i915_gem.c 122.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46

47 48 49 50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

53 54
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
55 56 57
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

58 59 60 61 62 63
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

82 83 84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
86
	spin_lock(&dev_priv->mm.object_stat_lock);
87 88
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
89
	spin_unlock(&dev_priv->mm.object_stat_lock);
90 91 92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100
}

101
static int
102
i915_gem_wait_for_error(struct i915_gpu_error *error)
103 104 105
{
	int ret;

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       10*HZ);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156 157
		if (vma->pin_count)
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169 170
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172 173 174 175 176
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

194
		put_page(page);
195 196 197
		vaddr += PAGE_SIZE;
	}

198
	i915_gem_chipset_flush(to_i915(obj->base.dev));
199 200 201 202 203 204 205 206 207 208 209 210 211

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
228
	if (WARN_ON(ret)) {
229 230 231 232 233 234 235 236 237 238
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
239
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
240
		char *vaddr = obj->phys_handle->vaddr;
241 242 243
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
258
				mark_page_accessed(page);
259
			put_page(page);
260 261
			vaddr += PAGE_SIZE;
		}
262
		obj->dirty = 0;
263 264
	}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

304 305 306 307 308
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
309
	int ret;
310 311 312 313 314 315 316 317 318 319 320 321 322 323

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
324 325 326 327 328
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
329 330 331
	if (ret)
		return ret;

332 333 334 335 336 337
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
338 339 340
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
341 342 343 344 345 346 347 348 349
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
350
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
351
	int ret = 0;
352 353 354 355 356 357 358

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
359

360
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
361 362 363 364 365 366 367 368 369 370
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
371 372 373 374
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
375 376
	}

377
	drm_clflush_virt_range(vaddr, args->size);
378
	i915_gem_chipset_flush(to_i915(dev));
379 380

out:
381
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
382
	return ret;
383 384
}

385 386
void *i915_gem_object_alloc(struct drm_device *dev)
{
387
	struct drm_i915_private *dev_priv = to_i915(dev);
388
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
389 390 391 392
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
393
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
394
	kmem_cache_free(dev_priv->objects, obj);
395 396
}

397 398 399 400 401
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
402
{
403
	struct drm_i915_gem_object *obj;
404 405
	int ret;
	u32 handle;
406

407
	size = roundup(size, PAGE_SIZE);
408 409
	if (size == 0)
		return -EINVAL;
410 411

	/* Allocate the new object */
412
	obj = i915_gem_object_create(dev, size);
413 414
	if (IS_ERR(obj))
		return PTR_ERR(obj);
415

416
	ret = drm_gem_handle_create(file, &obj->base, &handle);
417
	/* drop reference from allocate - handle holds it now */
418
	i915_gem_object_put_unlocked(obj);
419 420
	if (ret)
		return ret;
421

422
	*handle_p = handle;
423 424 425
	return 0;
}

426 427 428 429 430 431
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
432
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
433 434
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
435
			       args->size, &args->handle);
436 437 438 439
}

/**
 * Creates a new mm object and returns a handle to it.
440 441 442
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
443 444 445 446 447 448
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
449

450
	return i915_gem_create(file, dev,
451
			       args->size, &args->handle);
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480
static inline int
481 482
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

518
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
519 520
		return -EINVAL;

521 522 523 524
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

543 544 545
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
546
static int
547 548 549 550 551 552 553
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

554
	if (unlikely(page_do_bit17_swizzling))
555 556 557 558 559 560 561 562 563 564 565
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

566
	return ret ? -EFAULT : 0;
567 568
}

569 570 571 572
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
573
	if (unlikely(swizzled)) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

591 592 593 594 595 596 597 598 599 600 601 602
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
603 604 605
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
606 607 608 609 610 611 612 613 614 615 616

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

617
	return ret ? - EFAULT : 0;
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
647
	struct drm_i915_private *dev_priv = to_i915(dev);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

756
static int
757 758 759 760
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
761
{
762
	char __user *user_data;
763
	ssize_t remain;
764
	loff_t offset;
765
	int shmem_page_offset, page_length, ret = 0;
766
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
767
	int prefaulted = 0;
768
	int needs_clflush = 0;
769
	struct sg_page_iter sg_iter;
770

771
	if (!i915_gem_object_has_struct_page(obj))
772 773
		return -ENODEV;

774
	user_data = u64_to_user_ptr(args->data_ptr);
775 776
	remain = args->size;

777
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
778

779
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
780 781 782
	if (ret)
		return ret;

783
	offset = args->offset;
784

785 786
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
787
		struct page *page = sg_page_iter_page(&sg_iter);
788 789 790 791

		if (remain <= 0)
			break;

792 793 794 795 796
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
797
		shmem_page_offset = offset_in_page(offset);
798 799 800 801
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

802 803 804
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

805 806 807 808 809
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
810 811 812

		mutex_unlock(&dev->struct_mutex);

813
		if (likely(!i915.prefault_disable) && !prefaulted) {
814
			ret = fault_in_multipages_writeable(user_data, remain);
815 816 817 818 819 820 821
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
822

823 824 825
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
826

827
		mutex_lock(&dev->struct_mutex);
828 829

		if (ret)
830 831
			goto out;

832
next_page:
833
		remain -= page_length;
834
		user_data += page_length;
835 836 837
		offset += page_length;
	}

838
out:
839 840
	i915_gem_object_unpin_pages(obj);

841 842 843
	return ret;
}

844 845
/**
 * Reads data from the object referenced by handle.
846 847 848
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
849 850 851 852 853
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
854
		     struct drm_file *file)
855 856
{
	struct drm_i915_gem_pread *args = data;
857
	struct drm_i915_gem_object *obj;
858
	int ret = 0;
859

860 861 862 863
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
864
		       u64_to_user_ptr(args->data_ptr),
865 866 867
		       args->size))
		return -EFAULT;

868
	ret = i915_mutex_lock_interruptible(dev);
869
	if (ret)
870
		return ret;
871

872 873
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
874 875
		ret = -ENOENT;
		goto unlock;
876
	}
877

878
	/* Bounds check source.  */
879 880
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
881
		ret = -EINVAL;
882
		goto out;
C
Chris Wilson 已提交
883 884
	}

C
Chris Wilson 已提交
885 886
	trace_i915_gem_object_pread(obj, args->offset, args->size);

887
	ret = i915_gem_shmem_pread(dev, obj, args, file);
888

889
	/* pread for non shmem backed objects */
890 891
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
892 893
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
894 895
		intel_runtime_pm_put(to_i915(dev));
	}
896

897
out:
898
	i915_gem_object_put(obj);
899
unlock:
900
	mutex_unlock(&dev->struct_mutex);
901
	return ret;
902 903
}

904 905
/* This is the fast write path which cannot handle
 * page faults in the source data
906
 */
907 908 909 910 911 912

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
913
{
914 915
	void __iomem *vaddr_atomic;
	void *vaddr;
916
	unsigned long unwritten;
917

P
Peter Zijlstra 已提交
918
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
919 920 921
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
922
						      user_data, length);
P
Peter Zijlstra 已提交
923
	io_mapping_unmap_atomic(vaddr_atomic);
924
	return unwritten;
925 926
}

927 928 929
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
930
 * @i915: i915 device private data
931 932 933
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
934
 */
935
static int
936
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
937
			 struct drm_i915_gem_object *obj,
938
			 struct drm_i915_gem_pwrite *args,
939
			 struct drm_file *file)
940
{
941
	struct i915_ggtt *ggtt = &i915->ggtt;
942
	struct drm_device *dev = obj->base.dev;
943 944
	struct drm_mm_node node;
	uint64_t remain, offset;
945
	char __user *user_data;
946
	int ret;
947 948 949 950
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
951

952
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
968 969 970
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
971
	}
D
Daniel Vetter 已提交
972 973 974 975 976

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

977
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
978
	obj->dirty = true;
979

980 981 982 983
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
984 985
		/* Operation in this page
		 *
986 987 988
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
989
		 */
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1003
		/* If we get a fault while copying data, then (presumably) our
1004 1005
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1006 1007
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1008
		 */
1009
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1010
				    page_offset, user_data, page_length)) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1023
		}
1024

1025 1026 1027
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1028 1029
	}

1030
out_flush:
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1044
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1045
out_unpin:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1056
out:
1057
	return ret;
1058 1059
}

1060 1061 1062 1063
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1064
static int
1065 1066 1067 1068 1069
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1070
{
1071
	char *vaddr;
1072
	int ret;
1073

1074
	if (unlikely(page_do_bit17_swizzling))
1075
		return -EINVAL;
1076

1077 1078 1079 1080
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1081 1082
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1083 1084 1085 1086
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1087

1088
	return ret ? -EFAULT : 0;
1089 1090
}

1091 1092
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1093
static int
1094 1095 1096 1097 1098
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1099
{
1100 1101
	char *vaddr;
	int ret;
1102

1103
	vaddr = kmap(page);
1104
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1105 1106 1107
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1108 1109
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1110 1111
						user_data,
						page_length);
1112 1113 1114 1115 1116
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1117 1118 1119
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1120
	kunmap(page);
1121

1122
	return ret ? -EFAULT : 0;
1123 1124 1125
}

static int
1126 1127 1128 1129
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1130 1131
{
	ssize_t remain;
1132 1133
	loff_t offset;
	char __user *user_data;
1134
	int shmem_page_offset, page_length, ret = 0;
1135
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1136
	int hit_slowpath = 0;
1137 1138
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1139
	struct sg_page_iter sg_iter;
1140

1141
	user_data = u64_to_user_ptr(args->data_ptr);
1142 1143
	remain = args->size;

1144
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1145

1146 1147 1148 1149
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1150 1151 1152 1153 1154
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1155
		needs_clflush_after = cpu_write_needs_clflush(obj);
1156
	}
1157 1158 1159 1160 1161
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1162

1163 1164 1165 1166
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1167
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1168

1169 1170
	i915_gem_object_pin_pages(obj);

1171
	offset = args->offset;
1172
	obj->dirty = 1;
1173

1174 1175
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1176
		struct page *page = sg_page_iter_page(&sg_iter);
1177
		int partial_cacheline_write;
1178

1179 1180 1181
		if (remain <= 0)
			break;

1182 1183 1184 1185 1186
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1187
		shmem_page_offset = offset_in_page(offset);
1188 1189 1190 1191 1192

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1193 1194 1195 1196 1197 1198 1199
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1200 1201 1202
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1203 1204 1205 1206 1207 1208
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1209 1210 1211

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1212 1213 1214 1215
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1216

1217
		mutex_lock(&dev->struct_mutex);
1218 1219

		if (ret)
1220 1221
			goto out;

1222
next_page:
1223
		remain -= page_length;
1224
		user_data += page_length;
1225
		offset += page_length;
1226 1227
	}

1228
out:
1229 1230
	i915_gem_object_unpin_pages(obj);

1231
	if (hit_slowpath) {
1232 1233 1234 1235 1236 1237 1238
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1239
			if (i915_gem_clflush_object(obj, obj->pin_display))
1240
				needs_clflush_after = true;
1241
		}
1242
	}
1243

1244
	if (needs_clflush_after)
1245
		i915_gem_chipset_flush(to_i915(dev));
1246 1247
	else
		obj->cache_dirty = true;
1248

1249
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1250
	return ret;
1251 1252 1253 1254
}

/**
 * Writes data to the object referenced by handle.
1255 1256 1257
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1258 1259 1260 1261 1262
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1263
		      struct drm_file *file)
1264
{
1265
	struct drm_i915_private *dev_priv = to_i915(dev);
1266
	struct drm_i915_gem_pwrite *args = data;
1267
	struct drm_i915_gem_object *obj;
1268 1269 1270 1271 1272 1273
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1274
		       u64_to_user_ptr(args->data_ptr),
1275 1276 1277
		       args->size))
		return -EFAULT;

1278
	if (likely(!i915.prefault_disable)) {
1279
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1280 1281 1282 1283
						   args->size);
		if (ret)
			return -EFAULT;
	}
1284

1285 1286
	intel_runtime_pm_get(dev_priv);

1287
	ret = i915_mutex_lock_interruptible(dev);
1288
	if (ret)
1289
		goto put_rpm;
1290

1291 1292
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1293 1294
		ret = -ENOENT;
		goto unlock;
1295
	}
1296

1297
	/* Bounds check destination. */
1298 1299
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1300
		ret = -EINVAL;
1301
		goto out;
C
Chris Wilson 已提交
1302 1303
	}

C
Chris Wilson 已提交
1304 1305
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1306
	ret = -EFAULT;
1307 1308 1309 1310 1311 1312
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1313 1314
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1315
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1316 1317 1318
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1319
	}
1320

1321
	if (ret == -EFAULT || ret == -ENOSPC) {
1322 1323
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1324
		else if (i915_gem_object_has_struct_page(obj))
1325
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1326 1327
		else
			ret = -ENODEV;
1328
	}
1329

1330
out:
1331
	i915_gem_object_put(obj);
1332
unlock:
1333
	mutex_unlock(&dev->struct_mutex);
1334 1335 1336
put_rpm:
	intel_runtime_pm_put(dev_priv);

1337 1338 1339
	return ret;
}

1340 1341 1342
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1343 1344
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1345
 */
1346
int
1347 1348 1349
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1350
	struct reservation_object *resv;
C
Chris Wilson 已提交
1351 1352 1353
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx, ret;
1354

C
Chris Wilson 已提交
1355 1356 1357 1358 1359
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = obj->active;
1360
	} else {
C
Chris Wilson 已提交
1361 1362 1363
		active_mask = 1;
		active = &obj->last_write;
	}
1364

C
Chris Wilson 已提交
1365
	for_each_active(active_mask, idx) {
1366 1367
		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
C
Chris Wilson 已提交
1368 1369
		if (ret)
			return ret;
1370 1371
	}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1382 1383 1384
	return 0;
}

1385 1386 1387 1388 1389
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1390
					    struct intel_rps_client *rps,
1391 1392 1393
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1394
	struct drm_i915_private *dev_priv = to_i915(dev);
1395
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
C
Chris Wilson 已提交
1396 1397
	struct i915_gem_active *active;
	unsigned long active_mask;
1398
	int ret, i, n = 0;
1399 1400 1401 1402

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

C
Chris Wilson 已提交
1403 1404
	active_mask = obj->active;
	if (!active_mask)
1405 1406
		return 0;

C
Chris Wilson 已提交
1407 1408
	if (!readonly) {
		active = obj->last_read;
1409
	} else {
C
Chris Wilson 已提交
1410 1411 1412
		active_mask = 1;
		active = &obj->last_write;
	}
1413

C
Chris Wilson 已提交
1414 1415
	for_each_active(active_mask, i) {
		struct drm_i915_gem_request *req;
1416

C
Chris Wilson 已提交
1417 1418 1419
		req = i915_gem_active_get(&active[i],
					  &obj->base.dev->struct_mutex);
		if (req)
1420
			requests[n++] = req;
1421 1422
	}

1423
	mutex_unlock(&dev->struct_mutex);
1424
	ret = 0;
1425
	for (i = 0; ret == 0 && i < n; i++)
1426
		ret = i915_wait_request(requests[i], true, NULL, rps);
1427 1428
	mutex_lock(&dev->struct_mutex);

1429
	for (i = 0; i < n; i++)
1430
		i915_gem_request_put(requests[i]);
1431 1432

	return ret;
1433 1434
}

1435 1436 1437 1438 1439 1440
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1441 1442 1443 1444 1445 1446 1447
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1448
/**
1449 1450
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1451 1452 1453
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1454 1455 1456
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1457
			  struct drm_file *file)
1458 1459
{
	struct drm_i915_gem_set_domain *args = data;
1460
	struct drm_i915_gem_object *obj;
1461 1462
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1463 1464
	int ret;

1465
	/* Only handle setting domains to types used by the CPU. */
1466
	if (write_domain & I915_GEM_GPU_DOMAINS)
1467 1468
		return -EINVAL;

1469
	if (read_domains & I915_GEM_GPU_DOMAINS)
1470 1471 1472 1473 1474 1475 1476 1477
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1478
	ret = i915_mutex_lock_interruptible(dev);
1479
	if (ret)
1480
		return ret;
1481

1482 1483
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1484 1485
		ret = -ENOENT;
		goto unlock;
1486
	}
1487

1488 1489 1490 1491
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1492
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1493
							  to_rps_client(file),
1494
							  !write_domain);
1495 1496 1497
	if (ret)
		goto unref;

1498
	if (read_domains & I915_GEM_DOMAIN_GTT)
1499
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1500
	else
1501
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1502

1503
	if (write_domain != 0)
1504
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1505

1506
unref:
1507
	i915_gem_object_put(obj);
1508
unlock:
1509 1510 1511 1512 1513 1514
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1515 1516 1517
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1518 1519 1520
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1521
			 struct drm_file *file)
1522 1523
{
	struct drm_i915_gem_sw_finish *args = data;
1524
	struct drm_i915_gem_object *obj;
1525 1526
	int ret = 0;

1527
	ret = i915_mutex_lock_interruptible(dev);
1528
	if (ret)
1529
		return ret;
1530

1531 1532
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1533 1534
		ret = -ENOENT;
		goto unlock;
1535 1536 1537
	}

	/* Pinned buffers may be scanout, so flush the cache */
1538
	if (obj->pin_display)
1539
		i915_gem_object_flush_cpu_write_domain(obj);
1540

1541
	i915_gem_object_put(obj);
1542
unlock:
1543 1544 1545 1546 1547
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1548 1549 1550 1551 1552
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1553 1554 1555
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1566 1567 1568
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1569
		    struct drm_file *file)
1570 1571
{
	struct drm_i915_gem_mmap *args = data;
1572
	struct drm_i915_gem_object *obj;
1573 1574
	unsigned long addr;

1575 1576 1577
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1578
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1579 1580
		return -ENODEV;

1581 1582
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1583
		return -ENOENT;
1584

1585 1586 1587
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1588
	if (!obj->base.filp) {
1589
		i915_gem_object_put_unlocked(obj);
1590 1591 1592
		return -EINVAL;
	}

1593
	addr = vm_mmap(obj->base.filp, 0, args->size,
1594 1595
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1596 1597 1598 1599
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1600
		if (down_write_killable(&mm->mmap_sem)) {
1601
			i915_gem_object_put_unlocked(obj);
1602 1603
			return -EINTR;
		}
1604 1605 1606 1607 1608 1609 1610
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1611 1612

		/* This may race, but that's ok, it only gets set */
1613
		WRITE_ONCE(obj->has_wc_mmap, true);
1614
	}
1615
	i915_gem_object_put_unlocked(obj);
1616 1617 1618 1619 1620 1621 1622 1623
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1624 1625
/**
 * i915_gem_fault - fault a page into the GTT
1626 1627
 * @vma: VMA in question
 * @vmf: fault info
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1642 1643
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1644 1645
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1646
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1647 1648 1649
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1650
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1651

1652 1653
	intel_runtime_pm_get(dev_priv);

1654 1655 1656 1657
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1658 1659 1660
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1661

C
Chris Wilson 已提交
1662 1663
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1664 1665 1666 1667 1668 1669 1670 1671 1672
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1673 1674
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1675
		ret = -EFAULT;
1676 1677 1678
		goto unlock;
	}

1679
	/* Use a partial view if the object is bigger than the aperture. */
1680
	if (obj->base.size >= ggtt->mappable_end &&
1681
	    obj->tiling_mode == I915_TILING_NONE) {
1682
		static const unsigned int chunk_size = 256; // 1 MiB
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
1695
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1696 1697
	if (ret)
		goto unlock;
1698

1699 1700 1701
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1702

1703
	ret = i915_gem_object_get_fence(obj);
1704
	if (ret)
1705
		goto unpin;
1706

1707
	/* Finally, remap it using the new GTT offset */
1708
	pfn = ggtt->mappable_base +
1709
		i915_gem_obj_ggtt_offset_view(obj, &view);
1710
	pfn >>= PAGE_SHIFT;
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1721

1722 1723
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1724 1725 1726 1727 1728
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1750
unpin:
1751
	i915_gem_object_ggtt_unpin_view(obj, &view);
1752
unlock:
1753
	mutex_unlock(&dev->struct_mutex);
1754
out:
1755
	switch (ret) {
1756
	case -EIO:
1757 1758 1759 1760 1761 1762 1763
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1764 1765 1766
			ret = VM_FAULT_SIGBUS;
			break;
		}
1767
	case -EAGAIN:
D
Daniel Vetter 已提交
1768 1769 1770 1771
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1772
		 */
1773 1774
	case 0:
	case -ERESTARTSYS:
1775
	case -EINTR:
1776 1777 1778 1779 1780
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1781 1782
		ret = VM_FAULT_NOPAGE;
		break;
1783
	case -ENOMEM:
1784 1785
		ret = VM_FAULT_OOM;
		break;
1786
	case -ENOSPC:
1787
	case -EFAULT:
1788 1789
		ret = VM_FAULT_SIGBUS;
		break;
1790
	default:
1791
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1792 1793
		ret = VM_FAULT_SIGBUS;
		break;
1794
	}
1795 1796 1797

	intel_runtime_pm_put(dev_priv);
	return ret;
1798 1799
}

1800 1801 1802 1803
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1804
 * Preserve the reservation of the mmapping with the DRM core code, but
1805 1806 1807 1808 1809 1810 1811 1812 1813
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1814
void
1815
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1816
{
1817 1818 1819 1820 1821 1822
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1823 1824
	if (!obj->fault_mappable)
		return;
1825

1826 1827
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1838
	obj->fault_mappable = false;
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848 1849
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
u64 i915_gem_get_ggtt_size(struct drm_device *dev, u64 size, int tiling_mode)
1860
{
1861
	u64 ggtt_size;
1862

1863 1864 1865
	GEM_BUG_ON(size == 0);

	if (INTEL_GEN(dev) >= 4 ||
1866 1867
	    tiling_mode == I915_TILING_NONE)
		return size;
1868 1869

	/* Previous chips need a power-of-two fence region when tiling */
1870
	if (IS_GEN3(dev))
1871
		ggtt_size = 1024*1024;
1872
	else
1873
		ggtt_size = 512*1024;
1874

1875 1876
	while (ggtt_size < size)
		ggtt_size <<= 1;
1877

1878
	return ggtt_size;
1879 1880
}

1881
/**
1882
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1883 1884 1885
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
1886
 * @fenced: is fenced alignment required or not
1887
 *
1888
 * Return the required global GTT alignment for an object, taking into account
1889
 * potential fence register mapping.
1890
 */
1891 1892
u64 i915_gem_get_ggtt_alignment(struct drm_device *dev, u64 size,
				int tiling_mode, bool fenced)
1893
{
1894 1895
	GEM_BUG_ON(size == 0);

1896 1897 1898 1899
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1900
	if (INTEL_GEN(dev) >= 4 || (!fenced && IS_G33(dev)) ||
1901
	    tiling_mode == I915_TILING_NONE)
1902 1903
		return 4096;

1904 1905 1906 1907
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1908
	return i915_gem_get_ggtt_size(dev, size, tiling_mode);
1909 1910
}

1911 1912
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1913
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1914 1915
	int ret;

1916 1917
	dev_priv->mm.shrinker_no_lock_stealing = true;

1918 1919
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1920
		goto out;
1921 1922 1923 1924 1925 1926 1927 1928

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1929 1930 1931 1932 1933
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1934 1935
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1936
		goto out;
1937 1938

	i915_gem_shrink_all(dev_priv);
1939 1940 1941 1942 1943
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1944 1945 1946 1947 1948 1949 1950
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1951
int
1952 1953
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1954
		  uint32_t handle,
1955
		  uint64_t *offset)
1956
{
1957
	struct drm_i915_gem_object *obj;
1958 1959
	int ret;

1960
	ret = i915_mutex_lock_interruptible(dev);
1961
	if (ret)
1962
		return ret;
1963

1964 1965
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1966 1967 1968
		ret = -ENOENT;
		goto unlock;
	}
1969

1970
	if (obj->madv != I915_MADV_WILLNEED) {
1971
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1972
		ret = -EFAULT;
1973
		goto out;
1974 1975
	}

1976 1977 1978
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1979

1980
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1981

1982
out:
1983
	i915_gem_object_put(obj);
1984
unlock:
1985
	mutex_unlock(&dev->struct_mutex);
1986
	return ret;
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2010
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2011 2012
}

D
Daniel Vetter 已提交
2013 2014 2015
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2016
{
2017
	i915_gem_object_free_mmap_offset(obj);
2018

2019 2020
	if (obj->base.filp == NULL)
		return;
2021

D
Daniel Vetter 已提交
2022 2023 2024 2025 2026
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2027
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2028 2029
	obj->madv = __I915_MADV_PURGED;
}
2030

2031 2032 2033
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2034
{
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2049 2050
}

2051
static void
2052
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2053
{
2054 2055
	struct sgt_iter sgt_iter;
	struct page *page;
2056
	int ret;
2057

2058
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2059

C
Chris Wilson 已提交
2060
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2061
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2062 2063 2064
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2065
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2066 2067 2068
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2069 2070
	i915_gem_gtt_finish_object(obj);

2071
	if (i915_gem_object_needs_bit17_swizzle(obj))
2072 2073
		i915_gem_object_save_bit_17_swizzle(obj);

2074 2075
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2076

2077
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2078
		if (obj->dirty)
2079
			set_page_dirty(page);
2080

2081
		if (obj->madv == I915_MADV_WILLNEED)
2082
			mark_page_accessed(page);
2083

2084
		put_page(page);
2085
	}
2086
	obj->dirty = 0;
2087

2088 2089
	sg_free_table(obj->pages);
	kfree(obj->pages);
2090
}
C
Chris Wilson 已提交
2091

2092
int
2093 2094 2095 2096
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2097
	if (obj->pages == NULL)
2098 2099
		return 0;

2100 2101 2102
	if (obj->pages_pin_count)
		return -EBUSY;

2103
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2104

2105 2106 2107
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2108
	list_del(&obj->global_list);
2109

2110
	if (obj->mapping) {
2111 2112 2113 2114
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2115 2116 2117
		obj->mapping = NULL;
	}

2118
	ops->put_pages(obj);
2119
	obj->pages = NULL;
2120

2121
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2122 2123 2124 2125

	return 0;
}

2126
static int
C
Chris Wilson 已提交
2127
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2128
{
2129
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2130 2131
	int page_count, i;
	struct address_space *mapping;
2132 2133
	struct sg_table *st;
	struct scatterlist *sg;
2134
	struct sgt_iter sgt_iter;
2135
	struct page *page;
2136
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2137
	int ret;
C
Chris Wilson 已提交
2138
	gfp_t gfp;
2139

C
Chris Wilson 已提交
2140 2141 2142 2143 2144 2145 2146
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2147 2148 2149 2150
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2151
	page_count = obj->base.size / PAGE_SIZE;
2152 2153
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2154
		return -ENOMEM;
2155
	}
2156

2157 2158 2159 2160 2161
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2162
	mapping = file_inode(obj->base.filp)->i_mapping;
2163
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2164
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2165 2166 2167
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2168 2169
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2170 2171 2172 2173 2174
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2175 2176 2177 2178 2179 2180 2181 2182
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2183
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2184 2185
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2186
				goto err_pages;
I
Imre Deak 已提交
2187
			}
C
Chris Wilson 已提交
2188
		}
2189 2190 2191 2192 2193 2194 2195 2196
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2197 2198 2199 2200 2201 2202 2203 2204 2205
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2206 2207 2208

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2209
	}
2210 2211 2212 2213
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2214 2215
	obj->pages = st;

I
Imre Deak 已提交
2216 2217 2218 2219
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2220
	if (i915_gem_object_needs_bit17_swizzle(obj))
2221 2222
		i915_gem_object_do_bit_17_swizzle(obj);

2223 2224 2225 2226
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2227 2228 2229
	return 0;

err_pages:
2230
	sg_mark_end(sg);
2231 2232
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2233 2234
	sg_free_table(st);
	kfree(st);
2235 2236 2237 2238 2239 2240 2241 2242 2243

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2244 2245 2246 2247
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2260
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2261 2262 2263
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2264
	if (obj->pages)
2265 2266
		return 0;

2267
	if (obj->madv != I915_MADV_WILLNEED) {
2268
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2269
		return -EFAULT;
2270 2271
	}

2272 2273
	BUG_ON(obj->pages_pin_count);

2274 2275 2276 2277
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2278
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2279 2280 2281 2282

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2283
	return 0;
2284 2285
}

2286 2287 2288 2289 2290
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2291 2292
	struct sgt_iter sgt_iter;
	struct page *page;
2293 2294
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2295 2296 2297 2298 2299 2300 2301
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2302 2303 2304 2305 2306 2307
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2308

2309 2310
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2311 2312 2313 2314 2315 2316

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2317 2318
	if (pages != stack_pages)
		drm_free_large(pages);
2319 2320 2321 2322 2323

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2336 2337 2338
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2339 2340 2341 2342 2343 2344 2345 2346
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2347
static void
2348 2349
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2350
{
2351 2352
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2353

2354
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2355 2356
}

2357
static void
2358 2359
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2360
{
2361 2362 2363
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2364

2365
	GEM_BUG_ON((obj->active & (1 << idx)) == 0);
2366

2367
	obj->active &= ~(1 << idx);
2368 2369
	if (obj->active)
		return;
2370

2371 2372 2373 2374
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2375 2376 2377
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2378

2379
	i915_gem_object_put(obj);
2380 2381
}

2382
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2383
{
2384
	unsigned long elapsed;
2385

2386
	if (ctx->hang_stats.banned)
2387 2388
		return true;

2389
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2390 2391
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2392 2393
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2394 2395 2396 2397 2398
	}

	return false;
}

2399
static void i915_set_reset_status(struct i915_gem_context *ctx,
2400
				  const bool guilty)
2401
{
2402
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2403 2404

	if (guilty) {
2405
		hs->banned = i915_context_is_banned(ctx);
2406 2407 2408 2409
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2410 2411 2412
	}
}

2413
struct drm_i915_gem_request *
2414
i915_gem_find_active_request(struct intel_engine_cs *engine)
2415
{
2416 2417
	struct drm_i915_gem_request *request;

2418 2419 2420 2421 2422 2423 2424 2425
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2426
	list_for_each_entry(request, &engine->request_list, link) {
2427
		if (i915_gem_request_completed(request))
2428
			continue;
2429

2430
		return request;
2431
	}
2432 2433 2434 2435

	return NULL;
}

2436
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2437 2438 2439 2440
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2441
	request = i915_gem_find_active_request(engine);
2442 2443 2444
	if (request == NULL)
		return;

2445
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2446

2447
	i915_set_reset_status(request->ctx, ring_hung);
2448
	list_for_each_entry_continue(request, &engine->request_list, link)
2449
		i915_set_reset_status(request->ctx, false);
2450
}
2451

2452
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2453
{
2454
	struct intel_ring *ring;
2455

2456 2457 2458 2459
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2460
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2461

2462 2463 2464 2465 2466 2467
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2468
	if (i915.enable_execlists) {
2469 2470
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2471

2472
		intel_execlists_cancel_requests(engine);
2473 2474
	}

2475 2476 2477 2478 2479 2480 2481
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2482
	if (!list_empty(&engine->request_list)) {
2483 2484
		struct drm_i915_gem_request *request;

2485 2486
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
2487
					  link);
2488

2489
		i915_gem_request_retire_upto(request);
2490
	}
2491 2492 2493 2494 2495 2496 2497 2498

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2499 2500 2501
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2502
	}
2503

2504
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2505 2506
}

2507
void i915_gem_reset(struct drm_device *dev)
2508
{
2509
	struct drm_i915_private *dev_priv = to_i915(dev);
2510
	struct intel_engine_cs *engine;
2511

2512 2513 2514 2515 2516
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2517
	for_each_engine(engine, dev_priv)
2518
		i915_gem_reset_engine_status(engine);
2519

2520
	for_each_engine(engine, dev_priv)
2521
		i915_gem_reset_engine_cleanup(engine);
2522
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2523

2524 2525
	i915_gem_context_reset(dev);

2526
	i915_gem_restore_fences(dev);
2527 2528
}

2529
static void
2530 2531
i915_gem_retire_work_handler(struct work_struct *work)
{
2532
	struct drm_i915_private *dev_priv =
2533
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2534
	struct drm_device *dev = &dev_priv->drm;
2535

2536
	/* Come back later if the device is busy... */
2537
	if (mutex_trylock(&dev->struct_mutex)) {
2538
		i915_gem_retire_requests(dev_priv);
2539
		mutex_unlock(&dev->struct_mutex);
2540
	}
2541 2542 2543 2544 2545

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2546 2547
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2548 2549
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2550
				   round_jiffies_up_relative(HZ));
2551
	}
2552
}
2553

2554 2555 2556 2557
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2558
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2559
	struct drm_device *dev = &dev_priv->drm;
2560
	struct intel_engine_cs *engine;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2583

2584
	for_each_engine(engine, dev_priv)
2585
		i915_gem_batch_pool_fini(&engine->batch_pool);
2586

2587 2588 2589
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2590

2591 2592 2593 2594
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2595
	stuck_engines = intel_kick_waiters(dev_priv);
2596 2597 2598
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2599

2600 2601 2602 2603 2604
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2605

2606 2607 2608 2609
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2610
	}
2611 2612
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2626 2627
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2628 2629 2630
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2655
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2656 2657
	int i, n = 0;
	int ret;
2658

2659 2660 2661
	if (args->flags != 0)
		return -EINVAL;

2662 2663 2664 2665
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2666 2667
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2668 2669 2670 2671
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2672
	if (!obj->active)
2673
		goto out;
2674

2675
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2676
		struct drm_i915_gem_request *req;
2677

2678 2679
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2680 2681
		if (req)
			requests[n++] = req;
2682 2683
	}

2684 2685
out:
	i915_gem_object_put(obj);
2686 2687
	mutex_unlock(&dev->struct_mutex);

2688 2689
	for (i = 0; i < n; i++) {
		if (ret == 0)
2690 2691 2692
			ret = i915_wait_request(requests[i], true,
						args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						to_rps_client(file));
2693
		i915_gem_request_put(requests[i]);
2694
	}
2695
	return ret;
2696 2697
}

2698
static int
2699
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2700
		       struct drm_i915_gem_request *from)
2701 2702 2703
{
	int ret;

2704
	if (to->engine == from->engine)
2705 2706
		return 0;

2707
	if (!i915.semaphores) {
2708 2709 2710 2711
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2712 2713 2714
		if (ret)
			return ret;
	} else {
2715
		int idx = intel_engine_sync_index(from->engine, to->engine);
2716
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2717 2718
			return 0;

2719
		trace_i915_gem_ring_sync_to(to, from);
2720
		ret = to->engine->semaphore.sync_to(to, from);
2721 2722 2723
		if (ret)
			return ret;

2724
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2725 2726 2727 2728 2729
	}

	return 0;
}

2730 2731 2732 2733
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2734
 * @to: request we are wishing to use
2735 2736
 *
 * This code is meant to abstract object synchronization with the GPU.
2737 2738 2739
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2740 2741 2742 2743 2744 2745 2746
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2747 2748 2749
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2750 2751
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2752
		     struct drm_i915_gem_request *to)
2753
{
C
Chris Wilson 已提交
2754 2755 2756
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2757

C
Chris Wilson 已提交
2758
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2759

C
Chris Wilson 已提交
2760 2761 2762
	active_mask = obj->active;
	if (!active_mask)
		return 0;
2763

C
Chris Wilson 已提交
2764 2765
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2766
	} else {
C
Chris Wilson 已提交
2767 2768
		active_mask = 1;
		active = &obj->last_write;
2769
	}
C
Chris Wilson 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2780
		ret = __i915_gem_object_sync(to, request);
2781 2782 2783
		if (ret)
			return ret;
	}
2784

2785
	return 0;
2786 2787
}

2788 2789 2790 2791 2792 2793 2794
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2795 2796 2797
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2820
int i915_vma_unbind(struct i915_vma *vma)
2821
{
2822
	struct drm_i915_gem_object *obj = vma->obj;
2823
	unsigned long active;
2824
	int ret;
2825

2826 2827 2828 2829
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2830
	if (active) {
2831 2832
		int idx;

2833 2834 2835 2836 2837 2838 2839
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
		vma->pin_count++;

2840 2841 2842 2843
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2844
				break;
2845 2846
		}

2847 2848 2849 2850
		vma->pin_count--;
		if (ret)
			return ret;

2851 2852 2853 2854 2855 2856
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

	if (vma->pin_count)
		return -EBUSY;

2857 2858
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2859

2860 2861
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2862

2863
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2864
		i915_gem_object_finish_gtt(obj);
2865

2866 2867 2868 2869
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2870 2871

		__i915_vma_iounmap(vma);
2872
	}
2873

2874 2875 2876 2877
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2878
	vma->bound = 0;
2879

2880 2881 2882
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2883
	if (vma->is_ggtt) {
2884 2885 2886 2887 2888 2889
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2890
		vma->ggtt_view.pages = NULL;
2891
	}
2892

B
Ben Widawsky 已提交
2893
	/* Since the unbound list is global, only move to that list if
2894
	 * no more VMAs exist. */
2895 2896 2897
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2898

2899 2900 2901 2902 2903 2904
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2905 2906 2907 2908
destroy:
	if (unlikely(vma->closed))
		i915_vma_destroy(vma);

2909
	return 0;
2910 2911
}

2912
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
2913
{
2914
	struct intel_engine_cs *engine;
2915
	int ret;
2916

2917
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2918

2919
	for_each_engine(engine, dev_priv) {
2920 2921 2922
		if (engine->last_context == NULL)
			continue;

2923
		ret = intel_engine_idle(engine);
2924 2925 2926
		if (ret)
			return ret;
	}
2927

2928
	return 0;
2929 2930
}

2931
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2932 2933
				     unsigned long cache_level)
{
2934
	struct drm_mm_node *gtt_space = &vma->node;
2935 2936
	struct drm_mm_node *other;

2937 2938 2939 2940 2941 2942
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2943
	 */
2944
	if (vma->vm->mm.color_adjust == NULL)
2945 2946
		return true;

2947
	if (!drm_mm_node_allocated(gtt_space))
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2964
/**
2965 2966
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
2967 2968 2969
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
2970
 * @size: requested size in bytes (can be larger than the VMA)
2971 2972
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
2973
 */
2974
static struct i915_vma *
2975 2976 2977 2978 2979 2980
i915_gem_object_insert_into_vm(struct drm_i915_gem_object *obj,
			       struct i915_address_space *vm,
			       const struct i915_ggtt_view *ggtt_view,
			       u64 size,
			       u64 alignment,
			       u64 flags)
2981
{
2982
	struct drm_device *dev = obj->base.dev;
2983
	struct drm_i915_private *dev_priv = to_i915(dev);
2984
	u64 start, end;
2985
	u32 search_flag, alloc_flag;
B
Ben Widawsky 已提交
2986
	struct i915_vma *vma;
2987
	int ret;
2988

2989
	if (i915_is_ggtt(vm)) {
2990 2991
		u32 fence_size, fence_alignment, unfenced_alignment;
		u64 view_size;
2992 2993 2994

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
2995

2996 2997
		view_size = i915_ggtt_view_size(obj, ggtt_view);

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		fence_size = i915_gem_get_ggtt_size(dev,
						    view_size,
						    obj->tiling_mode);
		fence_alignment = i915_gem_get_ggtt_alignment(dev,
							      view_size,
							      obj->tiling_mode,
							      true);
		unfenced_alignment = i915_gem_get_ggtt_alignment(dev,
								 view_size,
								 obj->tiling_mode,
								 false);
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		size = max(size, view_size);
		if (flags & PIN_MAPPABLE)
			size = max_t(u64, size, fence_size);

		if (alignment == 0)
			alignment = flags & PIN_MAPPABLE ? fence_alignment :
				unfenced_alignment;
		if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
			DRM_DEBUG("Invalid object (view type=%u) alignment requested %llx\n",
				  ggtt_view ? ggtt_view->type : 0,
				  alignment);
			return ERR_PTR(-EINVAL);
		}
3022
	} else {
3023 3024
		size = max_t(u64, size, obj->base.size);
		alignment = 4096;
3025
	}
3026

3027 3028 3029
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3030
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3031
	if (flags & PIN_ZONE_4G)
3032
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3033

3034 3035 3036
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3037
	 */
3038
	if (size > end) {
3039
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3040
			  ggtt_view ? ggtt_view->type : 0,
3041
			  size, obj->base.size,
3042
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3043
			  end);
3044
		return ERR_PTR(-E2BIG);
3045 3046
	}

3047
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3048
	if (ret)
3049
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3050

3051 3052
	i915_gem_object_pin_pages(obj);

3053 3054 3055
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3056
	if (IS_ERR(vma))
3057
		goto err_unpin;
B
Ben Widawsky 已提交
3058

3059 3060 3061 3062 3063
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
3064
			goto err_vma;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
3076
			goto err_vma;
3077
	} else {
3078 3079 3080 3081 3082 3083 3084
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3085

3086 3087 3088 3089 3090 3091 3092 3093 3094
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3095
search_free:
3096 3097 3098 3099 3100 3101 3102
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3103
			ret = i915_gem_evict_something(vm, size, alignment,
3104 3105 3106 3107 3108
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3109

3110
			goto err_vma;
3111
		}
3112
	}
3113
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3114

3115
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3116
	list_move_tail(&vma->vm_link, &vm->inactive_list);
3117
	obj->bind_count++;
3118

3119
	return vma;
B
Ben Widawsky 已提交
3120

3121
err_vma:
3122
	vma = ERR_PTR(ret);
3123
err_unpin:
B
Ben Widawsky 已提交
3124
	i915_gem_object_unpin_pages(obj);
3125
	return vma;
3126 3127
}

3128
bool
3129 3130
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3131 3132 3133 3134 3135
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3136
	if (obj->pages == NULL)
3137
		return false;
3138

3139 3140 3141 3142
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3143
	if (obj->stolen || obj->phys_handle)
3144
		return false;
3145

3146 3147 3148 3149 3150 3151 3152 3153
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3154 3155
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3156
		return false;
3157
	}
3158

C
Chris Wilson 已提交
3159
	trace_i915_gem_object_clflush(obj);
3160
	drm_clflush_sg(obj->pages);
3161
	obj->cache_dirty = false;
3162 3163

	return true;
3164 3165 3166 3167
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3168
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3169
{
C
Chris Wilson 已提交
3170 3171
	uint32_t old_write_domain;

3172
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3173 3174
		return;

3175
	/* No actual flushing is required for the GTT write domain.  Writes
3176 3177
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3178 3179 3180 3181
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3182
	 */
3183 3184
	wmb();

3185 3186
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3187

3188
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3189

C
Chris Wilson 已提交
3190
	trace_i915_gem_object_change_domain(obj,
3191
					    obj->base.read_domains,
C
Chris Wilson 已提交
3192
					    old_write_domain);
3193 3194 3195 3196
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3197
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3198
{
C
Chris Wilson 已提交
3199
	uint32_t old_write_domain;
3200

3201
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3202 3203
		return;

3204
	if (i915_gem_clflush_object(obj, obj->pin_display))
3205
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3206

3207 3208
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3209

3210
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3211

C
Chris Wilson 已提交
3212
	trace_i915_gem_object_change_domain(obj,
3213
					    obj->base.read_domains,
C
Chris Wilson 已提交
3214
					    old_write_domain);
3215 3216
}

3217 3218
/**
 * Moves a single object to the GTT read, and possibly write domain.
3219 3220
 * @obj: object to act on
 * @write: ask for write access or read only
3221 3222 3223 3224
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3225
int
3226
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3227
{
C
Chris Wilson 已提交
3228
	uint32_t old_write_domain, old_read_domains;
3229
	struct i915_vma *vma;
3230
	int ret;
3231

3232
	ret = i915_gem_object_wait_rendering(obj, !write);
3233 3234 3235
	if (ret)
		return ret;

3236 3237 3238
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3251
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3252

3253 3254 3255 3256 3257 3258 3259
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3260 3261
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3262

3263 3264 3265
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3266 3267
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3268
	if (write) {
3269 3270 3271
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3272 3273
	}

C
Chris Wilson 已提交
3274 3275 3276 3277
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3278
	/* And bump the LRU for this access */
3279
	vma = i915_gem_obj_to_ggtt(obj);
3280 3281 3282 3283
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3284

3285 3286 3287
	return 0;
}

3288 3289
/**
 * Changes the cache-level of an object across all VMA.
3290 3291
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3303 3304 3305
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3306
	struct i915_vma *vma;
3307
	int ret = 0;
3308 3309

	if (obj->cache_level == cache_level)
3310
		goto out;
3311

3312 3313 3314 3315 3316
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3317 3318
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3319 3320 3321 3322 3323 3324 3325 3326
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3339 3340
	}

3341 3342 3343 3344 3345 3346 3347
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3348
	if (obj->bind_count) {
3349 3350 3351 3352
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3353
		ret = i915_gem_object_wait_rendering(obj, false);
3354 3355 3356
		if (ret)
			return ret;

3357
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3374 3375 3376
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3377 3378 3379 3380 3381 3382 3383 3384
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3385 3386
		}

3387
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3388 3389 3390 3391 3392 3393 3394
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3395 3396
	}

3397
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3398 3399 3400
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3401
out:
3402 3403 3404 3405
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3406
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3407
		if (i915_gem_clflush_object(obj, true))
3408
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3409 3410 3411 3412 3413
	}

	return 0;
}

B
Ben Widawsky 已提交
3414 3415
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3416
{
B
Ben Widawsky 已提交
3417
	struct drm_i915_gem_caching *args = data;
3418 3419
	struct drm_i915_gem_object *obj;

3420 3421
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3422
		return -ENOENT;
3423

3424 3425 3426 3427 3428 3429
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3430 3431 3432 3433
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3434 3435 3436 3437
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3438

3439
	i915_gem_object_put_unlocked(obj);
3440
	return 0;
3441 3442
}

B
Ben Widawsky 已提交
3443 3444
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3445
{
3446
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3447
	struct drm_i915_gem_caching *args = data;
3448 3449 3450 3451
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3452 3453
	switch (args->caching) {
	case I915_CACHING_NONE:
3454 3455
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3456
	case I915_CACHING_CACHED:
3457 3458 3459 3460 3461 3462
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3463
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3464 3465
			return -ENODEV;

3466 3467
		level = I915_CACHE_LLC;
		break;
3468 3469 3470
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3471 3472 3473 3474
	default:
		return -EINVAL;
	}

3475 3476
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3477 3478
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3479
		goto rpm_put;
B
Ben Widawsky 已提交
3480

3481 3482
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3483 3484 3485 3486 3487 3488
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3489
	i915_gem_object_put(obj);
3490 3491
unlock:
	mutex_unlock(&dev->struct_mutex);
3492 3493 3494
rpm_put:
	intel_runtime_pm_put(dev_priv);

3495 3496 3497
	return ret;
}

3498
/*
3499 3500 3501
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3502 3503
 */
int
3504 3505
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3506
				     const struct i915_ggtt_view *view)
3507
{
3508
	u32 old_read_domains, old_write_domain;
3509 3510
	int ret;

3511 3512 3513
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3514
	obj->pin_display++;
3515

3516 3517 3518 3519 3520 3521 3522 3523 3524
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3525 3526
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3527
	if (ret)
3528
		goto err_unpin_display;
3529

3530 3531 3532 3533
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3534
	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3535 3536
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3537
	if (ret)
3538
		goto err_unpin_display;
3539

3540
	i915_gem_object_flush_cpu_write_domain(obj);
3541

3542
	old_write_domain = obj->base.write_domain;
3543
	old_read_domains = obj->base.read_domains;
3544 3545 3546 3547

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3548
	obj->base.write_domain = 0;
3549
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3550 3551 3552

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3553
					    old_write_domain);
3554 3555

	return 0;
3556 3557

err_unpin_display:
3558
	obj->pin_display--;
3559 3560 3561 3562
	return ret;
}

void
3563 3564
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3565
{
3566 3567 3568
	if (WARN_ON(obj->pin_display == 0))
		return;

3569 3570
	i915_gem_object_ggtt_unpin_view(obj, view);

3571
	obj->pin_display--;
3572 3573
}

3574 3575
/**
 * Moves a single object to the CPU read, and possibly write domain.
3576 3577
 * @obj: object to act on
 * @write: requesting write or read-only access
3578 3579 3580 3581
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3582
int
3583
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3584
{
C
Chris Wilson 已提交
3585
	uint32_t old_write_domain, old_read_domains;
3586 3587
	int ret;

3588
	ret = i915_gem_object_wait_rendering(obj, !write);
3589 3590 3591
	if (ret)
		return ret;

3592 3593 3594
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3595
	i915_gem_object_flush_gtt_write_domain(obj);
3596

3597 3598
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3599

3600
	/* Flush the CPU cache if it's still invalid. */
3601
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3602
		i915_gem_clflush_object(obj, false);
3603

3604
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3605 3606 3607 3608 3609
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3610
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3611 3612 3613 3614 3615

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3616 3617
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3618
	}
3619

C
Chris Wilson 已提交
3620 3621 3622 3623
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3624 3625 3626
	return 0;
}

3627 3628 3629
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3630 3631 3632 3633
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3634 3635 3636
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3637
static int
3638
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3639
{
3640
	struct drm_i915_private *dev_priv = to_i915(dev);
3641
	struct drm_i915_file_private *file_priv = file->driver_priv;
3642
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3643
	struct drm_i915_gem_request *request, *target = NULL;
3644
	int ret;
3645

3646 3647 3648 3649
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3650 3651 3652
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3653

3654
	spin_lock(&file_priv->mm.lock);
3655
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3656 3657
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3658

3659 3660 3661 3662 3663 3664 3665
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3666
		target = request;
3667
	}
3668
	if (target)
3669
		i915_gem_request_get(target);
3670
	spin_unlock(&file_priv->mm.lock);
3671

3672
	if (target == NULL)
3673
		return 0;
3674

3675
	ret = i915_wait_request(target, true, NULL, NULL);
3676
	i915_gem_request_put(target);
3677

3678 3679 3680
	return ret;
}

3681
static bool
3682
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3683 3684 3685
{
	struct drm_i915_gem_object *obj = vma->obj;

3686 3687 3688 3689
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3690 3691 3692 3693 3694 3695 3696 3697 3698
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3699 3700 3701 3702
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3703 3704 3705
	return false;
}

3706 3707 3708 3709 3710 3711
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3712 3713 3714 3715 3716 3717 3718
	fence_size = i915_gem_get_ggtt_size(obj->base.dev,
					    obj->base.size,
					    obj->tiling_mode);
	fence_alignment = i915_gem_get_ggtt_alignment(obj->base.dev,
						      obj->base.size,
						      obj->tiling_mode,
						      true);
3719 3720 3721 3722 3723

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3724
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3725 3726 3727 3728

	obj->map_and_fenceable = mappable && fenceable;
}

3729 3730 3731 3732
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
3733
		       u64 size,
3734 3735
		       u64 alignment,
		       u64 flags)
3736
{
3737
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3738
	struct i915_vma *vma;
3739
	unsigned bound;
3740 3741
	int ret;

3742 3743 3744
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3745
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3746
		return -EINVAL;
3747

3748 3749 3750
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3751 3752 3753 3754 3755 3756
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3757
	if (vma) {
B
Ben Widawsky 已提交
3758 3759 3760
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3761
		if (i915_vma_misplaced(vma, size, alignment, flags)) {
B
Ben Widawsky 已提交
3762
			WARN(vma->pin_count,
3763
			     "bo is already pinned in %s with incorrect alignment:"
3764
			     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3765
			     " obj->map_and_fenceable=%d\n",
3766
			     ggtt_view ? "ggtt" : "ppgtt",
3767 3768
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3769
			     alignment,
3770
			     !!(flags & PIN_MAPPABLE),
3771
			     obj->map_and_fenceable);
3772
			ret = i915_vma_unbind(vma);
3773 3774
			if (ret)
				return ret;
3775 3776

			vma = NULL;
3777 3778 3779
		}
	}

3780
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3781 3782
		vma = i915_gem_object_insert_into_vm(obj, vm, ggtt_view,
						     size, alignment, flags);
3783 3784
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3785
	}
3786

3787 3788 3789 3790 3791
	bound = vma->bound;
	ret = i915_vma_bind(vma, obj->cache_level, flags);
	if (ret)
		return ret;

3792 3793
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3794
		__i915_vma_set_map_and_fenceable(vma);
3795 3796
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3797

3798 3799
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));

3800
	vma->pin_count++;
3801 3802 3803
	return 0;
}

3804 3805 3806
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
3807
		    u64 size,
3808 3809
		    u64 alignment,
		    u64 flags)
3810 3811 3812
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
3813
				      size, alignment, flags);
3814 3815 3816 3817 3818
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3819
			 u64 size,
3820 3821
			 u64 alignment,
			 u64 flags)
3822
{
3823 3824 3825 3826
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3827
	BUG_ON(!view);
3828

3829
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3830
				      size, alignment, flags | PIN_GLOBAL);
3831 3832
}

3833
void
3834 3835
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3836
{
3837
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3838

3839
	WARN_ON(vma->pin_count == 0);
3840
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
3841

3842
	--vma->pin_count;
3843 3844 3845 3846
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3847
		    struct drm_file *file)
3848 3849
{
	struct drm_i915_gem_busy *args = data;
3850
	struct drm_i915_gem_object *obj;
3851 3852
	int ret;

3853
	ret = i915_mutex_lock_interruptible(dev);
3854
	if (ret)
3855
		return ret;
3856

3857 3858
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3859 3860
		ret = -ENOENT;
		goto unlock;
3861
	}
3862

3863 3864
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3865
	 * become non-busy without any further actions.
3866
	 */
3867 3868
	args->busy = 0;
	if (obj->active) {
3869
		struct drm_i915_gem_request *req;
3870 3871
		int i;

3872
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3873 3874
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3875
			if (req)
3876
				args->busy |= 1 << (16 + req->engine->exec_id);
3877
		}
3878 3879
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3880 3881
		if (req)
			args->busy |= req->engine->exec_id;
3882
	}
3883

3884
	i915_gem_object_put(obj);
3885
unlock:
3886
	mutex_unlock(&dev->struct_mutex);
3887
	return ret;
3888 3889 3890 3891 3892 3893
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3894
	return i915_gem_ring_throttle(dev, file_priv);
3895 3896
}

3897 3898 3899 3900
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3901
	struct drm_i915_private *dev_priv = to_i915(dev);
3902
	struct drm_i915_gem_madvise *args = data;
3903
	struct drm_i915_gem_object *obj;
3904
	int ret;
3905 3906 3907 3908 3909 3910 3911 3912 3913

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3914 3915 3916 3917
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3918 3919
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3920 3921
		ret = -ENOENT;
		goto unlock;
3922 3923
	}

B
Ben Widawsky 已提交
3924
	if (i915_gem_obj_is_pinned(obj)) {
3925 3926
		ret = -EINVAL;
		goto out;
3927 3928
	}

3929 3930 3931 3932 3933 3934 3935 3936 3937
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3938 3939
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3940

C
Chris Wilson 已提交
3941
	/* if the object is no longer attached, discard its backing storage */
3942
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3943 3944
		i915_gem_object_truncate(obj);

3945
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3946

3947
out:
3948
	i915_gem_object_put(obj);
3949
unlock:
3950
	mutex_unlock(&dev->struct_mutex);
3951
	return ret;
3952 3953
}

3954 3955
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3956
{
3957 3958
	int i;

3959
	INIT_LIST_HEAD(&obj->global_list);
3960
	for (i = 0; i < I915_NUM_ENGINES; i++)
3961 3962 3963 3964 3965
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3966
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3967
	INIT_LIST_HEAD(&obj->vma_list);
3968
	INIT_LIST_HEAD(&obj->batch_pool_link);
3969

3970 3971
	obj->ops = ops;

3972 3973 3974
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3975
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3976 3977
}

3978
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3979
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3980 3981 3982 3983
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3984
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3985
						  size_t size)
3986
{
3987
	struct drm_i915_gem_object *obj;
3988
	struct address_space *mapping;
D
Daniel Vetter 已提交
3989
	gfp_t mask;
3990
	int ret;
3991

3992
	obj = i915_gem_object_alloc(dev);
3993
	if (obj == NULL)
3994
		return ERR_PTR(-ENOMEM);
3995

3996 3997 3998
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3999

4000 4001 4002 4003 4004 4005 4006
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4007
	mapping = file_inode(obj->base.filp)->i_mapping;
4008
	mapping_set_gfp_mask(mapping, mask);
4009

4010
	i915_gem_object_init(obj, &i915_gem_object_ops);
4011

4012 4013
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4014

4015 4016
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4032 4033
	trace_i915_gem_object_create(obj);

4034
	return obj;
4035 4036 4037 4038 4039

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4040 4041
}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4066
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4067
{
4068
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4069
	struct drm_device *dev = obj->base.dev;
4070
	struct drm_i915_private *dev_priv = to_i915(dev);
4071
	struct i915_vma *vma, *next;
4072

4073 4074
	intel_runtime_pm_get(dev_priv);

4075 4076
	trace_i915_gem_object_destroy(obj);

4077 4078 4079 4080 4081 4082 4083
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4084
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4085 4086
		GEM_BUG_ON(!vma->is_ggtt);
		GEM_BUG_ON(i915_vma_is_active(vma));
B
Ben Widawsky 已提交
4087
		vma->pin_count = 0;
4088
		i915_vma_close(vma);
4089
	}
4090
	GEM_BUG_ON(obj->bind_count);
4091

B
Ben Widawsky 已提交
4092 4093 4094 4095 4096
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4097 4098
	WARN_ON(obj->frontbuffer_bits);

4099 4100 4101 4102 4103
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4104 4105
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4106
	if (discard_backing_storage(obj))
4107
		obj->madv = I915_MADV_DONTNEED;
4108
	i915_gem_object_put_pages(obj);
4109

4110 4111
	BUG_ON(obj->pages);

4112 4113
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4114

4115 4116 4117
	if (obj->ops->release)
		obj->ops->release(obj);

4118 4119
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4120

4121
	kfree(obj->bit_17);
4122
	i915_gem_object_free(obj);
4123 4124

	intel_runtime_pm_put(dev_priv);
4125 4126
}

4127 4128
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4129 4130
{
	struct i915_vma *vma;
4131
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4132 4133
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4134
			return vma;
4135 4136 4137 4138 4139 4140 4141 4142
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4143

4144
	GEM_BUG_ON(!view);
4145

4146
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4147
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4148
			return vma;
4149 4150 4151
	return NULL;
}

4152
static void
4153
i915_gem_stop_engines(struct drm_device *dev)
4154
{
4155
	struct drm_i915_private *dev_priv = to_i915(dev);
4156
	struct intel_engine_cs *engine;
4157

4158
	for_each_engine(engine, dev_priv)
4159
		dev_priv->gt.stop_engine(engine);
4160 4161
}

4162
int
4163
i915_gem_suspend(struct drm_device *dev)
4164
{
4165
	struct drm_i915_private *dev_priv = to_i915(dev);
4166
	int ret = 0;
4167

4168 4169
	intel_suspend_gt_powersave(dev_priv);

4170
	mutex_lock(&dev->struct_mutex);
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4184
	ret = i915_gem_wait_for_idle(dev_priv);
4185
	if (ret)
4186
		goto err;
4187

4188
	i915_gem_retire_requests(dev_priv);
4189

4190 4191 4192 4193 4194
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4195
	i915_gem_stop_engines(dev);
4196
	i915_gem_context_lost(dev_priv);
4197 4198
	mutex_unlock(&dev->struct_mutex);

4199
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4200 4201
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4202

4203 4204 4205
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4206
	WARN_ON(dev_priv->gt.awake);
4207

4208
	return 0;
4209 4210 4211 4212

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4213 4214
}

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4232 4233
void i915_gem_init_swizzling(struct drm_device *dev)
{
4234
	struct drm_i915_private *dev_priv = to_i915(dev);
4235

4236
	if (INTEL_INFO(dev)->gen < 5 ||
4237 4238 4239 4240 4241 4242
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4243 4244 4245
	if (IS_GEN5(dev))
		return;

4246 4247
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4248
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4249
	else if (IS_GEN7(dev))
4250
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4251 4252
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4253 4254
	else
		BUG();
4255
}
D
Daniel Vetter 已提交
4256

4257 4258
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4259
	struct drm_i915_private *dev_priv = to_i915(dev);
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4284 4285 4286
int
i915_gem_init_hw(struct drm_device *dev)
{
4287
	struct drm_i915_private *dev_priv = to_i915(dev);
4288
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4289
	int ret;
4290

4291 4292 4293
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4294
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4295
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4296

4297 4298 4299
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4300

4301
	if (HAS_PCH_NOP(dev)) {
4302 4303 4304 4305 4306 4307 4308 4309 4310
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4311 4312
	}

4313 4314
	i915_gem_init_swizzling(dev);

4315 4316 4317 4318 4319 4320 4321 4322
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4323
	BUG_ON(!dev_priv->kernel_context);
4324

4325 4326 4327 4328 4329 4330 4331
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4332
	for_each_engine(engine, dev_priv) {
4333
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4334
		if (ret)
4335
			goto out;
D
Daniel Vetter 已提交
4336
	}
4337

4338 4339
	intel_mocs_init_l3cc_table(dev);

4340
	/* We can't enable contexts until all firmware is loaded */
4341 4342 4343
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4344

4345 4346
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4347
	return ret;
4348 4349
}

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4371 4372
int i915_gem_init(struct drm_device *dev)
{
4373
	struct drm_i915_private *dev_priv = to_i915(dev);
4374 4375 4376
	int ret;

	mutex_lock(&dev->struct_mutex);
4377

4378
	if (!i915.enable_execlists) {
4379 4380
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4381
	} else {
4382 4383
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4384 4385
	}

4386 4387 4388 4389 4390 4391 4392 4393
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4394
	i915_gem_init_userptr(dev_priv);
4395 4396 4397 4398

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4399

4400
	ret = i915_gem_context_init(dev);
4401 4402
	if (ret)
		goto out_unlock;
4403

4404
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4405
	if (ret)
4406
		goto out_unlock;
4407

4408
	ret = i915_gem_init_hw(dev);
4409
	if (ret == -EIO) {
4410
		/* Allow engine initialisation to fail by marking the GPU as
4411 4412 4413 4414
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4415
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4416
		ret = 0;
4417
	}
4418 4419

out_unlock:
4420
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4421
	mutex_unlock(&dev->struct_mutex);
4422

4423
	return ret;
4424 4425
}

4426
void
4427
i915_gem_cleanup_engines(struct drm_device *dev)
4428
{
4429
	struct drm_i915_private *dev_priv = to_i915(dev);
4430
	struct intel_engine_cs *engine;
4431

4432
	for_each_engine(engine, dev_priv)
4433
		dev_priv->gt.cleanup_engine(engine);
4434 4435
}

4436
static void
4437
init_engine_lists(struct intel_engine_cs *engine)
4438
{
4439
	INIT_LIST_HEAD(&engine->request_list);
4440 4441
}

4442 4443 4444
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4445
	struct drm_device *dev = &dev_priv->drm;
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4456
	if (intel_vgpu_active(dev_priv))
4457 4458 4459 4460 4461 4462 4463 4464 4465
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4466
void
4467
i915_gem_load_init(struct drm_device *dev)
4468
{
4469
	struct drm_i915_private *dev_priv = to_i915(dev);
4470 4471
	int i;

4472
	dev_priv->objects =
4473 4474 4475 4476
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4477 4478 4479 4480 4481
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4482 4483 4484 4485 4486
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4487

4488
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4489 4490
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4491
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4492 4493
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4494
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4495
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4496
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4497
			  i915_gem_retire_work_handler);
4498
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4499
			  i915_gem_idle_work_handler);
4500
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4501
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4502

4503 4504
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4505
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4506

4507
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4508

4509 4510
	dev_priv->mm.interruptible = true;

4511
	mutex_init(&dev_priv->fb_tracking.lock);
4512
}
4513

4514 4515 4516 4517 4518 4519 4520 4521 4522
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4551
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4552
{
4553
	struct drm_i915_file_private *file_priv = file->driver_priv;
4554
	struct drm_i915_gem_request *request;
4555 4556 4557 4558 4559

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4560
	spin_lock(&file_priv->mm.lock);
4561
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4562
		request->file_priv = NULL;
4563
	spin_unlock(&file_priv->mm.lock);
4564

4565
	if (!list_empty(&file_priv->rps.link)) {
4566
		spin_lock(&to_i915(dev)->rps.client_lock);
4567
		list_del(&file_priv->rps.link);
4568
		spin_unlock(&to_i915(dev)->rps.client_lock);
4569
	}
4570 4571 4572 4573 4574
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4575
	int ret;
4576 4577 4578 4579 4580 4581 4582 4583

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4584
	file_priv->dev_priv = to_i915(dev);
4585
	file_priv->file = file;
4586
	INIT_LIST_HEAD(&file_priv->rps.link);
4587 4588 4589 4590

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4591
	file_priv->bsd_engine = -1;
4592

4593 4594 4595
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4596

4597
	return ret;
4598 4599
}

4600 4601
/**
 * i915_gem_track_fb - update frontbuffer tracking
4602 4603 4604
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4605 4606 4607 4608
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4626
/* All the new VM stuff */
4627 4628
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4629
{
4630
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4631 4632
	struct i915_vma *vma;

4633
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4634

4635
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4636
		if (vma->is_ggtt &&
4637 4638 4639
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4640 4641
			return vma->node.start;
	}
4642

4643 4644
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4645 4646 4647
	return -1;
}

4648 4649
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4650 4651 4652
{
	struct i915_vma *vma;

4653
	list_for_each_entry(vma, &o->vma_list, obj_link)
4654
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4655 4656
			return vma->node.start;

4657
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4658 4659 4660 4661 4662 4663 4664 4665
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4666
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4667
		if (vma->is_ggtt &&
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4678
				  const struct i915_ggtt_view *view)
4679 4680 4681
{
	struct i915_vma *vma;

4682
	list_for_each_entry(vma, &o->vma_list, obj_link)
4683
		if (vma->is_ggtt &&
4684
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4685
		    drm_mm_node_allocated(&vma->node))
4686 4687 4688 4689 4690
			return true;

	return false;
}

4691
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4692 4693 4694
{
	struct i915_vma *vma;

4695
	GEM_BUG_ON(list_empty(&o->vma_list));
4696

4697
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4698
		if (vma->is_ggtt &&
4699
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4700
			return vma->node.size;
4701
	}
4702

4703 4704 4705
	return 0;
}

4706
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4707 4708
{
	struct i915_vma *vma;
4709
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4710 4711
		if (vma->pin_count > 0)
			return true;
4712

4713
	return false;
4714
}
4715

4716 4717 4718 4719 4720 4721 4722
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4723
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4724 4725 4726 4727 4728 4729 4730
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4741
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4742
	if (IS_ERR(obj))
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4756
	obj->dirty = 1;		/* Backing store is now out of date */
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4768
	i915_gem_object_put(obj);
4769 4770
	return ERR_PTR(ret);
}