		    drm_mm_node_allocated(&vma->node))
5182 5183 5184 5185 5186 5187 5188
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5189
	struct i915_vma *vma;
5190

5191 5192
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5204
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5205 5206 5207

	BUG_ON(list_empty(&o->vma_list));

5208 5209 5210 5211
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5212 5213
		if (vma->vm == vm)
			return vma->node.size;
5214
	}
5215 5216 5217
	return 0;
}

5218
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5219 5220
{
	struct i915_vma *vma;
5221 5222 5223 5224 5225 5226 5227 5228
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->pin_count > 0)
			return true;
	}
	return false;
5229
}
5230