i915_gem.c 136.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56 57 58 59 60 61 62
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

63 64 65 66
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
67
	spin_lock(&dev_priv->mm.object_stat_lock);
68 69
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
70
	spin_unlock(&dev_priv->mm.object_stat_lock);
71 72 73 74 75
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
76
	spin_lock(&dev_priv->mm.object_stat_lock);
77 78
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
79
	spin_unlock(&dev_priv->mm.object_stat_lock);
80 81
}

82
static int
83
i915_gem_wait_for_error(struct i915_gpu_error *error)
84 85 86
{
	int ret;

87
	if (!i915_reset_in_progress(error))
88 89
		return 0;

90 91 92 93 94
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
95
	ret = wait_event_interruptible_timeout(error->reset_queue,
96
					       !i915_reset_in_progress(error),
97
					       10*HZ);
98 99 100 101
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
102
		return ret;
103 104
	} else {
		return 0;
105
	}
106 107
}

108
int i915_mutex_lock_interruptible(struct drm_device *dev)
109
{
110
	struct drm_i915_private *dev_priv = dev->dev_private;
111 112
	int ret;

113
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 115 116 117 118 119 120
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

121
	WARN_ON(i915_verify_lists(dev));
122 123
	return 0;
}
124

125 126
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127
			    struct drm_file *file)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
131
	struct drm_i915_gem_get_aperture *args = data;
132
	struct i915_vma *vma;
133
	size_t pinned;
134

135
	pinned = 0;
136
	mutex_lock(&dev->struct_mutex);
137
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 139
		if (vma->pin_count)
			pinned += vma->node.size;
140
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 142
		if (vma->pin_count)
			pinned += vma->node.size;
143
	mutex_unlock(&dev->struct_mutex);
144

145
	args->aper_size = ggtt->base.total;
146
	args->aper_available_size = args->aper_size - pinned;
147

148 149 150
	return 0;
}

151 152
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153
{
154 155 156 157 158
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

176
		put_page(page);
177 178 179
		vaddr += PAGE_SIZE;
	}

180
	i915_gem_chipset_flush(to_i915(obj->base.dev));
181 182 183 184 185 186 187 188 189 190 191 192 193

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
194

195 196 197 198 199 200 201 202 203 204 205 206 207
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
208

209
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
210
	if (WARN_ON(ret)) {
211 212 213 214 215 216 217 218 219 220
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
221
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222
		char *vaddr = obj->phys_handle->vaddr;
223 224 225
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
240
				mark_page_accessed(page);
241
			put_page(page);
242 243
			vaddr += PAGE_SIZE;
		}
244
		obj->dirty = 0;
245 246
	}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
270
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 272 273 274 275 276 277
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
278 279 280 281 282 283 284
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
285
	int ret;
286 287 288 289 290 291 292 293 294 295 296 297 298 299

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

300 301 302 303
	ret = drop_pages(obj);
	if (ret)
		return ret;

304 305 306 307 308 309
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
310 311 312
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
313 314 315 316 317 318 319 320 321 322
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
323
	int ret = 0;
324 325 326 327 328 329 330

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
331

332
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 334 335 336 337 338 339 340 341 342
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
343 344 345 346
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
347 348
	}

349
	drm_clflush_virt_range(vaddr, args->size);
350
	i915_gem_chipset_flush(to_i915(dev));
351 352

out:
353
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354
	return ret;
355 356
}

357 358 359
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
360
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 362 363 364 365
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366
	kmem_cache_free(dev_priv->objects, obj);
367 368
}

369 370 371 372 373
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
374
{
375
	struct drm_i915_gem_object *obj;
376 377
	int ret;
	u32 handle;
378

379
	size = roundup(size, PAGE_SIZE);
380 381
	if (size == 0)
		return -EINVAL;
382 383

	/* Allocate the new object */
384
	obj = i915_gem_object_create(dev, size);
385 386
	if (IS_ERR(obj))
		return PTR_ERR(obj);
387

388
	ret = drm_gem_handle_create(file, &obj->base, &handle);
389
	/* drop reference from allocate - handle holds it now */
390 391 392
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
393

394
	*handle_p = handle;
395 396 397
	return 0;
}

398 399 400 401 402 403
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
404
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 406
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
407
			       args->size, &args->handle);
408 409 410 411 412 413 414 415 416 417
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
418

419
	return i915_gem_create(file, dev,
420
			       args->size, &args->handle);
421 422
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

449
static inline int
450 451
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

487
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

511 512 513
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
514
static int
515 516 517 518 519 520 521
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

522
	if (unlikely(page_do_bit17_swizzling))
523 524 525 526 527 528 529 530 531 532 533
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

534
	return ret ? -EFAULT : 0;
535 536
}

537 538 539 540
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
541
	if (unlikely(swizzled)) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

559 560 561 562 563 564 565 566 567 568 569 570
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
571 572 573
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
574 575 576 577 578 579 580 581 582 583 584

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

585
	return ret ? - EFAULT : 0;
586 587
}

588
static int
589 590 591 592
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
593
{
594
	char __user *user_data;
595
	ssize_t remain;
596
	loff_t offset;
597
	int shmem_page_offset, page_length, ret = 0;
598
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599
	int prefaulted = 0;
600
	int needs_clflush = 0;
601
	struct sg_page_iter sg_iter;
602

V
Ville Syrjälä 已提交
603
	user_data = to_user_ptr(args->data_ptr);
604 605
	remain = args->size;

606
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607

608
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 610 611
	if (ret)
		return ret;

612
	offset = args->offset;
613

614 615
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
616
		struct page *page = sg_page_iter_page(&sg_iter);
617 618 619 620

		if (remain <= 0)
			break;

621 622 623 624 625
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
626
		shmem_page_offset = offset_in_page(offset);
627 628 629 630
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

631 632 633
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

634 635 636 637 638
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
639 640 641

		mutex_unlock(&dev->struct_mutex);

642
		if (likely(!i915.prefault_disable) && !prefaulted) {
643
			ret = fault_in_multipages_writeable(user_data, remain);
644 645 646 647 648 649 650
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
651

652 653 654
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
655

656
		mutex_lock(&dev->struct_mutex);
657 658

		if (ret)
659 660
			goto out;

661
next_page:
662
		remain -= page_length;
663
		user_data += page_length;
664 665 666
		offset += page_length;
	}

667
out:
668 669
	i915_gem_object_unpin_pages(obj);

670 671 672
	return ret;
}

673 674 675 676 677 678 679
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680
		     struct drm_file *file)
681 682
{
	struct drm_i915_gem_pread *args = data;
683
	struct drm_i915_gem_object *obj;
684
	int ret = 0;
685

686 687 688 689
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
690
		       to_user_ptr(args->data_ptr),
691 692 693
		       args->size))
		return -EFAULT;

694
	ret = i915_mutex_lock_interruptible(dev);
695
	if (ret)
696
		return ret;
697

698
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699
	if (&obj->base == NULL) {
700 701
		ret = -ENOENT;
		goto unlock;
702
	}
703

704
	/* Bounds check source.  */
705 706
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
707
		ret = -EINVAL;
708
		goto out;
C
Chris Wilson 已提交
709 710
	}

711 712 713 714 715 716 717 718
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
719 720
	trace_i915_gem_object_pread(obj, args->offset, args->size);

721
	ret = i915_gem_shmem_pread(dev, obj, args, file);
722

723
out:
724
	drm_gem_object_unreference(&obj->base);
725
unlock:
726
	mutex_unlock(&dev->struct_mutex);
727
	return ret;
728 729
}

730 731
/* This is the fast write path which cannot handle
 * page faults in the source data
732
 */
733 734 735 736 737 738

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
739
{
740 741
	void __iomem *vaddr_atomic;
	void *vaddr;
742
	unsigned long unwritten;
743

P
Peter Zijlstra 已提交
744
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 746 747
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
748
						      user_data, length);
P
Peter Zijlstra 已提交
749
	io_mapping_unmap_atomic(vaddr_atomic);
750
	return unwritten;
751 752
}

753 754 755 756
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
757
static int
758 759
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
760
			 struct drm_i915_gem_pwrite *args,
761
			 struct drm_file *file)
762
{
763 764
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
765
	ssize_t remain;
766
	loff_t offset, page_base;
767
	char __user *user_data;
D
Daniel Vetter 已提交
768 769
	int page_offset, page_length, ret;

770
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
771 772 773 774 775 776 777 778 779 780
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
781

V
Ville Syrjälä 已提交
782
	user_data = to_user_ptr(args->data_ptr);
783 784
	remain = args->size;

785
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786

787
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788

789 790 791
	while (remain > 0) {
		/* Operation in this page
		 *
792 793 794
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
795
		 */
796 797
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
798 799 800 801 802
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
803 804
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
805
		 */
806
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
807 808
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
809
			goto out_flush;
D
Daniel Vetter 已提交
810
		}
811

812 813 814
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
815 816
	}

817
out_flush:
818
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
819
out_unpin:
B
Ben Widawsky 已提交
820
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
821
out:
822
	return ret;
823 824
}

825 826 827 828
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
829
static int
830 831 832 833 834
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
835
{
836
	char *vaddr;
837
	int ret;
838

839
	if (unlikely(page_do_bit17_swizzling))
840
		return -EINVAL;
841

842 843 844 845
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
846 847
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
848 849 850 851
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
852

853
	return ret ? -EFAULT : 0;
854 855
}

856 857
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
858
static int
859 860 861 862 863
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
864
{
865 866
	char *vaddr;
	int ret;
867

868
	vaddr = kmap(page);
869
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 871 872
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
873 874
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 876
						user_data,
						page_length);
877 878 879 880 881
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885
	kunmap(page);
886

887
	return ret ? -EFAULT : 0;
888 889 890
}

static int
891 892 893 894
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
895 896
{
	ssize_t remain;
897 898
	loff_t offset;
	char __user *user_data;
899
	int shmem_page_offset, page_length, ret = 0;
900
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901
	int hit_slowpath = 0;
902 903
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
904
	struct sg_page_iter sg_iter;
905

V
Ville Syrjälä 已提交
906
	user_data = to_user_ptr(args->data_ptr);
907 908
	remain = args->size;

909
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910

911 912 913 914 915
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
916
		needs_clflush_after = cpu_write_needs_clflush(obj);
917 918 919
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
920
	}
921 922 923 924 925
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
926

927 928 929 930
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

931
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932

933 934
	i915_gem_object_pin_pages(obj);

935
	offset = args->offset;
936
	obj->dirty = 1;
937

938 939
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
940
		struct page *page = sg_page_iter_page(&sg_iter);
941
		int partial_cacheline_write;
942

943 944 945
		if (remain <= 0)
			break;

946 947 948 949 950
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
951
		shmem_page_offset = offset_in_page(offset);
952 953 954 955 956

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

957 958 959 960 961 962 963
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

964 965 966
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

967 968 969 970 971 972
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
973 974 975

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
976 977 978 979
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
980

981
		mutex_lock(&dev->struct_mutex);
982 983

		if (ret)
984 985
			goto out;

986
next_page:
987
		remain -= page_length;
988
		user_data += page_length;
989
		offset += page_length;
990 991
	}

992
out:
993 994
	i915_gem_object_unpin_pages(obj);

995
	if (hit_slowpath) {
996 997 998 999 1000 1001 1002
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003
			if (i915_gem_clflush_object(obj, obj->pin_display))
1004
				needs_clflush_after = true;
1005
		}
1006
	}
1007

1008
	if (needs_clflush_after)
1009
		i915_gem_chipset_flush(to_i915(dev));
1010 1011
	else
		obj->cache_dirty = true;
1012

1013
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014
	return ret;
1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024
		      struct drm_file *file)
1025
{
1026
	struct drm_i915_private *dev_priv = dev->dev_private;
1027
	struct drm_i915_gem_pwrite *args = data;
1028
	struct drm_i915_gem_object *obj;
1029 1030 1031 1032 1033 1034
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1035
		       to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	if (likely(!i915.prefault_disable)) {
1040 1041 1042 1043 1044
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1045

1046 1047
	intel_runtime_pm_get(dev_priv);

1048
	ret = i915_mutex_lock_interruptible(dev);
1049
	if (ret)
1050
		goto put_rpm;
1051

1052
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1053
	if (&obj->base == NULL) {
1054 1055
		ret = -ENOENT;
		goto unlock;
1056
	}
1057

1058
	/* Bounds check destination. */
1059 1060
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1061
		ret = -EINVAL;
1062
		goto out;
C
Chris Wilson 已提交
1063 1064
	}

1065 1066 1067 1068 1069 1070 1071 1072
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1073 1074
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1075
	ret = -EFAULT;
1076 1077 1078 1079 1080 1081
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1082 1083 1084
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1085
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1086 1087 1088
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1089
	}
1090

1091 1092 1093 1094 1095 1096
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1097

1098
out:
1099
	drm_gem_object_unreference(&obj->base);
1100
unlock:
1101
	mutex_unlock(&dev->struct_mutex);
1102 1103 1104
put_rpm:
	intel_runtime_pm_put(dev_priv);

1105 1106 1107
	return ret;
}

1108 1109
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110
{
1111 1112
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1113

1114
	if (__i915_reset_in_progress(reset_counter)) {
1115 1116 1117 1118 1119
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1120
		return -EAGAIN;
1121 1122 1123 1124 1125
	}

	return 0;
}

1126 1127 1128 1129 1130 1131
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1132
		       struct intel_engine_cs *engine)
1133
{
1134
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1169
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170
{
1171
	unsigned long timeout;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1183

1184
	if (req->engine->irq_refcount)
1185 1186
		return -EBUSY;

1187 1188 1189 1190
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1191
	timeout = local_clock_us(&cpu) + 5;
1192
	while (!need_resched()) {
D
Daniel Vetter 已提交
1193
		if (i915_gem_request_completed(req, true))
1194 1195
			return 0;

1196 1197 1198
		if (signal_pending_state(state, current))
			break;

1199
		if (busywait_stop(timeout, cpu))
1200
			break;
1201

1202 1203
		cpu_relax_lowlatency();
	}
1204

D
Daniel Vetter 已提交
1205
	if (i915_gem_request_completed(req, false))
1206 1207 1208
		return 0;

	return -EAGAIN;
1209 1210
}

1211
/**
1212 1213
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1214 1215 1216
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1217 1218 1219 1220 1221 1222 1223
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1224
 * Returns 0 if the request was found within the alloted time. Else returns the
1225 1226
 * errno with remaining time filled in timeout argument.
 */
1227
int __i915_wait_request(struct drm_i915_gem_request *req,
1228
			bool interruptible,
1229
			s64 *timeout,
1230
			struct intel_rps_client *rps)
1231
{
1232
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233
	struct drm_i915_private *dev_priv = req->i915;
1234
	const bool irq_test_in_progress =
1235
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237
	DEFINE_WAIT(wait);
1238
	unsigned long timeout_expire;
1239
	s64 before = 0; /* Only to silence a compiler warning. */
1240 1241
	int ret;

1242
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243

1244 1245 1246
	if (list_empty(&req->list))
		return 0;

1247
	if (i915_gem_request_completed(req, true))
1248 1249
		return 0;

1250 1251 1252 1253 1254 1255 1256 1257 1258
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259 1260 1261 1262 1263

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1264
	}
1265

1266
	if (INTEL_INFO(dev_priv)->gen >= 6)
1267
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268

1269
	trace_i915_gem_request_wait_begin(req);
1270 1271

	/* Optimistic spin for the next jiffie before touching IRQs */
1272
	ret = __i915_spin_request(req, state);
1273 1274 1275
	if (ret == 0)
		goto out;

1276
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 1278 1279 1280
		ret = -ENODEV;
		goto out;
	}

1281 1282
	for (;;) {
		struct timer_list timer;
1283

1284
		prepare_to_wait(&engine->irq_queue, &wait, state);
1285

1286
		/* We need to check whether any gpu reset happened in between
1287 1288 1289 1290 1291 1292
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1293
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294
			ret = 0;
1295 1296
			break;
		}
1297

1298
		if (i915_gem_request_completed(req, false)) {
1299 1300 1301
			ret = 0;
			break;
		}
1302

1303
		if (signal_pending_state(state, current)) {
1304 1305 1306 1307
			ret = -ERESTARTSYS;
			break;
		}

1308
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 1310 1311 1312 1313
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1314
		if (timeout || missed_irq(dev_priv, engine)) {
1315 1316
			unsigned long expire;

1317
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 1320 1321
			mod_timer(&timer, expire);
		}

1322
		io_schedule();
1323 1324 1325 1326 1327 1328

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1329
	if (!irq_test_in_progress)
1330
		engine->irq_put(engine);
1331

1332
	finish_wait(&engine->irq_queue, &wait);
1333

1334 1335 1336
out:
	trace_i915_gem_request_wait_end(req);

1337
	if (timeout) {
1338
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339 1340

		*timeout = tres < 0 ? 0 : tres;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1351 1352
	}

1353
	return ret;
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1393 1394 1395

	put_pid(request->pid);
	request->pid = NULL;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

1415
	if (request->previous_context) {
1416
		if (i915.enable_execlists)
1417 1418
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
1419 1420
	}

1421
	i915_gem_context_unreference(request->ctx);
1422 1423 1424 1425 1426 1427
	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1428
	struct intel_engine_cs *engine = req->engine;
1429 1430
	struct drm_i915_gem_request *tmp;

1431
	lockdep_assert_held(&engine->i915->dev->struct_mutex);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1446
/**
1447
 * Waits for a request to be signaled, and cleans up the
1448 1449 1450
 * request and object lists appropriately for that event.
 */
int
1451
i915_wait_request(struct drm_i915_gem_request *req)
1452
{
1453
	struct drm_i915_private *dev_priv = req->i915;
1454
	bool interruptible;
1455 1456
	int ret;

1457 1458
	interruptible = dev_priv->mm.interruptible;

1459
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1460

1461
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1462 1463
	if (ret)
		return ret;
1464

1465 1466 1467 1468
	/* If the GPU hung, we want to keep the requests to find the guilty. */
	if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
		__i915_gem_request_retire__upto(req);

1469 1470 1471
	return 0;
}

1472 1473 1474 1475
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1476
int
1477 1478 1479
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1480
	int ret, i;
1481

1482
	if (!obj->active)
1483 1484
		return 0;

1485 1486 1487 1488 1489
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1490

1491
			i = obj->last_write_req->engine->id;
1492 1493 1494 1495 1496 1497
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1498
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1499 1500 1501 1502 1503 1504 1505 1506 1507
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1508
		GEM_BUG_ON(obj->active);
1509 1510 1511 1512 1513 1514 1515 1516 1517
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1518
	int ring = req->engine->id;
1519 1520 1521 1522 1523 1524

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1525 1526
	if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
		__i915_gem_request_retire__upto(req);
1527 1528
}

1529 1530 1531 1532 1533
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1534
					    struct intel_rps_client *rps,
1535 1536 1537 1538
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1539
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1540
	int ret, i, n = 0;
1541 1542 1543 1544

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1545
	if (!obj->active)
1546 1547
		return 0;

1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1557
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1568
	mutex_unlock(&dev->struct_mutex);
1569
	ret = 0;
1570
	for (i = 0; ret == 0 && i < n; i++)
1571
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1572 1573
	mutex_lock(&dev->struct_mutex);

1574 1575 1576 1577 1578 1579 1580
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1581 1582
}

1583 1584 1585 1586 1587 1588
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1589
/**
1590 1591
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1592 1593 1594
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595
			  struct drm_file *file)
1596 1597
{
	struct drm_i915_gem_set_domain *args = data;
1598
	struct drm_i915_gem_object *obj;
1599 1600
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1601 1602
	int ret;

1603
	/* Only handle setting domains to types used by the CPU. */
1604
	if (write_domain & I915_GEM_GPU_DOMAINS)
1605 1606
		return -EINVAL;

1607
	if (read_domains & I915_GEM_GPU_DOMAINS)
1608 1609 1610 1611 1612 1613 1614 1615
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1616
	ret = i915_mutex_lock_interruptible(dev);
1617
	if (ret)
1618
		return ret;
1619

1620
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1621
	if (&obj->base == NULL) {
1622 1623
		ret = -ENOENT;
		goto unlock;
1624
	}
1625

1626 1627 1628 1629
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1630
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1631
							  to_rps_client(file),
1632
							  !write_domain);
1633 1634 1635
	if (ret)
		goto unref;

1636
	if (read_domains & I915_GEM_DOMAIN_GTT)
1637
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1638
	else
1639
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1640

1641 1642 1643 1644 1645
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1646
unref:
1647
	drm_gem_object_unreference(&obj->base);
1648
unlock:
1649 1650 1651 1652 1653 1654 1655 1656 1657
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1658
			 struct drm_file *file)
1659 1660
{
	struct drm_i915_gem_sw_finish *args = data;
1661
	struct drm_i915_gem_object *obj;
1662 1663
	int ret = 0;

1664
	ret = i915_mutex_lock_interruptible(dev);
1665
	if (ret)
1666
		return ret;
1667

1668
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1669
	if (&obj->base == NULL) {
1670 1671
		ret = -ENOENT;
		goto unlock;
1672 1673 1674
	}

	/* Pinned buffers may be scanout, so flush the cache */
1675
	if (obj->pin_display)
1676
		i915_gem_object_flush_cpu_write_domain(obj);
1677

1678
	drm_gem_object_unreference(&obj->base);
1679
unlock:
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1700 1701 1702
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1703
		    struct drm_file *file)
1704 1705 1706 1707 1708
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1709 1710 1711 1712 1713 1714
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1715
	obj = drm_gem_object_lookup(dev, file, args->handle);
1716
	if (obj == NULL)
1717
		return -ENOENT;
1718

1719 1720 1721 1722 1723 1724 1725 1726
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1727
	addr = vm_mmap(obj->filp, 0, args->size,
1728 1729
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1743
	drm_gem_object_unreference_unlocked(obj);
1744 1745 1746 1747 1748 1749 1750 1751
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1752 1753
/**
 * i915_gem_fault - fault a page into the GTT
1754 1755
 * @vma: VMA in question
 * @vmf: fault info
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1770 1771
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1772 1773
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1774
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1775 1776 1777
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1778
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1779

1780 1781
	intel_runtime_pm_get(dev_priv);

1782 1783 1784 1785
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1786 1787 1788
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1789

C
Chris Wilson 已提交
1790 1791
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1792 1793 1794 1795 1796 1797 1798 1799 1800
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1801 1802
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1803
		ret = -EFAULT;
1804 1805 1806
		goto unlock;
	}

1807
	/* Use a partial view if the object is bigger than the aperture. */
1808
	if (obj->base.size >= ggtt->mappable_end &&
1809
	    obj->tiling_mode == I915_TILING_NONE) {
1810
		static const unsigned int chunk_size = 256; // 1 MiB
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1824 1825
	if (ret)
		goto unlock;
1826

1827 1828 1829
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1830

1831
	ret = i915_gem_object_get_fence(obj);
1832
	if (ret)
1833
		goto unpin;
1834

1835
	/* Finally, remap it using the new GTT offset */
1836
	pfn = ggtt->mappable_base +
1837
		i915_gem_obj_ggtt_offset_view(obj, &view);
1838
	pfn >>= PAGE_SHIFT;
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1849

1850 1851
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1852 1853 1854 1855 1856
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1878
unpin:
1879
	i915_gem_object_ggtt_unpin_view(obj, &view);
1880
unlock:
1881
	mutex_unlock(&dev->struct_mutex);
1882
out:
1883
	switch (ret) {
1884
	case -EIO:
1885 1886 1887 1888 1889 1890 1891
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1892 1893 1894
			ret = VM_FAULT_SIGBUS;
			break;
		}
1895
	case -EAGAIN:
D
Daniel Vetter 已提交
1896 1897 1898 1899
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1900
		 */
1901 1902
	case 0:
	case -ERESTARTSYS:
1903
	case -EINTR:
1904 1905 1906 1907 1908
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1909 1910
		ret = VM_FAULT_NOPAGE;
		break;
1911
	case -ENOMEM:
1912 1913
		ret = VM_FAULT_OOM;
		break;
1914
	case -ENOSPC:
1915
	case -EFAULT:
1916 1917
		ret = VM_FAULT_SIGBUS;
		break;
1918
	default:
1919
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1920 1921
		ret = VM_FAULT_SIGBUS;
		break;
1922
	}
1923 1924 1925

	intel_runtime_pm_put(dev_priv);
	return ret;
1926 1927
}

1928 1929 1930 1931
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1932
 * Preserve the reservation of the mmapping with the DRM core code, but
1933 1934 1935 1936 1937 1938 1939 1940 1941
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1942
void
1943
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1944
{
1945 1946 1947 1948 1949 1950
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1951 1952
	if (!obj->fault_mappable)
		return;
1953

1954 1955
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1966
	obj->fault_mappable = false;
1967 1968
}

1969 1970 1971 1972 1973 1974 1975 1976 1977
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1978
uint32_t
1979
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1980
{
1981
	uint32_t gtt_size;
1982 1983

	if (INTEL_INFO(dev)->gen >= 4 ||
1984 1985
	    tiling_mode == I915_TILING_NONE)
		return size;
1986 1987

	/* Previous chips need a power-of-two fence region when tiling */
1988
	if (IS_GEN3(dev))
1989
		gtt_size = 1024*1024;
1990
	else
1991
		gtt_size = 512*1024;
1992

1993 1994
	while (gtt_size < size)
		gtt_size <<= 1;
1995

1996
	return gtt_size;
1997 1998
}

1999 2000 2001 2002 2003
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2004
 * potential fence register mapping.
2005
 */
2006 2007 2008
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2009 2010 2011 2012 2013
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2014
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2015
	    tiling_mode == I915_TILING_NONE)
2016 2017
		return 4096;

2018 2019 2020 2021
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2022
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2023 2024
}

2025 2026 2027 2028 2029
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2030 2031
	dev_priv->mm.shrinker_no_lock_stealing = true;

2032 2033
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2034
		goto out;
2035 2036 2037 2038 2039 2040 2041 2042

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2043 2044 2045 2046 2047
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2048 2049
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2050
		goto out;
2051 2052

	i915_gem_shrink_all(dev_priv);
2053 2054 2055 2056 2057
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2058 2059 2060 2061 2062 2063 2064
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2065
int
2066 2067
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2068
		  uint32_t handle,
2069
		  uint64_t *offset)
2070
{
2071
	struct drm_i915_gem_object *obj;
2072 2073
	int ret;

2074
	ret = i915_mutex_lock_interruptible(dev);
2075
	if (ret)
2076
		return ret;
2077

2078
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2079
	if (&obj->base == NULL) {
2080 2081 2082
		ret = -ENOENT;
		goto unlock;
	}
2083

2084
	if (obj->madv != I915_MADV_WILLNEED) {
2085
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2086
		ret = -EFAULT;
2087
		goto out;
2088 2089
	}

2090 2091 2092
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2093

2094
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2095

2096
out:
2097
	drm_gem_object_unreference(&obj->base);
2098
unlock:
2099
	mutex_unlock(&dev->struct_mutex);
2100
	return ret;
2101 2102
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2124
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2125 2126
}

D
Daniel Vetter 已提交
2127 2128 2129
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2130
{
2131
	i915_gem_object_free_mmap_offset(obj);
2132

2133 2134
	if (obj->base.filp == NULL)
		return;
2135

D
Daniel Vetter 已提交
2136 2137 2138 2139 2140
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2141
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2142 2143
	obj->madv = __I915_MADV_PURGED;
}
2144

2145 2146 2147
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2148
{
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2163 2164
}

2165
static void
2166
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2167
{
2168 2169
	struct sg_page_iter sg_iter;
	int ret;
2170

2171
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2172

C
Chris Wilson 已提交
2173
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2174
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2175 2176 2177
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2178
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2179 2180 2181
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2182 2183
	i915_gem_gtt_finish_object(obj);

2184
	if (i915_gem_object_needs_bit17_swizzle(obj))
2185 2186
		i915_gem_object_save_bit_17_swizzle(obj);

2187 2188
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2189

2190
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2191
		struct page *page = sg_page_iter_page(&sg_iter);
2192

2193
		if (obj->dirty)
2194
			set_page_dirty(page);
2195

2196
		if (obj->madv == I915_MADV_WILLNEED)
2197
			mark_page_accessed(page);
2198

2199
		put_page(page);
2200
	}
2201
	obj->dirty = 0;
2202

2203 2204
	sg_free_table(obj->pages);
	kfree(obj->pages);
2205
}
C
Chris Wilson 已提交
2206

2207
int
2208 2209 2210 2211
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2212
	if (obj->pages == NULL)
2213 2214
		return 0;

2215 2216 2217
	if (obj->pages_pin_count)
		return -EBUSY;

2218
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2219

2220 2221 2222
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2223
	list_del(&obj->global_list);
2224

2225
	if (obj->mapping) {
2226 2227 2228 2229
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2230 2231 2232
		obj->mapping = NULL;
	}

2233
	ops->put_pages(obj);
2234
	obj->pages = NULL;
2235

2236
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2237 2238 2239 2240

	return 0;
}

2241
static int
C
Chris Wilson 已提交
2242
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243
{
C
Chris Wilson 已提交
2244
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 2246
	int page_count, i;
	struct address_space *mapping;
2247 2248
	struct sg_table *st;
	struct scatterlist *sg;
2249
	struct sg_page_iter sg_iter;
2250
	struct page *page;
2251
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2252
	int ret;
C
Chris Wilson 已提交
2253
	gfp_t gfp;
2254

C
Chris Wilson 已提交
2255 2256 2257 2258 2259 2260 2261
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2262 2263 2264 2265
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2266
	page_count = obj->base.size / PAGE_SIZE;
2267 2268
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2269
		return -ENOMEM;
2270
	}
2271

2272 2273 2274 2275 2276
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2277
	mapping = file_inode(obj->base.filp)->i_mapping;
2278
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 2281 2282
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2283 2284
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2285 2286 2287 2288 2289
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2290 2291 2292 2293 2294 2295 2296 2297
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2298
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2299 2300
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2301
				goto err_pages;
I
Imre Deak 已提交
2302
			}
C
Chris Wilson 已提交
2303
		}
2304 2305 2306 2307 2308 2309 2310 2311
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2312 2313 2314 2315 2316 2317 2318 2319 2320
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2321 2322 2323

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324
	}
2325 2326 2327 2328
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2329 2330
	obj->pages = st;

I
Imre Deak 已提交
2331 2332 2333 2334
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2335
	if (i915_gem_object_needs_bit17_swizzle(obj))
2336 2337
		i915_gem_object_do_bit_17_swizzle(obj);

2338 2339 2340 2341
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2342 2343 2344
	return 0;

err_pages:
2345 2346
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347
		put_page(sg_page_iter_page(&sg_iter));
2348 2349
	sg_free_table(st);
	kfree(st);
2350 2351 2352 2353 2354 2355 2356 2357 2358

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2359 2360 2361 2362
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2379
	if (obj->pages)
2380 2381
		return 0;

2382
	if (obj->madv != I915_MADV_WILLNEED) {
2383
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384
		return -EFAULT;
2385 2386
	}

2387 2388
	BUG_ON(obj->pages_pin_count);

2389 2390 2391 2392
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2393
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394 2395 2396 2397

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2398
	return 0;
2399 2400
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2416 2417 2418 2419 2420 2421 2422
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2423
		if (pages != NULL) {
2424 2425 2426
			struct sg_page_iter sg_iter;
			int n;

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2444
void i915_vma_move_to_active(struct i915_vma *vma,
2445
			     struct drm_i915_gem_request *req)
2446
{
2447
	struct drm_i915_gem_object *obj = vma->obj;
2448
	struct intel_engine_cs *engine;
2449

2450
	engine = i915_gem_request_get_engine(req);
2451 2452

	/* Add a reference if we're newly entering the active list. */
2453
	if (obj->active == 0)
2454
		drm_gem_object_reference(&obj->base);
2455
	obj->active |= intel_engine_flag(engine);
2456

2457
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2458
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2459

2460
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2461 2462
}

2463 2464
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2465
{
2466 2467
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2468 2469

	i915_gem_request_assign(&obj->last_write_req, NULL);
2470
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2471 2472
}

2473
static void
2474
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2475
{
2476
	struct i915_vma *vma;
2477

2478 2479
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2480

2481
	list_del_init(&obj->engine_list[ring]);
2482 2483
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2484
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2485 2486 2487 2488 2489
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2490

2491 2492 2493 2494 2495 2496 2497
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2498 2499 2500
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2501
	}
2502

2503
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2504
	drm_gem_object_unreference(&obj->base);
2505 2506
}

2507
static int
2508
i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2509
{
2510
	struct intel_engine_cs *engine;
2511
	int ret;
2512

2513
	/* Carefully retire all requests without writing to the rings */
2514
	for_each_engine(engine, dev_priv) {
2515
		ret = intel_engine_idle(engine);
2516 2517
		if (ret)
			return ret;
2518
	}
2519
	i915_gem_retire_requests(dev_priv);
2520 2521

	/* Finally reset hw state */
2522
	for_each_engine(engine, dev_priv)
2523
		intel_ring_init_seqno(engine, seqno);
2524

2525
	return 0;
2526 2527
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
2539
	ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2554
int
2555
i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2556
{
2557 2558
	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2559
		int ret = i915_gem_init_seqno(dev_priv, 0);
2560 2561
		if (ret)
			return ret;
2562

2563 2564
		dev_priv->next_seqno = 1;
	}
2565

2566
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2567
	return 0;
2568 2569
}

2570 2571 2572 2573 2574
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2575
void __i915_add_request(struct drm_i915_gem_request *request,
2576 2577
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2578
{
2579
	struct intel_engine_cs *engine;
2580
	struct drm_i915_private *dev_priv;
2581
	struct intel_ringbuffer *ringbuf;
2582
	u32 request_start;
2583
	u32 reserved_tail;
2584 2585
	int ret;

2586
	if (WARN_ON(request == NULL))
2587
		return;
2588

2589
	engine = request->engine;
2590
	dev_priv = request->i915;
2591 2592
	ringbuf = request->ringbuf;

2593 2594 2595 2596 2597
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
2598
	request_start = intel_ring_get_tail(ringbuf);
2599 2600 2601
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

2602 2603 2604 2605 2606 2607 2608
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2609 2610
	if (flush_caches) {
		if (i915.enable_execlists)
2611
			ret = logical_ring_flush_all_caches(request);
2612
		else
2613
			ret = intel_ring_flush_all_caches(request);
2614 2615 2616
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2640 2641 2642 2643 2644
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2645
	request->postfix = intel_ring_get_tail(ringbuf);
2646

2647
	if (i915.enable_execlists)
2648
		ret = engine->emit_request(request);
2649
	else {
2650
		ret = engine->add_request(request);
2651 2652

		request->tail = intel_ring_get_tail(ringbuf);
2653
	}
2654 2655
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2656

2657
	i915_queue_hangcheck(engine->i915);
2658

2659 2660 2661
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
2662
	intel_mark_busy(dev_priv);
2663

2664
	/* Sanity check that the reserved size was large enough. */
2665 2666 2667 2668 2669 2670 2671
	ret = intel_ring_get_tail(ringbuf) - request_start;
	if (ret < 0)
		ret += ringbuf->size;
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);
2672 2673
}

2674
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2675
				   const struct intel_context *ctx)
2676
{
2677
	unsigned long elapsed;
2678

2679 2680 2681
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2682 2683
		return true;

2684 2685
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2686
		if (!i915_gem_context_is_default(ctx)) {
2687
			DRM_DEBUG("context hanging too fast, banning!\n");
2688
			return true;
2689 2690 2691
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2692
			return true;
2693
		}
2694 2695 2696 2697 2698
	}

	return false;
}

2699
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2700
				  struct intel_context *ctx,
2701
				  const bool guilty)
2702
{
2703 2704 2705 2706
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2707

2708 2709 2710
	hs = &ctx->hang_stats;

	if (guilty) {
2711
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2712 2713 2714 2715
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2716 2717 2718
	}
}

2719 2720 2721 2722
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
2723
	kmem_cache_free(req->i915->requests, req);
2724 2725
}

2726
static inline int
2727
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2728 2729
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2730
{
2731
	struct drm_i915_private *dev_priv = engine->i915;
2732
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2733
	struct drm_i915_gem_request *req;
2734 2735
	int ret;

2736 2737 2738
	if (!req_out)
		return -EINVAL;

2739
	*req_out = NULL;
2740

2741 2742 2743 2744 2745
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2746 2747 2748
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2749 2750
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2751 2752
		return -ENOMEM;

2753
	ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2754 2755
	if (ret)
		goto err;
2756

2757 2758
	kref_init(&req->ref);
	req->i915 = dev_priv;
2759
	req->engine = engine;
2760
	req->reset_counter = reset_counter;
2761 2762
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2763

2764 2765 2766 2767 2768 2769 2770
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2771
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2772 2773 2774 2775 2776 2777 2778

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;
2779

2780
	*req_out = req;
2781
	return 0;
2782

2783 2784
err_ctx:
	i915_gem_context_unreference(ctx);
2785 2786 2787
err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2788 2789
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2810
		ctx = engine->i915->kernel_context;
2811 2812 2813 2814
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2815
struct drm_i915_gem_request *
2816
i915_gem_find_active_request(struct intel_engine_cs *engine)
2817
{
2818 2819
	struct drm_i915_gem_request *request;

2820
	list_for_each_entry(request, &engine->request_list, list) {
2821
		if (i915_gem_request_completed(request, false))
2822
			continue;
2823

2824
		return request;
2825
	}
2826 2827 2828 2829

	return NULL;
}

2830
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2831
				       struct intel_engine_cs *engine)
2832 2833 2834 2835
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2836
	request = i915_gem_find_active_request(engine);
2837 2838 2839 2840

	if (request == NULL)
		return;

2841
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2842

2843
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2844

2845
	list_for_each_entry_continue(request, &engine->request_list, list)
2846
		i915_set_reset_status(dev_priv, request->ctx, false);
2847
}
2848

2849
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2850
					struct intel_engine_cs *engine)
2851
{
2852 2853
	struct intel_ringbuffer *buffer;

2854
	while (!list_empty(&engine->active_list)) {
2855
		struct drm_i915_gem_object *obj;
2856

2857
		obj = list_first_entry(&engine->active_list,
2858
				       struct drm_i915_gem_object,
2859
				       engine_list[engine->id]);
2860

2861
		i915_gem_object_retire__read(obj, engine->id);
2862
	}
2863

2864 2865 2866 2867 2868 2869
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2870
	if (i915.enable_execlists) {
2871 2872
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2873

2874
		intel_execlists_cancel_requests(engine);
2875 2876
	}

2877 2878 2879 2880 2881 2882 2883
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2884
	while (!list_empty(&engine->request_list)) {
2885 2886
		struct drm_i915_gem_request *request;

2887
		request = list_first_entry(&engine->request_list,
2888 2889 2890
					   struct drm_i915_gem_request,
					   list);

2891
		i915_gem_request_retire(request);
2892
	}
2893 2894 2895 2896 2897 2898 2899 2900

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2901
	list_for_each_entry(buffer, &engine->buffers, link) {
2902 2903 2904
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2905 2906

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2907 2908
}

2909
void i915_gem_reset(struct drm_device *dev)
2910
{
2911
	struct drm_i915_private *dev_priv = dev->dev_private;
2912
	struct intel_engine_cs *engine;
2913

2914 2915 2916 2917 2918
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2919
	for_each_engine(engine, dev_priv)
2920
		i915_gem_reset_engine_status(dev_priv, engine);
2921

2922
	for_each_engine(engine, dev_priv)
2923
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2924

2925 2926
	i915_gem_context_reset(dev);

2927
	i915_gem_restore_fences(dev);
2928 2929

	WARN_ON(i915_verify_lists(dev));
2930 2931 2932 2933 2934
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2935
void
2936
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2937
{
2938
	WARN_ON(i915_verify_lists(engine->dev));
2939

2940 2941 2942 2943
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2944
	 */
2945
	while (!list_empty(&engine->request_list)) {
2946 2947
		struct drm_i915_gem_request *request;

2948
		request = list_first_entry(&engine->request_list,
2949 2950 2951
					   struct drm_i915_gem_request,
					   list);

2952
		if (!i915_gem_request_completed(request, true))
2953 2954
			break;

2955
		i915_gem_request_retire(request);
2956
	}
2957

2958 2959 2960 2961
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2962
	while (!list_empty(&engine->active_list)) {
2963 2964
		struct drm_i915_gem_object *obj;

2965 2966
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2967
				       engine_list[engine->id]);
2968

2969
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2970 2971
			break;

2972
		i915_gem_object_retire__read(obj, engine->id);
2973 2974
	}

2975 2976 2977 2978
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2979
	}
2980

2981
	WARN_ON(i915_verify_lists(engine->dev));
2982 2983
}

2984
bool
2985
i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2986
{
2987
	struct intel_engine_cs *engine;
2988
	bool idle = true;
2989

2990
	for_each_engine(engine, dev_priv) {
2991 2992
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
2993
		if (i915.enable_execlists) {
2994
			spin_lock_bh(&engine->execlist_lock);
2995
			idle &= list_empty(&engine->execlist_queue);
2996
			spin_unlock_bh(&engine->execlist_lock);
2997
		}
2998 2999 3000 3001 3002 3003 3004 3005
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3006 3007
}

3008
static void
3009 3010
i915_gem_retire_work_handler(struct work_struct *work)
{
3011 3012 3013
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3014
	bool idle;
3015

3016
	/* Come back later if the device is busy... */
3017 3018
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
3019
		idle = i915_gem_retire_requests(dev_priv);
3020
		mutex_unlock(&dev->struct_mutex);
3021
	}
3022
	if (!idle)
3023 3024
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3025
}
3026

3027 3028 3029 3030 3031
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3032
	struct drm_device *dev = dev_priv->dev;
3033
	struct intel_engine_cs *engine;
3034

3035 3036
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3037
			return;
3038

3039
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3040
	 * Also locking seems to be fubar here, engine->request_list is protected
3041 3042
	 * by dev->struct_mutex. */

3043
	intel_mark_idle(dev_priv);
3044 3045

	if (mutex_trylock(&dev->struct_mutex)) {
3046
		for_each_engine(engine, dev_priv)
3047
			i915_gem_batch_pool_fini(&engine->batch_pool);
3048

3049 3050
		mutex_unlock(&dev->struct_mutex);
	}
3051 3052
}

3053 3054 3055 3056 3057 3058 3059 3060
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3061
	int i;
3062 3063 3064

	if (!obj->active)
		return 0;
3065

3066
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3067
		struct drm_i915_gem_request *req;
3068

3069 3070 3071 3072
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

3073
		if (i915_gem_request_completed(req, true))
3074
			i915_gem_object_retire__read(obj, i);
3075 3076 3077 3078 3079
	}

	return 0;
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3107
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3108 3109
	int i, n = 0;
	int ret;
3110

3111 3112 3113
	if (args->flags != 0)
		return -EINVAL;

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3124 3125
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3126 3127 3128
	if (ret)
		goto out;

3129
	if (!obj->active)
3130
		goto out;
3131 3132

	/* Do this after OLR check to make sure we make forward progress polling
3133
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3134
	 */
3135
	if (args->timeout_ns == 0) {
3136 3137 3138 3139 3140
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3141

3142
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3143 3144 3145 3146 3147 3148
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3149 3150
	mutex_unlock(&dev->struct_mutex);

3151 3152
	for (i = 0; i < n; i++) {
		if (ret == 0)
3153
			ret = __i915_wait_request(req[i], true,
3154
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3155
						  to_rps_client(file));
3156
		i915_gem_request_unreference(req[i]);
3157
	}
3158
	return ret;
3159 3160 3161 3162 3163 3164 3165

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3166 3167 3168
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3169 3170
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3171 3172 3173 3174
{
	struct intel_engine_cs *from;
	int ret;

3175
	from = i915_gem_request_get_engine(from_req);
3176 3177 3178
	if (to == from)
		return 0;

3179
	if (i915_gem_request_completed(from_req, true))
3180 3181
		return 0;

3182
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3183
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3184
		ret = __i915_wait_request(from_req,
3185 3186 3187
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3188 3189 3190
		if (ret)
			return ret;

3191
		i915_gem_object_retire_request(obj, from_req);
3192 3193
	} else {
		int idx = intel_ring_sync_index(from, to);
3194 3195 3196
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3197 3198 3199 3200

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3201
		if (*to_req == NULL) {
3202 3203 3204 3205 3206 3207 3208
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3209 3210
		}

3211 3212
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3227 3228 3229 3230 3231
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3232 3233 3234
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3235 3236 3237
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3238
 * rather than a particular GPU ring. Conceptually we serialise writes
3239
 * between engines inside the GPU. We only allow one engine to write
3240 3241 3242 3243 3244 3245 3246 3247 3248
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3249
 *
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3260 3261
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3262 3263
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3264 3265
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3266
{
3267
	const bool readonly = obj->base.pending_write_domain == 0;
3268
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3269
	int ret, i, n;
3270

3271
	if (!obj->active)
3272 3273
		return 0;

3274 3275
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3276

3277 3278 3279 3280 3281
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3282
		for (i = 0; i < I915_NUM_ENGINES; i++)
3283 3284 3285 3286
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3287
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3288 3289 3290
		if (ret)
			return ret;
	}
3291

3292
	return 0;
3293 3294
}

3295 3296 3297 3298 3299 3300 3301
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3302 3303 3304
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3327
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3328
{
3329
	struct drm_i915_gem_object *obj = vma->obj;
3330
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3331
	int ret;
3332

3333
	if (list_empty(&vma->obj_link))
3334 3335
		return 0;

3336 3337 3338 3339
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3340

B
Ben Widawsky 已提交
3341
	if (vma->pin_count)
3342
		return -EBUSY;
3343

3344 3345
	BUG_ON(obj->pages == NULL);

3346 3347 3348 3349 3350
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3351

3352
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3353
		i915_gem_object_finish_gtt(obj);
3354

3355 3356 3357 3358
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3359 3360

		__i915_vma_iounmap(vma);
3361
	}
3362

3363
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3364

3365
	vma->vm->unbind_vma(vma);
3366
	vma->bound = 0;
3367

3368
	list_del_init(&vma->vm_link);
3369
	if (vma->is_ggtt) {
3370 3371 3372 3373 3374 3375
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3376
		vma->ggtt_view.pages = NULL;
3377
	}
3378

B
Ben Widawsky 已提交
3379 3380 3381 3382
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3383
	 * no more VMAs exist. */
I
Imre Deak 已提交
3384
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3385
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3386

3387 3388 3389 3390 3391 3392
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3393
	return 0;
3394 3395
}

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3406
int i915_gpu_idle(struct drm_device *dev)
3407
{
3408
	struct drm_i915_private *dev_priv = dev->dev_private;
3409
	struct intel_engine_cs *engine;
3410
	int ret;
3411 3412

	/* Flush everything onto the inactive list. */
3413
	for_each_engine(engine, dev_priv) {
3414
		if (!i915.enable_execlists) {
3415 3416
			struct drm_i915_gem_request *req;

3417
			req = i915_gem_request_alloc(engine, NULL);
3418 3419
			if (IS_ERR(req))
				return PTR_ERR(req);
3420

3421
			ret = i915_switch_context(req);
3422
			i915_add_request_no_flush(req);
3423 3424
			if (ret)
				return ret;
3425
		}
3426

3427
		ret = intel_engine_idle(engine);
3428 3429 3430
		if (ret)
			return ret;
	}
3431

3432
	WARN_ON(i915_verify_lists(dev));
3433
	return 0;
3434 3435
}

3436
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3437 3438
				     unsigned long cache_level)
{
3439
	struct drm_mm_node *gtt_space = &vma->node;
3440 3441
	struct drm_mm_node *other;

3442 3443 3444 3445 3446 3447
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3448
	 */
3449
	if (vma->vm->mm.color_adjust == NULL)
3450 3451
		return true;

3452
	if (!drm_mm_node_allocated(gtt_space))
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3469
/**
3470 3471
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3472
 */
3473
static struct i915_vma *
3474 3475
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3476
			   const struct i915_ggtt_view *ggtt_view,
3477
			   unsigned alignment,
3478
			   uint64_t flags)
3479
{
3480
	struct drm_device *dev = obj->base.dev;
3481 3482
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3483
	u32 fence_alignment, unfenced_alignment;
3484 3485
	u32 search_flag, alloc_flag;
	u64 start, end;
3486
	u64 size, fence_size;
B
Ben Widawsky 已提交
3487
	struct i915_vma *vma;
3488
	int ret;
3489

3490 3491 3492 3493 3494
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3495

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3525

3526 3527 3528
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3529
		end = min_t(u64, end, ggtt->mappable_end);
3530
	if (flags & PIN_ZONE_4G)
3531
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3532

3533
	if (alignment == 0)
3534
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3535
						unfenced_alignment;
3536
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3537 3538 3539
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3540
		return ERR_PTR(-EINVAL);
3541 3542
	}

3543 3544 3545
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3546
	 */
3547
	if (size > end) {
3548
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3549 3550
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3551
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3552
			  end);
3553
		return ERR_PTR(-E2BIG);
3554 3555
	}

3556
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3557
	if (ret)
3558
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3559

3560 3561
	i915_gem_object_pin_pages(obj);

3562 3563 3564
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3565
	if (IS_ERR(vma))
3566
		goto err_unpin;
B
Ben Widawsky 已提交
3567

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3586
	} else {
3587 3588 3589 3590 3591 3592 3593
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3594

3595
search_free:
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3609

3610 3611
			goto err_free_vma;
		}
3612
	}
3613
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3614
		ret = -EINVAL;
3615
		goto err_remove_node;
3616 3617
	}

3618
	trace_i915_vma_bind(vma, flags);
3619
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3620
	if (ret)
I
Imre Deak 已提交
3621
		goto err_remove_node;
3622

3623
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3624
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3625

3626
	return vma;
B
Ben Widawsky 已提交
3627

3628
err_remove_node:
3629
	drm_mm_remove_node(&vma->node);
3630
err_free_vma:
B
Ben Widawsky 已提交
3631
	i915_gem_vma_destroy(vma);
3632
	vma = ERR_PTR(ret);
3633
err_unpin:
B
Ben Widawsky 已提交
3634
	i915_gem_object_unpin_pages(obj);
3635
	return vma;
3636 3637
}

3638
bool
3639 3640
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3641 3642 3643 3644 3645
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3646
	if (obj->pages == NULL)
3647
		return false;
3648

3649 3650 3651 3652
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3653
	if (obj->stolen || obj->phys_handle)
3654
		return false;
3655

3656 3657 3658 3659 3660 3661 3662 3663
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3664 3665
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3666
		return false;
3667
	}
3668

C
Chris Wilson 已提交
3669
	trace_i915_gem_object_clflush(obj);
3670
	drm_clflush_sg(obj->pages);
3671
	obj->cache_dirty = false;
3672 3673

	return true;
3674 3675 3676 3677
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3678
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3679
{
C
Chris Wilson 已提交
3680 3681
	uint32_t old_write_domain;

3682
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3683 3684
		return;

3685
	/* No actual flushing is required for the GTT write domain.  Writes
3686 3687
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3688 3689 3690 3691
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3692
	 */
3693 3694
	wmb();

3695 3696
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3697

3698
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3699

C
Chris Wilson 已提交
3700
	trace_i915_gem_object_change_domain(obj,
3701
					    obj->base.read_domains,
C
Chris Wilson 已提交
3702
					    old_write_domain);
3703 3704 3705 3706
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3707
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3708
{
C
Chris Wilson 已提交
3709
	uint32_t old_write_domain;
3710

3711
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3712 3713
		return;

3714
	if (i915_gem_clflush_object(obj, obj->pin_display))
3715
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3716

3717 3718
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3719

3720
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3721

C
Chris Wilson 已提交
3722
	trace_i915_gem_object_change_domain(obj,
3723
					    obj->base.read_domains,
C
Chris Wilson 已提交
3724
					    old_write_domain);
3725 3726
}

3727 3728 3729 3730 3731 3732
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3733
int
3734
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3735
{
3736 3737 3738
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3739
	uint32_t old_write_domain, old_read_domains;
3740
	struct i915_vma *vma;
3741
	int ret;
3742

3743 3744 3745
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3746
	ret = i915_gem_object_wait_rendering(obj, !write);
3747 3748 3749
	if (ret)
		return ret;

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3762
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3763

3764 3765 3766 3767 3768 3769 3770
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3771 3772
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3773

3774 3775 3776
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3777 3778
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3779
	if (write) {
3780 3781 3782
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3783 3784
	}

C
Chris Wilson 已提交
3785 3786 3787 3788
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3789
	/* And bump the LRU for this access */
3790 3791
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3792
		list_move_tail(&vma->vm_link,
3793
			       &ggtt->base.inactive_list);
3794

3795 3796 3797
	return 0;
}

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3811 3812 3813
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3814
	struct drm_device *dev = obj->base.dev;
3815
	struct i915_vma *vma, *next;
3816
	bool bound = false;
3817
	int ret = 0;
3818 3819

	if (obj->cache_level == cache_level)
3820
		goto out;
3821

3822 3823 3824 3825 3826
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3827
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3828 3829 3830 3831 3832 3833 3834 3835
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3836
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3837
			ret = i915_vma_unbind(vma);
3838 3839
			if (ret)
				return ret;
3840 3841
		} else
			bound = true;
3842 3843
	}

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3856
		ret = i915_gem_object_wait_rendering(obj, false);
3857 3858 3859
		if (ret)
			return ret;

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3877 3878 3879
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3880 3881 3882 3883 3884 3885 3886 3887
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3888 3889
		}

3890
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3891 3892 3893 3894 3895 3896 3897
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3898 3899
	}

3900
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3901 3902 3903
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3904
out:
3905 3906 3907 3908
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3909 3910 3911 3912
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
3913
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3914 3915 3916 3917 3918
	}

	return 0;
}

B
Ben Widawsky 已提交
3919 3920
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3921
{
B
Ben Widawsky 已提交
3922
	struct drm_i915_gem_caching *args = data;
3923 3924 3925
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3926 3927
	if (&obj->base == NULL)
		return -ENOENT;
3928

3929 3930 3931 3932 3933 3934
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3935 3936 3937 3938
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3939 3940 3941 3942
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3943

3944 3945
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3946 3947
}

B
Ben Widawsky 已提交
3948 3949
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3950
{
3951
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3952
	struct drm_i915_gem_caching *args = data;
3953 3954 3955 3956
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3957 3958
	switch (args->caching) {
	case I915_CACHING_NONE:
3959 3960
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3961
	case I915_CACHING_CACHED:
3962 3963 3964 3965 3966 3967
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3968
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3969 3970
			return -ENODEV;

3971 3972
		level = I915_CACHE_LLC;
		break;
3973 3974 3975
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3976 3977 3978 3979
	default:
		return -EINVAL;
	}

3980 3981
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3982 3983
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3984
		goto rpm_put;
B
Ben Widawsky 已提交
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3997 3998 3999
rpm_put:
	intel_runtime_pm_put(dev_priv);

4000 4001 4002
	return ret;
}

4003
/*
4004 4005 4006
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4007 4008
 */
int
4009 4010
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4011
				     const struct i915_ggtt_view *view)
4012
{
4013
	u32 old_read_domains, old_write_domain;
4014 4015
	int ret;

4016 4017 4018
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4019
	obj->pin_display++;
4020

4021 4022 4023 4024 4025 4026 4027 4028 4029
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4030 4031
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4032
	if (ret)
4033
		goto err_unpin_display;
4034

4035 4036 4037 4038
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4039 4040 4041
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4042
	if (ret)
4043
		goto err_unpin_display;
4044

4045
	i915_gem_object_flush_cpu_write_domain(obj);
4046

4047
	old_write_domain = obj->base.write_domain;
4048
	old_read_domains = obj->base.read_domains;
4049 4050 4051 4052

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4053
	obj->base.write_domain = 0;
4054
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4055 4056 4057

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4058
					    old_write_domain);
4059 4060

	return 0;
4061 4062

err_unpin_display:
4063
	obj->pin_display--;
4064 4065 4066 4067
	return ret;
}

void
4068 4069
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4070
{
4071 4072 4073
	if (WARN_ON(obj->pin_display == 0))
		return;

4074 4075
	i915_gem_object_ggtt_unpin_view(obj, view);

4076
	obj->pin_display--;
4077 4078
}

4079 4080 4081 4082 4083 4084
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4085
int
4086
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4087
{
C
Chris Wilson 已提交
4088
	uint32_t old_write_domain, old_read_domains;
4089 4090
	int ret;

4091 4092 4093
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4094
	ret = i915_gem_object_wait_rendering(obj, !write);
4095 4096 4097
	if (ret)
		return ret;

4098
	i915_gem_object_flush_gtt_write_domain(obj);
4099

4100 4101
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4102

4103
	/* Flush the CPU cache if it's still invalid. */
4104
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4105
		i915_gem_clflush_object(obj, false);
4106

4107
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4108 4109 4110 4111 4112
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4113
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4114 4115 4116 4117 4118

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4119 4120
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4121
	}
4122

C
Chris Wilson 已提交
4123 4124 4125 4126
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4127 4128 4129
	return 0;
}

4130 4131 4132
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4133 4134 4135 4136
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4137 4138 4139
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4140
static int
4141
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4142
{
4143 4144
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4145
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4146
	struct drm_i915_gem_request *request, *target = NULL;
4147
	int ret;
4148

4149 4150 4151 4152
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4153 4154 4155
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4156

4157
	spin_lock(&file_priv->mm.lock);
4158
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4159 4160
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4161

4162 4163 4164 4165 4166 4167 4168
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4169
		target = request;
4170
	}
4171 4172
	if (target)
		i915_gem_request_reference(target);
4173
	spin_unlock(&file_priv->mm.lock);
4174

4175
	if (target == NULL)
4176
		return 0;
4177

4178
	ret = __i915_wait_request(target, true, NULL, NULL);
4179 4180
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4181

4182
	i915_gem_request_unreference(target);
4183

4184 4185 4186
	return ret;
}

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4203 4204 4205 4206
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4207 4208 4209
	return false;
}

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4228
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4229 4230 4231 4232

	obj->map_and_fenceable = mappable && fenceable;
}

4233 4234 4235 4236 4237 4238
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4239
{
4240
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4241
	struct i915_vma *vma;
4242
	unsigned bound;
4243 4244
	int ret;

4245 4246 4247
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4248
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4249
		return -EINVAL;
4250

4251 4252 4253
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4254 4255 4256 4257 4258 4259
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4260
	if (vma) {
B
Ben Widawsky 已提交
4261 4262 4263
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4264
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4265
			WARN(vma->pin_count,
4266
			     "bo is already pinned in %s with incorrect alignment:"
4267
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4268
			     " obj->map_and_fenceable=%d\n",
4269
			     ggtt_view ? "ggtt" : "ppgtt",
4270 4271
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4272
			     alignment,
4273
			     !!(flags & PIN_MAPPABLE),
4274
			     obj->map_and_fenceable);
4275
			ret = i915_vma_unbind(vma);
4276 4277
			if (ret)
				return ret;
4278 4279

			vma = NULL;
4280 4281 4282
		}
	}

4283
	bound = vma ? vma->bound : 0;
4284
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4285 4286
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4287 4288
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4289 4290
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4291 4292 4293
		if (ret)
			return ret;
	}
4294

4295 4296
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4297
		__i915_vma_set_map_and_fenceable(vma);
4298 4299
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4300

4301
	vma->pin_count++;
4302 4303 4304
	return 0;
}

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4322 4323 4324 4325
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4326
	BUG_ON(!view);
4327

4328
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4329
				      alignment, flags | PIN_GLOBAL);
4330 4331
}

4332
void
4333 4334
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4335
{
4336
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4337

4338
	WARN_ON(vma->pin_count == 0);
4339
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4340

4341
	--vma->pin_count;
4342 4343 4344 4345
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4346
		    struct drm_file *file)
4347 4348
{
	struct drm_i915_gem_busy *args = data;
4349
	struct drm_i915_gem_object *obj;
4350 4351
	int ret;

4352
	ret = i915_mutex_lock_interruptible(dev);
4353
	if (ret)
4354
		return ret;
4355

4356
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4357
	if (&obj->base == NULL) {
4358 4359
		ret = -ENOENT;
		goto unlock;
4360
	}
4361

4362 4363 4364 4365
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4366
	 */
4367
	ret = i915_gem_object_flush_active(obj);
4368 4369
	if (ret)
		goto unref;
4370

4371 4372 4373 4374
	args->busy = 0;
	if (obj->active) {
		int i;

4375
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4376 4377 4378 4379
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4380
				args->busy |= 1 << (16 + req->engine->exec_id);
4381 4382
		}
		if (obj->last_write_req)
4383
			args->busy |= obj->last_write_req->engine->exec_id;
4384
	}
4385

4386
unref:
4387
	drm_gem_object_unreference(&obj->base);
4388
unlock:
4389
	mutex_unlock(&dev->struct_mutex);
4390
	return ret;
4391 4392 4393 4394 4395 4396
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4397
	return i915_gem_ring_throttle(dev, file_priv);
4398 4399
}

4400 4401 4402 4403
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4404
	struct drm_i915_private *dev_priv = dev->dev_private;
4405
	struct drm_i915_gem_madvise *args = data;
4406
	struct drm_i915_gem_object *obj;
4407
	int ret;
4408 4409 4410 4411 4412 4413 4414 4415 4416

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4417 4418 4419 4420
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4421
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4422
	if (&obj->base == NULL) {
4423 4424
		ret = -ENOENT;
		goto unlock;
4425 4426
	}

B
Ben Widawsky 已提交
4427
	if (i915_gem_obj_is_pinned(obj)) {
4428 4429
		ret = -EINVAL;
		goto out;
4430 4431
	}

4432 4433 4434 4435 4436 4437 4438 4439 4440
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4441 4442
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4443

C
Chris Wilson 已提交
4444
	/* if the object is no longer attached, discard its backing storage */
4445
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4446 4447
		i915_gem_object_truncate(obj);

4448
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4449

4450
out:
4451
	drm_gem_object_unreference(&obj->base);
4452
unlock:
4453
	mutex_unlock(&dev->struct_mutex);
4454
	return ret;
4455 4456
}

4457 4458
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4459
{
4460 4461
	int i;

4462
	INIT_LIST_HEAD(&obj->global_list);
4463
	for (i = 0; i < I915_NUM_ENGINES; i++)
4464
		INIT_LIST_HEAD(&obj->engine_list[i]);
4465
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4466
	INIT_LIST_HEAD(&obj->vma_list);
4467
	INIT_LIST_HEAD(&obj->batch_pool_link);
4468

4469 4470
	obj->ops = ops;

4471 4472 4473 4474 4475 4476
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4477
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4478
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4479 4480 4481 4482
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4483
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4484
						  size_t size)
4485
{
4486
	struct drm_i915_gem_object *obj;
4487
	struct address_space *mapping;
D
Daniel Vetter 已提交
4488
	gfp_t mask;
4489
	int ret;
4490

4491
	obj = i915_gem_object_alloc(dev);
4492
	if (obj == NULL)
4493
		return ERR_PTR(-ENOMEM);
4494

4495 4496 4497
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4498

4499 4500 4501 4502 4503 4504 4505
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4506
	mapping = file_inode(obj->base.filp)->i_mapping;
4507
	mapping_set_gfp_mask(mapping, mask);
4508

4509
	i915_gem_object_init(obj, &i915_gem_object_ops);
4510

4511 4512
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4513

4514 4515
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4531 4532
	trace_i915_gem_object_create(obj);

4533
	return obj;
4534 4535 4536 4537 4538

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4539 4540
}

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4565
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4566
{
4567
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4568
	struct drm_device *dev = obj->base.dev;
4569
	struct drm_i915_private *dev_priv = dev->dev_private;
4570
	struct i915_vma *vma, *next;
4571

4572 4573
	intel_runtime_pm_get(dev_priv);

4574 4575
	trace_i915_gem_object_destroy(obj);

4576
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4577 4578 4579 4580
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4581 4582
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4583

4584 4585
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4586

4587
			WARN_ON(i915_vma_unbind(vma));
4588

4589 4590
			dev_priv->mm.interruptible = was_interruptible;
		}
4591 4592
	}

B
Ben Widawsky 已提交
4593 4594 4595 4596 4597
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4598 4599
	WARN_ON(obj->frontbuffer_bits);

4600 4601 4602 4603 4604
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4605 4606
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4607
	if (discard_backing_storage(obj))
4608
		obj->madv = I915_MADV_DONTNEED;
4609
	i915_gem_object_put_pages(obj);
4610
	i915_gem_object_free_mmap_offset(obj);
4611

4612 4613
	BUG_ON(obj->pages);

4614 4615
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4616

4617 4618 4619
	if (obj->ops->release)
		obj->ops->release(obj);

4620 4621
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4622

4623
	kfree(obj->bit_17);
4624
	i915_gem_object_free(obj);
4625 4626

	intel_runtime_pm_put(dev_priv);
4627 4628
}

4629 4630
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4631 4632
{
	struct i915_vma *vma;
4633
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4634 4635
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4636
			return vma;
4637 4638 4639 4640 4641 4642 4643 4644
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4645

4646
	GEM_BUG_ON(!view);
4647

4648
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4649
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4650
			return vma;
4651 4652 4653
	return NULL;
}

B
Ben Widawsky 已提交
4654 4655 4656
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4657 4658 4659 4660 4661

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4662 4663
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4664

4665
	list_del(&vma->obj_link);
4666

4667
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4668 4669
}

4670
static void
4671
i915_gem_stop_engines(struct drm_device *dev)
4672 4673
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4674
	struct intel_engine_cs *engine;
4675

4676
	for_each_engine(engine, dev_priv)
4677
		dev_priv->gt.stop_engine(engine);
4678 4679
}

4680
int
4681
i915_gem_suspend(struct drm_device *dev)
4682
{
4683
	struct drm_i915_private *dev_priv = dev->dev_private;
4684
	int ret = 0;
4685

4686
	mutex_lock(&dev->struct_mutex);
4687
	ret = i915_gpu_idle(dev);
4688
	if (ret)
4689
		goto err;
4690

4691
	i915_gem_retire_requests(dev_priv);
4692

4693
	i915_gem_stop_engines(dev);
4694
	i915_gem_context_lost(dev_priv);
4695 4696
	mutex_unlock(&dev->struct_mutex);

4697
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4698
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4699
	flush_delayed_work(&dev_priv->mm.idle_work);
4700

4701 4702 4703 4704 4705
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4706
	return 0;
4707 4708 4709 4710

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4711 4712
}

4713 4714
void i915_gem_init_swizzling(struct drm_device *dev)
{
4715
	struct drm_i915_private *dev_priv = dev->dev_private;
4716

4717
	if (INTEL_INFO(dev)->gen < 5 ||
4718 4719 4720 4721 4722 4723
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4724 4725 4726
	if (IS_GEN5(dev))
		return;

4727 4728
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4729
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4730
	else if (IS_GEN7(dev))
4731
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4732 4733
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4734 4735
	else
		BUG();
4736
}
D
Daniel Vetter 已提交
4737

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4765
int i915_gem_init_engines(struct drm_device *dev)
4766
{
4767
	struct drm_i915_private *dev_priv = dev->dev_private;
4768
	int ret;
4769

4770
	ret = intel_init_render_ring_buffer(dev);
4771
	if (ret)
4772
		return ret;
4773 4774

	if (HAS_BSD(dev)) {
4775
		ret = intel_init_bsd_ring_buffer(dev);
4776 4777
		if (ret)
			goto cleanup_render_ring;
4778
	}
4779

4780
	if (HAS_BLT(dev)) {
4781 4782 4783 4784 4785
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4786 4787 4788 4789 4790 4791
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4792 4793 4794 4795 4796
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4797

4798 4799
	return 0;

B
Ben Widawsky 已提交
4800
cleanup_vebox_ring:
4801
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4802
cleanup_blt_ring:
4803
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4804
cleanup_bsd_ring:
4805
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4806
cleanup_render_ring:
4807
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4808 4809 4810 4811 4812 4813 4814

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4815
	struct drm_i915_private *dev_priv = dev->dev_private;
4816
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4817
	int ret;
4818

4819 4820 4821
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4822
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4823
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4824

4825 4826 4827
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4828

4829
	if (HAS_PCH_NOP(dev)) {
4830 4831 4832 4833 4834 4835 4836 4837 4838
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4839 4840
	}

4841 4842
	i915_gem_init_swizzling(dev);

4843 4844 4845 4846 4847 4848 4849 4850
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4851
	BUG_ON(!dev_priv->kernel_context);
4852

4853 4854 4855 4856 4857 4858 4859
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4860
	for_each_engine(engine, dev_priv) {
4861
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4862
		if (ret)
4863
			goto out;
D
Daniel Vetter 已提交
4864
	}
4865

4866 4867
	intel_mocs_init_l3cc_table(dev);

4868
	/* We can't enable contexts until all firmware is loaded */
4869 4870 4871
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4872 4873 4874
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4875
		}
4876 4877
	}

4878 4879 4880 4881 4882
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
D
Daniel Vetter 已提交
4883

4884 4885
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4886
	return ret;
4887 4888
}

4889 4890 4891 4892 4893 4894
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	mutex_lock(&dev->struct_mutex);
4895

4896
	if (!i915.enable_execlists) {
4897
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4898 4899 4900
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4901
	} else {
4902
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4903 4904 4905
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4906 4907
	}

4908 4909 4910 4911 4912 4913 4914 4915
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4916
	ret = i915_gem_init_userptr(dev);
4917 4918
	if (ret)
		goto out_unlock;
4919

4920
	i915_gem_init_ggtt(dev);
4921

4922
	ret = i915_gem_context_init(dev);
4923 4924
	if (ret)
		goto out_unlock;
4925

4926
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
4927
	if (ret)
4928
		goto out_unlock;
4929

4930
	ret = i915_gem_init_hw(dev);
4931 4932 4933 4934 4935 4936
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4937
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4938
		ret = 0;
4939
	}
4940 4941

out_unlock:
4942
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4943
	mutex_unlock(&dev->struct_mutex);
4944

4945
	return ret;
4946 4947
}

4948
void
4949
i915_gem_cleanup_engines(struct drm_device *dev)
4950
{
4951
	struct drm_i915_private *dev_priv = dev->dev_private;
4952
	struct intel_engine_cs *engine;
4953

4954
	for_each_engine(engine, dev_priv)
4955
		dev_priv->gt.cleanup_engine(engine);
4956 4957
}

4958
static void
4959
init_engine_lists(struct intel_engine_cs *engine)
4960
{
4961 4962
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4963 4964
}

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4979
	if (intel_vgpu_active(dev_priv))
4980 4981 4982 4983 4984 4985 4986 4987 4988
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4989
void
4990
i915_gem_load_init(struct drm_device *dev)
4991
{
4992
	struct drm_i915_private *dev_priv = dev->dev_private;
4993 4994
	int i;

4995
	dev_priv->objects =
4996 4997 4998 4999
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5000 5001 5002 5003 5004
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5005 5006 5007 5008 5009
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5010

B
Ben Widawsky 已提交
5011
	INIT_LIST_HEAD(&dev_priv->vm_list);
5012
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5013 5014
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5015
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5016 5017
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5018
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5019
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5020 5021
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5022 5023
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5024
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5025

5026 5027
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5028 5029 5030 5031 5032 5033 5034 5035
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5036
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5037

5038
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5039

5040 5041
	dev_priv->mm.interruptible = true;

5042
	mutex_init(&dev_priv->fb_tracking.lock);
5043
}
5044

5045 5046 5047 5048 5049 5050 5051 5052 5053
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

5082
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5083
{
5084
	struct drm_i915_file_private *file_priv = file->driver_priv;
5085 5086 5087 5088 5089

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5090
	spin_lock(&file_priv->mm.lock);
5091 5092 5093 5094 5095 5096 5097 5098 5099
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5100
	spin_unlock(&file_priv->mm.lock);
5101

5102
	if (!list_empty(&file_priv->rps.link)) {
5103
		spin_lock(&to_i915(dev)->rps.client_lock);
5104
		list_del(&file_priv->rps.link);
5105
		spin_unlock(&to_i915(dev)->rps.client_lock);
5106
	}
5107 5108 5109 5110 5111
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5112
	int ret;
5113 5114 5115 5116 5117 5118 5119 5120 5121

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5122
	file_priv->file = file;
5123
	INIT_LIST_HEAD(&file_priv->rps.link);
5124 5125 5126 5127

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5128 5129
	file_priv->bsd_ring = -1;

5130 5131 5132
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5133

5134
	return ret;
5135 5136
}

5137 5138
/**
 * i915_gem_track_fb - update frontbuffer tracking
5139 5140 5141
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5142 5143 5144 5145
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5163
/* All the new VM stuff */
5164 5165
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5166 5167 5168 5169
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5170
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5171

5172
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5173
		if (vma->is_ggtt &&
5174 5175 5176
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5177 5178
			return vma->node.start;
	}
5179

5180 5181
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5182 5183 5184
	return -1;
}

5185 5186
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5187 5188 5189
{
	struct i915_vma *vma;

5190
	list_for_each_entry(vma, &o->vma_list, obj_link)
5191
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5192 5193
			return vma->node.start;

5194
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5195 5196 5197 5198 5199 5200 5201 5202
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5203
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5204
		if (vma->is_ggtt &&
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5215
				  const struct i915_ggtt_view *view)
5216 5217 5218
{
	struct i915_vma *vma;

5219
	list_for_each_entry(vma, &o->vma_list, obj_link)
5220
		if (vma->is_ggtt &&
5221
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5222
		    drm_mm_node_allocated(&vma->node))
5223 5224 5225 5226 5227 5228 5229
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5230
	struct i915_vma *vma;
5231

5232
	list_for_each_entry(vma, &o->vma_list, obj_link)
5233
		if (drm_mm_node_allocated(&vma->node))
5234 5235 5236 5237 5238
			return true;

	return false;
}

5239
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5240 5241 5242
{
	struct i915_vma *vma;

5243
	GEM_BUG_ON(list_empty(&o->vma_list));
5244

5245
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5246
		if (vma->is_ggtt &&
5247
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5248
			return vma->node.size;
5249
	}
5250

5251 5252 5253
	return 0;
}

5254
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5255 5256
{
	struct i915_vma *vma;
5257
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5258 5259
		if (vma->pin_count > 0)
			return true;
5260

5261
	return false;
5262
}
5263

5264 5265 5266 5267 5268 5269 5270
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5271
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5272 5273 5274 5275 5276 5277 5278
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5289
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5290
	if (IS_ERR(obj))
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5304
	obj->dirty = 1;		/* Backing store is now out of date */
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}