i915_gem.c 138.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
135
	struct drm_i915_gem_get_aperture *args = data;
136
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 143
		if (vma->pin_count)
			pinned += vma->node.size;
144
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 146
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = ggtt->base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

180
		put_page(page);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			put_page(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
275
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 277 278 279 280 281 282
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

492
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768 769
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
770
	ssize_t remain;
771
	loff_t offset, page_base;
772
	char __user *user_data;
D
Daniel Vetter 已提交
773 774
	int page_offset, page_length, ret;

775
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
776 777 778 779 780 781 782 783 784 785
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
786

V
Ville Syrjälä 已提交
787
	user_data = to_user_ptr(args->data_ptr);
788 789
	remain = args->size;

790
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
791

792
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
793

794 795 796
	while (remain > 0) {
		/* Operation in this page
		 *
797 798 799
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
800
		 */
801 802
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
803 804 805 806 807
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
808 809
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
810
		 */
811
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
812 813
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
814
			goto out_flush;
D
Daniel Vetter 已提交
815
		}
816

817 818 819
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
820 821
	}

822
out_flush:
823
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
824
out_unpin:
B
Ben Widawsky 已提交
825
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
826
out:
827
	return ret;
828 829
}

830 831 832 833
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
834
static int
835 836 837 838 839
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
840
{
841
	char *vaddr;
842
	int ret;
843

844
	if (unlikely(page_do_bit17_swizzling))
845
		return -EINVAL;
846

847 848 849 850
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
851 852
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
853 854 855 856
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
857

858
	return ret ? -EFAULT : 0;
859 860
}

861 862
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
863
static int
864 865 866 867 868
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
869
{
870 871
	char *vaddr;
	int ret;
872

873
	vaddr = kmap(page);
874
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
875 876 877
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
878 879
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
880 881
						user_data,
						page_length);
882 883 884 885 886
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
887 888 889
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
890
	kunmap(page);
891

892
	return ret ? -EFAULT : 0;
893 894 895
}

static int
896 897 898 899
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
900 901
{
	ssize_t remain;
902 903
	loff_t offset;
	char __user *user_data;
904
	int shmem_page_offset, page_length, ret = 0;
905
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
906
	int hit_slowpath = 0;
907 908
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
909
	struct sg_page_iter sg_iter;
910

V
Ville Syrjälä 已提交
911
	user_data = to_user_ptr(args->data_ptr);
912 913
	remain = args->size;

914
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
915

916 917 918 919 920
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
921
		needs_clflush_after = cpu_write_needs_clflush(obj);
922 923 924
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
925
	}
926 927 928 929 930
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
931

932 933 934 935
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

936
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
937

938 939
	i915_gem_object_pin_pages(obj);

940
	offset = args->offset;
941
	obj->dirty = 1;
942

943 944
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
945
		struct page *page = sg_page_iter_page(&sg_iter);
946
		int partial_cacheline_write;
947

948 949 950
		if (remain <= 0)
			break;

951 952 953 954 955
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
956
		shmem_page_offset = offset_in_page(offset);
957 958 959 960 961

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

962 963 964 965 966 967 968
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

969 970 971
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

972 973 974 975 976 977
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
978 979 980

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
981 982 983 984
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
985

986
		mutex_lock(&dev->struct_mutex);
987 988

		if (ret)
989 990
			goto out;

991
next_page:
992
		remain -= page_length;
993
		user_data += page_length;
994
		offset += page_length;
995 996
	}

997
out:
998 999
	i915_gem_object_unpin_pages(obj);

1000
	if (hit_slowpath) {
1001 1002 1003 1004 1005 1006 1007
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1008
			if (i915_gem_clflush_object(obj, obj->pin_display))
1009
				needs_clflush_after = true;
1010
		}
1011
	}
1012

1013
	if (needs_clflush_after)
1014
		i915_gem_chipset_flush(dev);
1015 1016
	else
		obj->cache_dirty = true;
1017

1018
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1019
	return ret;
1020 1021 1022 1023 1024 1025 1026 1027 1028
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1029
		      struct drm_file *file)
1030
{
1031
	struct drm_i915_private *dev_priv = dev->dev_private;
1032
	struct drm_i915_gem_pwrite *args = data;
1033
	struct drm_i915_gem_object *obj;
1034 1035 1036 1037 1038 1039
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1040
		       to_user_ptr(args->data_ptr),
1041 1042 1043
		       args->size))
		return -EFAULT;

1044
	if (likely(!i915.prefault_disable)) {
1045 1046 1047 1048 1049
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1050

1051 1052
	intel_runtime_pm_get(dev_priv);

1053
	ret = i915_mutex_lock_interruptible(dev);
1054
	if (ret)
1055
		goto put_rpm;
1056

1057
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1058
	if (&obj->base == NULL) {
1059 1060
		ret = -ENOENT;
		goto unlock;
1061
	}
1062

1063
	/* Bounds check destination. */
1064 1065
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1066
		ret = -EINVAL;
1067
		goto out;
C
Chris Wilson 已提交
1068 1069
	}

1070 1071 1072 1073 1074 1075 1076 1077
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1078 1079
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1080
	ret = -EFAULT;
1081 1082 1083 1084 1085 1086
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1087 1088 1089
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1090
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1091 1092 1093
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1094
	}
1095

1096 1097 1098 1099 1100 1101
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1102

1103
out:
1104
	drm_gem_object_unreference(&obj->base);
1105
unlock:
1106
	mutex_unlock(&dev->struct_mutex);
1107 1108 1109
put_rpm:
	intel_runtime_pm_put(dev_priv);

1110 1111 1112
	return ret;
}

1113
int
1114
i915_gem_check_wedge(struct i915_gpu_error *error,
1115 1116
		     bool interruptible)
{
1117
	if (i915_reset_in_progress(error)) {
1118 1119 1120 1121 1122
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1123 1124
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1125 1126
			return -EIO;

1127 1128 1129 1130 1131 1132 1133
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1134 1135 1136 1137 1138
	}

	return 0;
}

1139 1140 1141 1142 1143 1144
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1145
		       struct intel_engine_cs *engine)
1146
{
1147
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1182
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1183
{
1184
	unsigned long timeout;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1196

1197
	if (req->engine->irq_refcount)
1198 1199
		return -EBUSY;

1200 1201 1202 1203
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1204
	timeout = local_clock_us(&cpu) + 5;
1205
	while (!need_resched()) {
D
Daniel Vetter 已提交
1206
		if (i915_gem_request_completed(req, true))
1207 1208
			return 0;

1209 1210 1211
		if (signal_pending_state(state, current))
			break;

1212
		if (busywait_stop(timeout, cpu))
1213
			break;
1214

1215 1216
		cpu_relax_lowlatency();
	}
1217

D
Daniel Vetter 已提交
1218
	if (i915_gem_request_completed(req, false))
1219 1220 1221
		return 0;

	return -EAGAIN;
1222 1223
}

1224
/**
1225 1226 1227
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1228 1229 1230
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1231 1232 1233 1234 1235 1236 1237
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1238
 * Returns 0 if the request was found within the alloted time. Else returns the
1239 1240
 * errno with remaining time filled in timeout argument.
 */
1241
int __i915_wait_request(struct drm_i915_gem_request *req,
1242
			unsigned reset_counter,
1243
			bool interruptible,
1244
			s64 *timeout,
1245
			struct intel_rps_client *rps)
1246
{
1247
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1248
	struct drm_device *dev = engine->dev;
1249
	struct drm_i915_private *dev_priv = dev->dev_private;
1250
	const bool irq_test_in_progress =
1251
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1252
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1253
	DEFINE_WAIT(wait);
1254
	unsigned long timeout_expire;
1255
	s64 before = 0; /* Only to silence a compiler warning. */
1256 1257
	int ret;

1258
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1259

1260 1261 1262
	if (list_empty(&req->list))
		return 0;

1263
	if (i915_gem_request_completed(req, true))
1264 1265
		return 0;

1266 1267 1268 1269 1270 1271 1272 1273 1274
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1275 1276 1277 1278 1279

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1280
	}
1281

1282
	if (INTEL_INFO(dev_priv)->gen >= 6)
1283
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1284

1285
	trace_i915_gem_request_wait_begin(req);
1286 1287

	/* Optimistic spin for the next jiffie before touching IRQs */
1288
	ret = __i915_spin_request(req, state);
1289 1290 1291
	if (ret == 0)
		goto out;

1292
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1293 1294 1295 1296
		ret = -ENODEV;
		goto out;
	}

1297 1298
	for (;;) {
		struct timer_list timer;
1299

1300
		prepare_to_wait(&engine->irq_queue, &wait, state);
1301

1302 1303
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1304 1305 1306 1307 1308 1309 1310 1311
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1312

1313
		if (i915_gem_request_completed(req, false)) {
1314 1315 1316
			ret = 0;
			break;
		}
1317

1318
		if (signal_pending_state(state, current)) {
1319 1320 1321 1322
			ret = -ERESTARTSYS;
			break;
		}

1323
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1324 1325 1326 1327 1328
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1329
		if (timeout || missed_irq(dev_priv, engine)) {
1330 1331
			unsigned long expire;

1332
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1333
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1334 1335 1336
			mod_timer(&timer, expire);
		}

1337
		io_schedule();
1338 1339 1340 1341 1342 1343

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1344
	if (!irq_test_in_progress)
1345
		engine->irq_put(engine);
1346

1347
	finish_wait(&engine->irq_queue, &wait);
1348

1349 1350 1351
out:
	trace_i915_gem_request_wait_end(req);

1352
	if (timeout) {
1353
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1354 1355

		*timeout = tres < 0 ? 0 : tres;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1366 1367
	}

1368
	return ret;
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1408 1409 1410

	put_pid(request->pid);
	request->pid = NULL;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1436
	struct intel_engine_cs *engine = req->engine;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1454
/**
1455
 * Waits for a request to be signaled, and cleans up the
1456 1457 1458
 * request and object lists appropriately for that event.
 */
int
1459
i915_wait_request(struct drm_i915_gem_request *req)
1460
{
1461 1462 1463
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1464 1465
	int ret;

1466 1467
	BUG_ON(req == NULL);

1468
	dev = req->engine->dev;
1469 1470 1471
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1472 1473
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1474
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1475 1476 1477
	if (ret)
		return ret;

1478 1479
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1480
				  interruptible, NULL, NULL);
1481 1482
	if (ret)
		return ret;
1483

1484
	__i915_gem_request_retire__upto(req);
1485 1486 1487
	return 0;
}

1488 1489 1490 1491
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1492
int
1493 1494 1495
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1496
	int ret, i;
1497

1498
	if (!obj->active)
1499 1500
		return 0;

1501 1502 1503 1504 1505
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1506

1507
			i = obj->last_write_req->engine->id;
1508 1509 1510 1511 1512 1513
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1514
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1534
	int ring = req->engine->id;
1535 1536 1537 1538 1539 1540 1541

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1542 1543
}

1544 1545 1546 1547 1548
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1549
					    struct intel_rps_client *rps,
1550 1551 1552 1553
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1554
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1555
	unsigned reset_counter;
1556
	int ret, i, n = 0;
1557 1558 1559 1560

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1561
	if (!obj->active)
1562 1563
		return 0;

1564
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1565 1566 1567
	if (ret)
		return ret;

1568
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1579
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1590
	mutex_unlock(&dev->struct_mutex);
1591 1592
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1593
					  NULL, rps);
1594 1595
	mutex_lock(&dev->struct_mutex);

1596 1597 1598 1599 1600 1601 1602
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1603 1604
}

1605 1606 1607 1608 1609 1610
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1611
/**
1612 1613
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1614 1615 1616
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1617
			  struct drm_file *file)
1618 1619
{
	struct drm_i915_gem_set_domain *args = data;
1620
	struct drm_i915_gem_object *obj;
1621 1622
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1623 1624
	int ret;

1625
	/* Only handle setting domains to types used by the CPU. */
1626
	if (write_domain & I915_GEM_GPU_DOMAINS)
1627 1628
		return -EINVAL;

1629
	if (read_domains & I915_GEM_GPU_DOMAINS)
1630 1631 1632 1633 1634 1635 1636 1637
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1638
	ret = i915_mutex_lock_interruptible(dev);
1639
	if (ret)
1640
		return ret;
1641

1642
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1643
	if (&obj->base == NULL) {
1644 1645
		ret = -ENOENT;
		goto unlock;
1646
	}
1647

1648 1649 1650 1651
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1652
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1653
							  to_rps_client(file),
1654
							  !write_domain);
1655 1656 1657
	if (ret)
		goto unref;

1658
	if (read_domains & I915_GEM_DOMAIN_GTT)
1659
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1660
	else
1661
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1662

1663 1664 1665 1666 1667
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1668
unref:
1669
	drm_gem_object_unreference(&obj->base);
1670
unlock:
1671 1672 1673 1674 1675 1676 1677 1678 1679
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1680
			 struct drm_file *file)
1681 1682
{
	struct drm_i915_gem_sw_finish *args = data;
1683
	struct drm_i915_gem_object *obj;
1684 1685
	int ret = 0;

1686
	ret = i915_mutex_lock_interruptible(dev);
1687
	if (ret)
1688
		return ret;
1689

1690
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1691
	if (&obj->base == NULL) {
1692 1693
		ret = -ENOENT;
		goto unlock;
1694 1695 1696
	}

	/* Pinned buffers may be scanout, so flush the cache */
1697
	if (obj->pin_display)
1698
		i915_gem_object_flush_cpu_write_domain(obj);
1699

1700
	drm_gem_object_unreference(&obj->base);
1701
unlock:
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1722 1723 1724
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1725
		    struct drm_file *file)
1726 1727 1728 1729 1730
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1731 1732 1733 1734 1735 1736
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1737
	obj = drm_gem_object_lookup(dev, file, args->handle);
1738
	if (obj == NULL)
1739
		return -ENOENT;
1740

1741 1742 1743 1744 1745 1746 1747 1748
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1749
	addr = vm_mmap(obj->filp, 0, args->size,
1750 1751
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1765
	drm_gem_object_unreference_unlocked(obj);
1766 1767 1768 1769 1770 1771 1772 1773
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1774 1775
/**
 * i915_gem_fault - fault a page into the GTT
1776 1777
 * @vma: VMA in question
 * @vmf: fault info
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1792 1793
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1794 1795
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1796
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 1798 1799
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1800
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801

1802 1803
	intel_runtime_pm_get(dev_priv);

1804 1805 1806 1807
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1808 1809 1810
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1811

C
Chris Wilson 已提交
1812 1813
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1823 1824
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825
		ret = -EFAULT;
1826 1827 1828
		goto unlock;
	}

1829
	/* Use a partial view if the object is bigger than the aperture. */
1830
	if (obj->base.size >= ggtt->mappable_end &&
1831
	    obj->tiling_mode == I915_TILING_NONE) {
1832
		static const unsigned int chunk_size = 256; // 1 MiB
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 1847
	if (ret)
		goto unlock;
1848

1849 1850 1851
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1852

1853
	ret = i915_gem_object_get_fence(obj);
1854
	if (ret)
1855
		goto unpin;
1856

1857
	/* Finally, remap it using the new GTT offset */
1858
	pfn = ggtt->mappable_base +
1859
		i915_gem_obj_ggtt_offset_view(obj, &view);
1860
	pfn >>= PAGE_SHIFT;
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1871

1872 1873
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 1875 1876 1877 1878
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1900
unpin:
1901
	i915_gem_object_ggtt_unpin_view(obj, &view);
1902
unlock:
1903
	mutex_unlock(&dev->struct_mutex);
1904
out:
1905
	switch (ret) {
1906
	case -EIO:
1907 1908 1909 1910 1911 1912 1913
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 1915 1916
			ret = VM_FAULT_SIGBUS;
			break;
		}
1917
	case -EAGAIN:
D
Daniel Vetter 已提交
1918 1919 1920 1921
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1922
		 */
1923 1924
	case 0:
	case -ERESTARTSYS:
1925
	case -EINTR:
1926 1927 1928 1929 1930
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1931 1932
		ret = VM_FAULT_NOPAGE;
		break;
1933
	case -ENOMEM:
1934 1935
		ret = VM_FAULT_OOM;
		break;
1936
	case -ENOSPC:
1937
	case -EFAULT:
1938 1939
		ret = VM_FAULT_SIGBUS;
		break;
1940
	default:
1941
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 1943
		ret = VM_FAULT_SIGBUS;
		break;
1944
	}
1945 1946 1947

	intel_runtime_pm_put(dev_priv);
	return ret;
1948 1949
}

1950 1951 1952 1953
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1954
 * Preserve the reservation of the mmapping with the DRM core code, but
1955 1956 1957 1958 1959 1960 1961 1962 1963
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1964
void
1965
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966
{
1967 1968
	if (!obj->fault_mappable)
		return;
1969

1970 1971
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1972
	obj->fault_mappable = false;
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1984
uint32_t
1985
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986
{
1987
	uint32_t gtt_size;
1988 1989

	if (INTEL_INFO(dev)->gen >= 4 ||
1990 1991
	    tiling_mode == I915_TILING_NONE)
		return size;
1992 1993 1994

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1995
		gtt_size = 1024*1024;
1996
	else
1997
		gtt_size = 512*1024;
1998

1999 2000
	while (gtt_size < size)
		gtt_size <<= 1;
2001

2002
	return gtt_size;
2003 2004
}

2005 2006 2007 2008 2009
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2010
 * potential fence register mapping.
2011
 */
2012 2013 2014
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2015 2016 2017 2018 2019
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2020
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021
	    tiling_mode == I915_TILING_NONE)
2022 2023
		return 4096;

2024 2025 2026 2027
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2028
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 2030
}

2031 2032 2033 2034 2035
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2036
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 2038
		return 0;

2039 2040
	dev_priv->mm.shrinker_no_lock_stealing = true;

2041 2042
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2043
		goto out;
2044 2045 2046 2047 2048 2049 2050 2051

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2052 2053 2054 2055 2056
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2057 2058
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2059
		goto out;
2060 2061

	i915_gem_shrink_all(dev_priv);
2062 2063 2064 2065 2066
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2067 2068 2069 2070 2071 2072 2073
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2074
int
2075 2076
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2077
		  uint32_t handle,
2078
		  uint64_t *offset)
2079
{
2080
	struct drm_i915_gem_object *obj;
2081 2082
	int ret;

2083
	ret = i915_mutex_lock_interruptible(dev);
2084
	if (ret)
2085
		return ret;
2086

2087
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088
	if (&obj->base == NULL) {
2089 2090 2091
		ret = -ENOENT;
		goto unlock;
	}
2092

2093
	if (obj->madv != I915_MADV_WILLNEED) {
2094
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095
		ret = -EFAULT;
2096
		goto out;
2097 2098
	}

2099 2100 2101
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2102

2103
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104

2105
out:
2106
	drm_gem_object_unreference(&obj->base);
2107
unlock:
2108
	mutex_unlock(&dev->struct_mutex);
2109
	return ret;
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2133
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 2135
}

D
Daniel Vetter 已提交
2136 2137 2138
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139
{
2140
	i915_gem_object_free_mmap_offset(obj);
2141

2142 2143
	if (obj->base.filp == NULL)
		return;
2144

D
Daniel Vetter 已提交
2145 2146 2147 2148 2149
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2150
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2151 2152
	obj->madv = __I915_MADV_PURGED;
}
2153

2154 2155 2156
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2157
{
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 2173
}

2174
static void
2175
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176
{
2177 2178
	struct sg_page_iter sg_iter;
	int ret;
2179

2180
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181

C
Chris Wilson 已提交
2182 2183 2184 2185 2186 2187
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2188
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2189 2190 2191
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2192 2193
	i915_gem_gtt_finish_object(obj);

2194
	if (i915_gem_object_needs_bit17_swizzle(obj))
2195 2196
		i915_gem_object_save_bit_17_swizzle(obj);

2197 2198
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2199

2200
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201
		struct page *page = sg_page_iter_page(&sg_iter);
2202

2203
		if (obj->dirty)
2204
			set_page_dirty(page);
2205

2206
		if (obj->madv == I915_MADV_WILLNEED)
2207
			mark_page_accessed(page);
2208

2209
		put_page(page);
2210
	}
2211
	obj->dirty = 0;
2212

2213 2214
	sg_free_table(obj->pages);
	kfree(obj->pages);
2215
}
C
Chris Wilson 已提交
2216

2217
int
2218 2219 2220 2221
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2222
	if (obj->pages == NULL)
2223 2224
		return 0;

2225 2226 2227
	if (obj->pages_pin_count)
		return -EBUSY;

2228
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2229

2230 2231 2232
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2233
	list_del(&obj->global_list);
2234

2235
	if (obj->mapping) {
2236 2237 2238 2239
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2240 2241 2242
		obj->mapping = NULL;
	}

2243
	ops->put_pages(obj);
2244
	obj->pages = NULL;
2245

2246
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2247 2248 2249 2250

	return 0;
}

2251
static int
C
Chris Wilson 已提交
2252
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2253
{
C
Chris Wilson 已提交
2254
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2255 2256
	int page_count, i;
	struct address_space *mapping;
2257 2258
	struct sg_table *st;
	struct scatterlist *sg;
2259
	struct sg_page_iter sg_iter;
2260
	struct page *page;
2261
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2262
	int ret;
C
Chris Wilson 已提交
2263
	gfp_t gfp;
2264

C
Chris Wilson 已提交
2265 2266 2267 2268 2269 2270 2271
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2272 2273 2274 2275
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2276
	page_count = obj->base.size / PAGE_SIZE;
2277 2278
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2279
		return -ENOMEM;
2280
	}
2281

2282 2283 2284 2285 2286
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2287
	mapping = file_inode(obj->base.filp)->i_mapping;
2288
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2289
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2290 2291 2292
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2293 2294
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2295 2296 2297 2298 2299
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2300 2301 2302 2303 2304 2305 2306 2307
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2308
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2309 2310
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2311
				goto err_pages;
I
Imre Deak 已提交
2312
			}
C
Chris Wilson 已提交
2313
		}
2314 2315 2316 2317 2318 2319 2320 2321
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2322 2323 2324 2325 2326 2327 2328 2329 2330
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2331 2332 2333

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2334
	}
2335 2336 2337 2338
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2339 2340
	obj->pages = st;

I
Imre Deak 已提交
2341 2342 2343 2344
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2345
	if (i915_gem_object_needs_bit17_swizzle(obj))
2346 2347
		i915_gem_object_do_bit_17_swizzle(obj);

2348 2349 2350 2351
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2352 2353 2354
	return 0;

err_pages:
2355 2356
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2357
		put_page(sg_page_iter_page(&sg_iter));
2358 2359
	sg_free_table(st);
	kfree(st);
2360 2361 2362 2363 2364 2365 2366 2367 2368

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2369 2370 2371 2372
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2373 2374
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2389
	if (obj->pages)
2390 2391
		return 0;

2392
	if (obj->madv != I915_MADV_WILLNEED) {
2393
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2394
		return -EFAULT;
2395 2396
	}

2397 2398
	BUG_ON(obj->pages_pin_count);

2399 2400 2401 2402
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2403
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2404 2405 2406 2407

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2408
	return 0;
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2426 2427 2428 2429 2430 2431 2432
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2433
		if (pages != NULL) {
2434 2435 2436
			struct sg_page_iter sg_iter;
			int n;

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2454
void i915_vma_move_to_active(struct i915_vma *vma,
2455
			     struct drm_i915_gem_request *req)
2456
{
2457
	struct drm_i915_gem_object *obj = vma->obj;
2458
	struct intel_engine_cs *engine;
2459

2460
	engine = i915_gem_request_get_engine(req);
2461 2462

	/* Add a reference if we're newly entering the active list. */
2463
	if (obj->active == 0)
2464
		drm_gem_object_reference(&obj->base);
2465
	obj->active |= intel_engine_flag(engine);
2466

2467
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2468
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2469

2470
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2471 2472
}

2473 2474
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2475
{
2476
	RQ_BUG_ON(obj->last_write_req == NULL);
2477
	RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2478 2479

	i915_gem_request_assign(&obj->last_write_req, NULL);
2480
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2481 2482
}

2483
static void
2484
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2485
{
2486
	struct i915_vma *vma;
2487

2488 2489 2490
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

2491
	list_del_init(&obj->engine_list[ring]);
2492 2493
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2494
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2495 2496 2497 2498 2499
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2500

2501 2502 2503 2504 2505 2506 2507
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2508 2509 2510
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2511
	}
2512

2513
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2514
	drm_gem_object_unreference(&obj->base);
2515 2516
}

2517
static int
2518
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2519
{
2520
	struct drm_i915_private *dev_priv = dev->dev_private;
2521
	struct intel_engine_cs *engine;
2522
	int ret;
2523

2524
	/* Carefully retire all requests without writing to the rings */
2525
	for_each_engine(engine, dev_priv) {
2526
		ret = intel_engine_idle(engine);
2527 2528
		if (ret)
			return ret;
2529 2530
	}
	i915_gem_retire_requests(dev);
2531 2532

	/* Finally reset hw state */
2533
	for_each_engine(engine, dev_priv)
2534
		intel_ring_init_seqno(engine, seqno);
2535

2536
	return 0;
2537 2538
}

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2565 2566
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2567
{
2568 2569 2570 2571
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2572
		int ret = i915_gem_init_seqno(dev, 0);
2573 2574
		if (ret)
			return ret;
2575

2576 2577
		dev_priv->next_seqno = 1;
	}
2578

2579
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2580
	return 0;
2581 2582
}

2583 2584 2585 2586 2587
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2588
void __i915_add_request(struct drm_i915_gem_request *request,
2589 2590
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2591
{
2592
	struct intel_engine_cs *engine;
2593
	struct drm_i915_private *dev_priv;
2594
	struct intel_ringbuffer *ringbuf;
2595
	u32 request_start;
2596 2597
	int ret;

2598
	if (WARN_ON(request == NULL))
2599
		return;
2600

2601
	engine = request->engine;
2602
	dev_priv = request->i915;
2603 2604
	ringbuf = request->ringbuf;

2605 2606 2607 2608 2609 2610 2611
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2612
	request_start = intel_ring_get_tail(ringbuf);
2613 2614 2615 2616 2617 2618 2619
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2620 2621
	if (flush_caches) {
		if (i915.enable_execlists)
2622
			ret = logical_ring_flush_all_caches(request);
2623
		else
2624
			ret = intel_ring_flush_all_caches(request);
2625 2626 2627
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2628

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2651 2652 2653 2654 2655
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2656
	request->postfix = intel_ring_get_tail(ringbuf);
2657

2658
	if (i915.enable_execlists)
2659
		ret = engine->emit_request(request);
2660
	else {
2661
		ret = engine->add_request(request);
2662 2663

		request->tail = intel_ring_get_tail(ringbuf);
2664
	}
2665 2666
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2667

2668
	i915_queue_hangcheck(engine->dev);
2669

2670 2671 2672 2673
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2674

2675 2676
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2677 2678
}

2679
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2680
				   const struct intel_context *ctx)
2681
{
2682
	unsigned long elapsed;
2683

2684 2685 2686
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2687 2688
		return true;

2689 2690
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2691
		if (!i915_gem_context_is_default(ctx)) {
2692
			DRM_DEBUG("context hanging too fast, banning!\n");
2693
			return true;
2694 2695 2696
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2697
			return true;
2698
		}
2699 2700 2701 2702 2703
	}

	return false;
}

2704
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2705
				  struct intel_context *ctx,
2706
				  const bool guilty)
2707
{
2708 2709 2710 2711
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2712

2713 2714 2715
	hs = &ctx->hang_stats;

	if (guilty) {
2716
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2717 2718 2719 2720
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2721 2722 2723
	}
}

2724 2725 2726 2727 2728 2729
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2730 2731 2732
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2733
	if (ctx) {
D
Dave Gordon 已提交
2734
		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2735
			intel_lr_context_unpin(ctx, req->engine);
2736

2737 2738
		i915_gem_context_unreference(ctx);
	}
2739

2740
	kmem_cache_free(req->i915->requests, req);
2741 2742
}

2743
static inline int
2744
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2745 2746
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2747
{
2748
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
D
Daniel Vetter 已提交
2749
	struct drm_i915_gem_request *req;
2750 2751
	int ret;

2752 2753 2754
	if (!req_out)
		return -EINVAL;

2755
	*req_out = NULL;
2756

D
Daniel Vetter 已提交
2757 2758
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2759 2760
		return -ENOMEM;

2761
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2762 2763
	if (ret)
		goto err;
2764

2765 2766
	kref_init(&req->ref);
	req->i915 = dev_priv;
2767
	req->engine = engine;
2768 2769
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2770 2771

	if (i915.enable_execlists)
2772
		ret = intel_logical_ring_alloc_request_extras(req);
2773
	else
D
Daniel Vetter 已提交
2774
		ret = intel_ring_alloc_request_extras(req);
2775 2776
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2777
		goto err;
2778
	}
2779

2780 2781 2782 2783 2784 2785 2786
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2800

2801
	*req_out = req;
2802
	return 0;
2803 2804 2805 2806

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2829
		ctx = to_i915(engine->dev)->kernel_context;
2830 2831 2832 2833
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2834 2835 2836 2837 2838 2839 2840
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2841
struct drm_i915_gem_request *
2842
i915_gem_find_active_request(struct intel_engine_cs *engine)
2843
{
2844 2845
	struct drm_i915_gem_request *request;

2846
	list_for_each_entry(request, &engine->request_list, list) {
2847
		if (i915_gem_request_completed(request, false))
2848
			continue;
2849

2850
		return request;
2851
	}
2852 2853 2854 2855

	return NULL;
}

2856
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2857
				       struct intel_engine_cs *engine)
2858 2859 2860 2861
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2862
	request = i915_gem_find_active_request(engine);
2863 2864 2865 2866

	if (request == NULL)
		return;

2867
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2868

2869
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2870

2871
	list_for_each_entry_continue(request, &engine->request_list, list)
2872
		i915_set_reset_status(dev_priv, request->ctx, false);
2873
}
2874

2875
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2876
					struct intel_engine_cs *engine)
2877
{
2878 2879
	struct intel_ringbuffer *buffer;

2880
	while (!list_empty(&engine->active_list)) {
2881
		struct drm_i915_gem_object *obj;
2882

2883
		obj = list_first_entry(&engine->active_list,
2884
				       struct drm_i915_gem_object,
2885
				       engine_list[engine->id]);
2886

2887
		i915_gem_object_retire__read(obj, engine->id);
2888
	}
2889

2890 2891 2892 2893 2894 2895
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2896
	if (i915.enable_execlists) {
2897 2898
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2899

2900
		spin_lock_bh(&engine->execlist_lock);
2901
		/* list_splice_tail_init checks for empty lists */
2902 2903
		list_splice_tail_init(&engine->execlist_queue,
				      &engine->execlist_retired_req_list);
2904
		spin_unlock_bh(&engine->execlist_lock);
2905

2906
		intel_execlists_retire_requests(engine);
2907 2908
	}

2909 2910 2911 2912 2913 2914 2915
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2916
	while (!list_empty(&engine->request_list)) {
2917 2918
		struct drm_i915_gem_request *request;

2919
		request = list_first_entry(&engine->request_list,
2920 2921 2922
					   struct drm_i915_gem_request,
					   list);

2923
		i915_gem_request_retire(request);
2924
	}
2925 2926 2927 2928 2929 2930 2931 2932

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2933
	list_for_each_entry(buffer, &engine->buffers, link) {
2934 2935 2936
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2937 2938

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2939 2940
}

2941
void i915_gem_reset(struct drm_device *dev)
2942
{
2943
	struct drm_i915_private *dev_priv = dev->dev_private;
2944
	struct intel_engine_cs *engine;
2945

2946 2947 2948 2949 2950
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2951
	for_each_engine(engine, dev_priv)
2952
		i915_gem_reset_engine_status(dev_priv, engine);
2953

2954
	for_each_engine(engine, dev_priv)
2955
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2956

2957 2958
	i915_gem_context_reset(dev);

2959
	i915_gem_restore_fences(dev);
2960 2961

	WARN_ON(i915_verify_lists(dev));
2962 2963 2964 2965 2966
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2967
void
2968
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2969
{
2970
	WARN_ON(i915_verify_lists(engine->dev));
2971

2972 2973 2974 2975
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2976
	 */
2977
	while (!list_empty(&engine->request_list)) {
2978 2979
		struct drm_i915_gem_request *request;

2980
		request = list_first_entry(&engine->request_list,
2981 2982 2983
					   struct drm_i915_gem_request,
					   list);

2984
		if (!i915_gem_request_completed(request, true))
2985 2986
			break;

2987
		i915_gem_request_retire(request);
2988
	}
2989

2990 2991 2992 2993
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2994
	while (!list_empty(&engine->active_list)) {
2995 2996
		struct drm_i915_gem_object *obj;

2997 2998
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2999
				       engine_list[engine->id]);
3000

3001
		if (!list_empty(&obj->last_read_req[engine->id]->list))
3002 3003
			break;

3004
		i915_gem_object_retire__read(obj, engine->id);
3005 3006
	}

3007 3008 3009 3010
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
3011
	}
3012

3013
	WARN_ON(i915_verify_lists(engine->dev));
3014 3015
}

3016
bool
3017 3018
i915_gem_retire_requests(struct drm_device *dev)
{
3019
	struct drm_i915_private *dev_priv = dev->dev_private;
3020
	struct intel_engine_cs *engine;
3021
	bool idle = true;
3022

3023
	for_each_engine(engine, dev_priv) {
3024 3025
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3026
		if (i915.enable_execlists) {
3027
			spin_lock_bh(&engine->execlist_lock);
3028
			idle &= list_empty(&engine->execlist_queue);
3029
			spin_unlock_bh(&engine->execlist_lock);
3030

3031
			intel_execlists_retire_requests(engine);
3032
		}
3033 3034 3035 3036 3037 3038 3039 3040
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3041 3042
}

3043
static void
3044 3045
i915_gem_retire_work_handler(struct work_struct *work)
{
3046 3047 3048
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3049
	bool idle;
3050

3051
	/* Come back later if the device is busy... */
3052 3053 3054 3055
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3056
	}
3057
	if (!idle)
3058 3059
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3060
}
3061

3062 3063 3064 3065 3066
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3067
	struct drm_device *dev = dev_priv->dev;
3068
	struct intel_engine_cs *engine;
3069

3070 3071
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3072
			return;
3073

3074
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3075
	 * Also locking seems to be fubar here, engine->request_list is protected
3076 3077
	 * by dev->struct_mutex. */

3078 3079 3080
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3081
		for_each_engine(engine, dev_priv)
3082
			i915_gem_batch_pool_fini(&engine->batch_pool);
3083

3084 3085
		mutex_unlock(&dev->struct_mutex);
	}
3086 3087
}

3088 3089 3090 3091 3092 3093 3094 3095
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3096
	int i;
3097 3098 3099

	if (!obj->active)
		return 0;
3100

3101
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3102
		struct drm_i915_gem_request *req;
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3116 3117 3118 3119 3120
	}

	return 0;
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3146
	struct drm_i915_private *dev_priv = dev->dev_private;
3147 3148
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3149
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3150
	unsigned reset_counter;
3151 3152
	int i, n = 0;
	int ret;
3153

3154 3155 3156
	if (args->flags != 0)
		return -EINVAL;

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3167 3168
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3169 3170 3171
	if (ret)
		goto out;

3172
	if (!obj->active)
3173
		goto out;
3174 3175

	/* Do this after OLR check to make sure we make forward progress polling
3176
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3177
	 */
3178
	if (args->timeout_ns == 0) {
3179 3180 3181 3182 3183
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3184
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3185

3186
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3187 3188 3189 3190 3191 3192
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3193 3194
	mutex_unlock(&dev->struct_mutex);

3195 3196 3197 3198
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3199
						  to_rps_client(file));
3200 3201
		i915_gem_request_unreference__unlocked(req[i]);
	}
3202
	return ret;
3203 3204 3205 3206 3207 3208 3209

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3210 3211 3212
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3213 3214
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3215 3216 3217 3218
{
	struct intel_engine_cs *from;
	int ret;

3219
	from = i915_gem_request_get_engine(from_req);
3220 3221 3222
	if (to == from)
		return 0;

3223
	if (i915_gem_request_completed(from_req, true))
3224 3225 3226
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3227
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3228
		ret = __i915_wait_request(from_req,
3229 3230 3231 3232
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3233 3234 3235
		if (ret)
			return ret;

3236
		i915_gem_object_retire_request(obj, from_req);
3237 3238
	} else {
		int idx = intel_ring_sync_index(from, to);
3239 3240 3241
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3242 3243 3244 3245

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3246
		if (*to_req == NULL) {
3247 3248 3249 3250 3251 3252 3253
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3254 3255
		}

3256 3257
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3272 3273 3274 3275 3276
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3277 3278 3279
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3280 3281 3282
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3283
 * rather than a particular GPU ring. Conceptually we serialise writes
3284
 * between engines inside the GPU. We only allow one engine to write
3285 3286 3287 3288 3289 3290 3291 3292 3293
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3294
 *
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3305 3306
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3307 3308
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3309 3310
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3311
{
3312
	const bool readonly = obj->base.pending_write_domain == 0;
3313
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3314
	int ret, i, n;
3315

3316
	if (!obj->active)
3317 3318
		return 0;

3319 3320
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3321

3322 3323 3324 3325 3326
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3327
		for (i = 0; i < I915_NUM_ENGINES; i++)
3328 3329 3330 3331
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3332
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3333 3334 3335
		if (ret)
			return ret;
	}
3336

3337
	return 0;
3338 3339
}

3340 3341 3342 3343 3344 3345 3346
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3347 3348 3349
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3350 3351 3352
	/* Wait for any direct GTT access to complete */
	mb();

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3364
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3365
{
3366
	struct drm_i915_gem_object *obj = vma->obj;
3367
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3368
	int ret;
3369

3370
	if (list_empty(&vma->obj_link))
3371 3372
		return 0;

3373 3374 3375 3376
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3377

B
Ben Widawsky 已提交
3378
	if (vma->pin_count)
3379
		return -EBUSY;
3380

3381 3382
	BUG_ON(obj->pages == NULL);

3383 3384 3385 3386 3387
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3388

3389
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3390
		i915_gem_object_finish_gtt(obj);
3391

3392 3393 3394 3395 3396
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3397

3398
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3399

3400
	vma->vm->unbind_vma(vma);
3401
	vma->bound = 0;
3402

3403
	list_del_init(&vma->vm_link);
3404
	if (vma->is_ggtt) {
3405 3406 3407 3408 3409 3410
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3411
		vma->ggtt_view.pages = NULL;
3412
	}
3413

B
Ben Widawsky 已提交
3414 3415 3416 3417
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3418
	 * no more VMAs exist. */
I
Imre Deak 已提交
3419
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3420
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3421

3422 3423 3424 3425 3426 3427
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3428
	return 0;
3429 3430
}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3441
int i915_gpu_idle(struct drm_device *dev)
3442
{
3443
	struct drm_i915_private *dev_priv = dev->dev_private;
3444
	struct intel_engine_cs *engine;
3445
	int ret;
3446 3447

	/* Flush everything onto the inactive list. */
3448
	for_each_engine(engine, dev_priv) {
3449
		if (!i915.enable_execlists) {
3450 3451
			struct drm_i915_gem_request *req;

3452
			req = i915_gem_request_alloc(engine, NULL);
3453 3454
			if (IS_ERR(req))
				return PTR_ERR(req);
3455

3456
			ret = i915_switch_context(req);
3457 3458 3459 3460 3461
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3462
			i915_add_request_no_flush(req);
3463
		}
3464

3465
		ret = intel_engine_idle(engine);
3466 3467 3468
		if (ret)
			return ret;
	}
3469

3470
	WARN_ON(i915_verify_lists(dev));
3471
	return 0;
3472 3473
}

3474
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3475 3476
				     unsigned long cache_level)
{
3477
	struct drm_mm_node *gtt_space = &vma->node;
3478 3479
	struct drm_mm_node *other;

3480 3481 3482 3483 3484 3485
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3486
	 */
3487
	if (vma->vm->mm.color_adjust == NULL)
3488 3489
		return true;

3490
	if (!drm_mm_node_allocated(gtt_space))
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3507
/**
3508 3509
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3510
 */
3511
static struct i915_vma *
3512 3513
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3514
			   const struct i915_ggtt_view *ggtt_view,
3515
			   unsigned alignment,
3516
			   uint64_t flags)
3517
{
3518
	struct drm_device *dev = obj->base.dev;
3519 3520
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3521
	u32 fence_alignment, unfenced_alignment;
3522 3523
	u32 search_flag, alloc_flag;
	u64 start, end;
3524
	u64 size, fence_size;
B
Ben Widawsky 已提交
3525
	struct i915_vma *vma;
3526
	int ret;
3527

3528 3529 3530 3531 3532
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3533

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3563

3564 3565 3566
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3567
		end = min_t(u64, end, ggtt->mappable_end);
3568
	if (flags & PIN_ZONE_4G)
3569
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3570

3571
	if (alignment == 0)
3572
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3573
						unfenced_alignment;
3574
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3575 3576 3577
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3578
		return ERR_PTR(-EINVAL);
3579 3580
	}

3581 3582 3583
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3584
	 */
3585
	if (size > end) {
3586
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3587 3588
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3589
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3590
			  end);
3591
		return ERR_PTR(-E2BIG);
3592 3593
	}

3594
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3595
	if (ret)
3596
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3597

3598 3599
	i915_gem_object_pin_pages(obj);

3600 3601 3602
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3603
	if (IS_ERR(vma))
3604
		goto err_unpin;
B
Ben Widawsky 已提交
3605

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3624
	} else {
3625 3626 3627 3628 3629 3630 3631
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3632

3633
search_free:
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3647

3648 3649
			goto err_free_vma;
		}
3650
	}
3651
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3652
		ret = -EINVAL;
3653
		goto err_remove_node;
3654 3655
	}

3656
	trace_i915_vma_bind(vma, flags);
3657
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3658
	if (ret)
I
Imre Deak 已提交
3659
		goto err_remove_node;
3660

3661
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3662
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3663

3664
	return vma;
B
Ben Widawsky 已提交
3665

3666
err_remove_node:
3667
	drm_mm_remove_node(&vma->node);
3668
err_free_vma:
B
Ben Widawsky 已提交
3669
	i915_gem_vma_destroy(vma);
3670
	vma = ERR_PTR(ret);
3671
err_unpin:
B
Ben Widawsky 已提交
3672
	i915_gem_object_unpin_pages(obj);
3673
	return vma;
3674 3675
}

3676
bool
3677 3678
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3679 3680 3681 3682 3683
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3684
	if (obj->pages == NULL)
3685
		return false;
3686

3687 3688 3689 3690
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3691
	if (obj->stolen || obj->phys_handle)
3692
		return false;
3693

3694 3695 3696 3697 3698 3699 3700 3701
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3702 3703
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3704
		return false;
3705
	}
3706

C
Chris Wilson 已提交
3707
	trace_i915_gem_object_clflush(obj);
3708
	drm_clflush_sg(obj->pages);
3709
	obj->cache_dirty = false;
3710 3711

	return true;
3712 3713 3714 3715
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3716
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3717
{
C
Chris Wilson 已提交
3718 3719
	uint32_t old_write_domain;

3720
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3721 3722
		return;

3723
	/* No actual flushing is required for the GTT write domain.  Writes
3724 3725
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3726 3727 3728 3729
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3730
	 */
3731 3732
	wmb();

3733 3734
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3735

3736
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3737

C
Chris Wilson 已提交
3738
	trace_i915_gem_object_change_domain(obj,
3739
					    obj->base.read_domains,
C
Chris Wilson 已提交
3740
					    old_write_domain);
3741 3742 3743 3744
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3745
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3746
{
C
Chris Wilson 已提交
3747
	uint32_t old_write_domain;
3748

3749
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3750 3751
		return;

3752
	if (i915_gem_clflush_object(obj, obj->pin_display))
3753 3754
		i915_gem_chipset_flush(obj->base.dev);

3755 3756
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3757

3758
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3759

C
Chris Wilson 已提交
3760
	trace_i915_gem_object_change_domain(obj,
3761
					    obj->base.read_domains,
C
Chris Wilson 已提交
3762
					    old_write_domain);
3763 3764
}

3765 3766 3767 3768 3769 3770
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3771
int
3772
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3773
{
3774 3775 3776
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3777
	uint32_t old_write_domain, old_read_domains;
3778
	struct i915_vma *vma;
3779
	int ret;
3780

3781 3782 3783
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3784
	ret = i915_gem_object_wait_rendering(obj, !write);
3785 3786 3787
	if (ret)
		return ret;

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3800
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3801

3802 3803 3804 3805 3806 3807 3808
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3809 3810
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3811

3812 3813 3814
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3815 3816
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3817
	if (write) {
3818 3819 3820
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3821 3822
	}

C
Chris Wilson 已提交
3823 3824 3825 3826
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3827
	/* And bump the LRU for this access */
3828 3829
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3830
		list_move_tail(&vma->vm_link,
3831
			       &ggtt->base.inactive_list);
3832

3833 3834 3835
	return 0;
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3849 3850 3851
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3852
	struct drm_device *dev = obj->base.dev;
3853
	struct i915_vma *vma, *next;
3854
	bool bound = false;
3855
	int ret = 0;
3856 3857

	if (obj->cache_level == cache_level)
3858
		goto out;
3859

3860 3861 3862 3863 3864
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3865
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3866 3867 3868 3869 3870 3871 3872 3873
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3874
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3875
			ret = i915_vma_unbind(vma);
3876 3877
			if (ret)
				return ret;
3878 3879
		} else
			bound = true;
3880 3881
	}

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3894
		ret = i915_gem_object_wait_rendering(obj, false);
3895 3896 3897
		if (ret)
			return ret;

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3915 3916 3917
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3918 3919 3920 3921 3922 3923 3924 3925
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3926 3927
		}

3928
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3929 3930 3931 3932 3933 3934 3935
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3936 3937
	}

3938
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3939 3940 3941
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3942
out:
3943 3944 3945 3946
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3947 3948 3949 3950 3951
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3952 3953 3954 3955 3956
	}

	return 0;
}

B
Ben Widawsky 已提交
3957 3958
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3959
{
B
Ben Widawsky 已提交
3960
	struct drm_i915_gem_caching *args = data;
3961 3962 3963
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3964 3965
	if (&obj->base == NULL)
		return -ENOENT;
3966

3967 3968 3969 3970 3971 3972
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3973 3974 3975 3976
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3977 3978 3979 3980
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3981

3982 3983
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3984 3985
}

B
Ben Widawsky 已提交
3986 3987
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3988
{
3989
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3990
	struct drm_i915_gem_caching *args = data;
3991 3992 3993 3994
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3995 3996
	switch (args->caching) {
	case I915_CACHING_NONE:
3997 3998
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3999
	case I915_CACHING_CACHED:
4000 4001 4002 4003 4004 4005
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4006
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4007 4008
			return -ENODEV;

4009 4010
		level = I915_CACHE_LLC;
		break;
4011 4012 4013
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4014 4015 4016 4017
	default:
		return -EINVAL;
	}

4018 4019
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
4020 4021
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
4022
		goto rpm_put;
B
Ben Widawsky 已提交
4023

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4035 4036 4037
rpm_put:
	intel_runtime_pm_put(dev_priv);

4038 4039 4040
	return ret;
}

4041
/*
4042 4043 4044
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4045 4046
 */
int
4047 4048
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4049
				     const struct i915_ggtt_view *view)
4050
{
4051
	u32 old_read_domains, old_write_domain;
4052 4053
	int ret;

4054 4055 4056
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4057
	obj->pin_display++;
4058

4059 4060 4061 4062 4063 4064 4065 4066 4067
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4068 4069
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4070
	if (ret)
4071
		goto err_unpin_display;
4072

4073 4074 4075 4076
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4077 4078 4079
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4080
	if (ret)
4081
		goto err_unpin_display;
4082

4083
	i915_gem_object_flush_cpu_write_domain(obj);
4084

4085
	old_write_domain = obj->base.write_domain;
4086
	old_read_domains = obj->base.read_domains;
4087 4088 4089 4090

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4091
	obj->base.write_domain = 0;
4092
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4093 4094 4095

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4096
					    old_write_domain);
4097 4098

	return 0;
4099 4100

err_unpin_display:
4101
	obj->pin_display--;
4102 4103 4104 4105
	return ret;
}

void
4106 4107
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4108
{
4109 4110 4111
	if (WARN_ON(obj->pin_display == 0))
		return;

4112 4113
	i915_gem_object_ggtt_unpin_view(obj, view);

4114
	obj->pin_display--;
4115 4116
}

4117 4118 4119 4120 4121 4122
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4123
int
4124
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4125
{
C
Chris Wilson 已提交
4126
	uint32_t old_write_domain, old_read_domains;
4127 4128
	int ret;

4129 4130 4131
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4132
	ret = i915_gem_object_wait_rendering(obj, !write);
4133 4134 4135
	if (ret)
		return ret;

4136
	i915_gem_object_flush_gtt_write_domain(obj);
4137

4138 4139
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4140

4141
	/* Flush the CPU cache if it's still invalid. */
4142
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4143
		i915_gem_clflush_object(obj, false);
4144

4145
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4146 4147 4148 4149 4150
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4151
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4152 4153 4154 4155 4156

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4157 4158
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4159
	}
4160

C
Chris Wilson 已提交
4161 4162 4163 4164
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4165 4166 4167
	return 0;
}

4168 4169 4170
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4171 4172 4173 4174
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4175 4176 4177
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4178
static int
4179
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4180
{
4181 4182
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4183
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4184
	struct drm_i915_gem_request *request, *target = NULL;
4185
	unsigned reset_counter;
4186
	int ret;
4187

4188 4189 4190 4191 4192 4193 4194
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4195

4196
	spin_lock(&file_priv->mm.lock);
4197
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4198 4199
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4200

4201 4202 4203 4204 4205 4206 4207
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4208
		target = request;
4209
	}
4210
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4211 4212
	if (target)
		i915_gem_request_reference(target);
4213
	spin_unlock(&file_priv->mm.lock);
4214

4215
	if (target == NULL)
4216
		return 0;
4217

4218
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4219 4220
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4221

4222
	i915_gem_request_unreference__unlocked(target);
4223

4224 4225 4226
	return ret;
}

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4243 4244 4245 4246
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4247 4248 4249
	return false;
}

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4268
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4269 4270 4271 4272

	obj->map_and_fenceable = mappable && fenceable;
}

4273 4274 4275 4276 4277 4278
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4279
{
4280
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4281
	struct i915_vma *vma;
4282
	unsigned bound;
4283 4284
	int ret;

4285 4286 4287
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4288
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4289
		return -EINVAL;
4290

4291 4292 4293
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4294 4295 4296 4297 4298 4299
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4300
	if (vma) {
B
Ben Widawsky 已提交
4301 4302 4303
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4304
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4305
			WARN(vma->pin_count,
4306
			     "bo is already pinned in %s with incorrect alignment:"
4307
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4308
			     " obj->map_and_fenceable=%d\n",
4309
			     ggtt_view ? "ggtt" : "ppgtt",
4310 4311
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4312
			     alignment,
4313
			     !!(flags & PIN_MAPPABLE),
4314
			     obj->map_and_fenceable);
4315
			ret = i915_vma_unbind(vma);
4316 4317
			if (ret)
				return ret;
4318 4319

			vma = NULL;
4320 4321 4322
		}
	}

4323
	bound = vma ? vma->bound : 0;
4324
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4325 4326
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4327 4328
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4329 4330
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4331 4332 4333
		if (ret)
			return ret;
	}
4334

4335 4336
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4337
		__i915_vma_set_map_and_fenceable(vma);
4338 4339
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4340

4341
	vma->pin_count++;
4342 4343 4344
	return 0;
}

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4362 4363 4364 4365
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4366
	BUG_ON(!view);
4367

4368
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4369
				      alignment, flags | PIN_GLOBAL);
4370 4371
}

4372
void
4373 4374
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4375
{
4376
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4377

B
Ben Widawsky 已提交
4378
	BUG_ON(!vma);
4379
	WARN_ON(vma->pin_count == 0);
4380
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4381

4382
	--vma->pin_count;
4383 4384 4385 4386
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4387
		    struct drm_file *file)
4388 4389
{
	struct drm_i915_gem_busy *args = data;
4390
	struct drm_i915_gem_object *obj;
4391 4392
	int ret;

4393
	ret = i915_mutex_lock_interruptible(dev);
4394
	if (ret)
4395
		return ret;
4396

4397
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4398
	if (&obj->base == NULL) {
4399 4400
		ret = -ENOENT;
		goto unlock;
4401
	}
4402

4403 4404 4405 4406
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4407
	 */
4408
	ret = i915_gem_object_flush_active(obj);
4409 4410
	if (ret)
		goto unref;
4411

4412 4413 4414 4415
	args->busy = 0;
	if (obj->active) {
		int i;

4416
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4417 4418 4419 4420
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4421
				args->busy |= 1 << (16 + req->engine->exec_id);
4422 4423
		}
		if (obj->last_write_req)
4424
			args->busy |= obj->last_write_req->engine->exec_id;
4425
	}
4426

4427
unref:
4428
	drm_gem_object_unreference(&obj->base);
4429
unlock:
4430
	mutex_unlock(&dev->struct_mutex);
4431
	return ret;
4432 4433 4434 4435 4436 4437
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4438
	return i915_gem_ring_throttle(dev, file_priv);
4439 4440
}

4441 4442 4443 4444
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4445
	struct drm_i915_private *dev_priv = dev->dev_private;
4446
	struct drm_i915_gem_madvise *args = data;
4447
	struct drm_i915_gem_object *obj;
4448
	int ret;
4449 4450 4451 4452 4453 4454 4455 4456 4457

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4458 4459 4460 4461
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4462
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4463
	if (&obj->base == NULL) {
4464 4465
		ret = -ENOENT;
		goto unlock;
4466 4467
	}

B
Ben Widawsky 已提交
4468
	if (i915_gem_obj_is_pinned(obj)) {
4469 4470
		ret = -EINVAL;
		goto out;
4471 4472
	}

4473 4474 4475 4476 4477 4478 4479 4480 4481
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4482 4483
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4484

C
Chris Wilson 已提交
4485
	/* if the object is no longer attached, discard its backing storage */
4486
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4487 4488
		i915_gem_object_truncate(obj);

4489
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4490

4491
out:
4492
	drm_gem_object_unreference(&obj->base);
4493
unlock:
4494
	mutex_unlock(&dev->struct_mutex);
4495
	return ret;
4496 4497
}

4498 4499
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4500
{
4501 4502
	int i;

4503
	INIT_LIST_HEAD(&obj->global_list);
4504
	for (i = 0; i < I915_NUM_ENGINES; i++)
4505
		INIT_LIST_HEAD(&obj->engine_list[i]);
4506
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4507
	INIT_LIST_HEAD(&obj->vma_list);
4508
	INIT_LIST_HEAD(&obj->batch_pool_link);
4509

4510 4511
	obj->ops = ops;

4512 4513 4514 4515 4516 4517
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4518
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4519
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4520 4521 4522 4523
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4524 4525
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4526
{
4527
	struct drm_i915_gem_object *obj;
4528
	struct address_space *mapping;
D
Daniel Vetter 已提交
4529
	gfp_t mask;
4530

4531
	obj = i915_gem_object_alloc(dev);
4532 4533
	if (obj == NULL)
		return NULL;
4534

4535
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4536
		i915_gem_object_free(obj);
4537 4538
		return NULL;
	}
4539

4540 4541 4542 4543 4544 4545 4546
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4547
	mapping = file_inode(obj->base.filp)->i_mapping;
4548
	mapping_set_gfp_mask(mapping, mask);
4549

4550
	i915_gem_object_init(obj, &i915_gem_object_ops);
4551

4552 4553
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4554

4555 4556
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4572 4573
	trace_i915_gem_object_create(obj);

4574
	return obj;
4575 4576
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4601
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4602
{
4603
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4604
	struct drm_device *dev = obj->base.dev;
4605
	struct drm_i915_private *dev_priv = dev->dev_private;
4606
	struct i915_vma *vma, *next;
4607

4608 4609
	intel_runtime_pm_get(dev_priv);

4610 4611
	trace_i915_gem_object_destroy(obj);

4612
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4613 4614 4615 4616
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4617 4618
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4619

4620 4621
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4622

4623
			WARN_ON(i915_vma_unbind(vma));
4624

4625 4626
			dev_priv->mm.interruptible = was_interruptible;
		}
4627 4628
	}

B
Ben Widawsky 已提交
4629 4630 4631 4632 4633
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4634 4635
	WARN_ON(obj->frontbuffer_bits);

4636 4637 4638 4639 4640
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4641 4642
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4643
	if (discard_backing_storage(obj))
4644
		obj->madv = I915_MADV_DONTNEED;
4645
	i915_gem_object_put_pages(obj);
4646
	i915_gem_object_free_mmap_offset(obj);
4647

4648 4649
	BUG_ON(obj->pages);

4650 4651
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4652

4653 4654 4655
	if (obj->ops->release)
		obj->ops->release(obj);

4656 4657
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4658

4659
	kfree(obj->bit_17);
4660
	i915_gem_object_free(obj);
4661 4662

	intel_runtime_pm_put(dev_priv);
4663 4664
}

4665 4666
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4667 4668
{
	struct i915_vma *vma;
4669
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4670 4671
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4672
			return vma;
4673 4674 4675 4676 4677 4678 4679
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
4680 4681 4682
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4683
	struct i915_vma *vma;
4684

4685
	BUG_ON(!view);
4686

4687
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4688
		if (vma->vm == &ggtt->base &&
4689
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4690
			return vma;
4691 4692 4693
	return NULL;
}

B
Ben Widawsky 已提交
4694 4695 4696
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4697 4698 4699 4700 4701

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4702 4703
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4704

4705
	list_del(&vma->obj_link);
4706

4707
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4708 4709
}

4710
static void
4711
i915_gem_stop_engines(struct drm_device *dev)
4712 4713
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4714
	struct intel_engine_cs *engine;
4715

4716
	for_each_engine(engine, dev_priv)
4717
		dev_priv->gt.stop_engine(engine);
4718 4719
}

4720
int
4721
i915_gem_suspend(struct drm_device *dev)
4722
{
4723
	struct drm_i915_private *dev_priv = dev->dev_private;
4724
	int ret = 0;
4725

4726
	mutex_lock(&dev->struct_mutex);
4727
	ret = i915_gpu_idle(dev);
4728
	if (ret)
4729
		goto err;
4730

4731
	i915_gem_retire_requests(dev);
4732

4733
	i915_gem_stop_engines(dev);
4734 4735
	mutex_unlock(&dev->struct_mutex);

4736
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4737
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4738
	flush_delayed_work(&dev_priv->mm.idle_work);
4739

4740 4741 4742 4743 4744
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4745
	return 0;
4746 4747 4748 4749

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4750 4751
}

4752
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4753
{
4754
	struct intel_engine_cs *engine = req->engine;
4755
	struct drm_device *dev = engine->dev;
4756
	struct drm_i915_private *dev_priv = dev->dev_private;
4757
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4758
	int i, ret;
B
Ben Widawsky 已提交
4759

4760
	if (!HAS_L3_DPF(dev) || !remap_info)
4761
		return 0;
B
Ben Widawsky 已提交
4762

4763
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4764 4765
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4766

4767 4768 4769 4770 4771
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4772
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4773 4774 4775
		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
		intel_ring_emit(engine, remap_info[i]);
B
Ben Widawsky 已提交
4776 4777
	}

4778
	intel_ring_advance(engine);
B
Ben Widawsky 已提交
4779

4780
	return ret;
B
Ben Widawsky 已提交
4781 4782
}

4783 4784
void i915_gem_init_swizzling(struct drm_device *dev)
{
4785
	struct drm_i915_private *dev_priv = dev->dev_private;
4786

4787
	if (INTEL_INFO(dev)->gen < 5 ||
4788 4789 4790 4791 4792 4793
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4794 4795 4796
	if (IS_GEN5(dev))
		return;

4797 4798
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4799
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4800
	else if (IS_GEN7(dev))
4801
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4802 4803
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4804 4805
	else
		BUG();
4806
}
D
Daniel Vetter 已提交
4807

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4835
int i915_gem_init_engines(struct drm_device *dev)
4836
{
4837
	struct drm_i915_private *dev_priv = dev->dev_private;
4838
	int ret;
4839

4840
	ret = intel_init_render_ring_buffer(dev);
4841
	if (ret)
4842
		return ret;
4843 4844

	if (HAS_BSD(dev)) {
4845
		ret = intel_init_bsd_ring_buffer(dev);
4846 4847
		if (ret)
			goto cleanup_render_ring;
4848
	}
4849

4850
	if (HAS_BLT(dev)) {
4851 4852 4853 4854 4855
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4856 4857 4858 4859 4860 4861
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4862 4863 4864 4865 4866
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4867

4868 4869
	return 0;

B
Ben Widawsky 已提交
4870
cleanup_vebox_ring:
4871
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4872
cleanup_blt_ring:
4873
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4874
cleanup_bsd_ring:
4875
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4876
cleanup_render_ring:
4877
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4878 4879 4880 4881 4882 4883 4884

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4885
	struct drm_i915_private *dev_priv = dev->dev_private;
4886
	struct intel_engine_cs *engine;
4887
	int ret, j;
4888 4889 4890 4891

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4892 4893 4894
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4895
	if (dev_priv->ellc_size && INTEL_GEN(dev_priv) < 9)
4896
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4897

4898 4899 4900
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4901

4902
	if (HAS_PCH_NOP(dev)) {
4903 4904 4905 4906 4907 4908 4909 4910 4911
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4912 4913
	}

4914 4915
	i915_gem_init_swizzling(dev);

4916 4917 4918 4919 4920 4921 4922 4923
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4924
	BUG_ON(!dev_priv->kernel_context);
4925

4926 4927 4928 4929 4930 4931 4932
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4933
	for_each_engine(engine, dev_priv) {
4934
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4935
		if (ret)
4936
			goto out;
D
Daniel Vetter 已提交
4937
	}
4938

4939
	/* We can't enable contexts until all firmware is loaded */
4940 4941 4942
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4943 4944 4945
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4946
		}
4947 4948
	}

4949 4950 4951 4952 4953 4954 4955 4956
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4957
	/* Now it is safe to go back round and do everything else: */
4958
	for_each_engine(engine, dev_priv) {
4959 4960
		struct drm_i915_gem_request *req;

4961
		req = i915_gem_request_alloc(engine, NULL);
4962 4963
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
4964
			i915_gem_cleanup_engines(dev);
4965 4966 4967
			goto out;
		}

4968
		if (engine->id == RCS) {
4969
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4970
				i915_gem_l3_remap(req, j);
4971
		}
4972

4973
		ret = i915_ppgtt_init_ring(req);
4974
		if (ret && ret != -EIO) {
4975 4976
			DRM_ERROR("PPGTT enable %s failed %d\n",
				  engine->name, ret);
4977
			i915_gem_request_cancel(req);
4978
			i915_gem_cleanup_engines(dev);
4979 4980
			goto out;
		}
4981

4982
		ret = i915_gem_context_enable(req);
4983
		if (ret && ret != -EIO) {
4984 4985
			DRM_ERROR("Context enable %s failed %d\n",
				  engine->name, ret);
4986
			i915_gem_request_cancel(req);
4987
			i915_gem_cleanup_engines(dev);
4988 4989
			goto out;
		}
4990

4991
		i915_add_request_no_flush(req);
4992
	}
D
Daniel Vetter 已提交
4993

4994 4995
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4996
	return ret;
4997 4998
}

4999 5000 5001 5002 5003
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5004 5005 5006
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5007
	mutex_lock(&dev->struct_mutex);
5008

5009
	if (!i915.enable_execlists) {
5010
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5011 5012 5013
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
5014
	} else {
5015
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5016 5017 5018
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
5019 5020
	}

5021 5022 5023 5024 5025 5026 5027 5028
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5029
	ret = i915_gem_init_userptr(dev);
5030 5031
	if (ret)
		goto out_unlock;
5032

5033
	i915_gem_init_ggtt(dev);
5034

5035
	ret = i915_gem_context_init(dev);
5036 5037
	if (ret)
		goto out_unlock;
5038

5039
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5040
	if (ret)
5041
		goto out_unlock;
5042

5043
	ret = i915_gem_init_hw(dev);
5044 5045 5046 5047 5048 5049
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5050
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5051
		ret = 0;
5052
	}
5053 5054

out_unlock:
5055
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5056
	mutex_unlock(&dev->struct_mutex);
5057

5058
	return ret;
5059 5060
}

5061
void
5062
i915_gem_cleanup_engines(struct drm_device *dev)
5063
{
5064
	struct drm_i915_private *dev_priv = dev->dev_private;
5065
	struct intel_engine_cs *engine;
5066

5067
	for_each_engine(engine, dev_priv)
5068
		dev_priv->gt.cleanup_engine(engine);
5069

5070 5071 5072 5073 5074 5075 5076
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
5077 5078
}

5079
static void
5080
init_engine_lists(struct intel_engine_cs *engine)
5081
{
5082 5083
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5084 5085
}

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5110
void
5111
i915_gem_load_init(struct drm_device *dev)
5112
{
5113
	struct drm_i915_private *dev_priv = dev->dev_private;
5114 5115
	int i;

5116
	dev_priv->objects =
5117 5118 5119 5120
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5121 5122 5123 5124 5125
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5126 5127 5128 5129 5130
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5131

B
Ben Widawsky 已提交
5132
	INIT_LIST_HEAD(&dev_priv->vm_list);
5133
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5134 5135
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5136
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5137 5138
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5139
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5140
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5141 5142
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5143 5144
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5145
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5146

5147 5148
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5149 5150 5151 5152 5153 5154 5155 5156
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5157
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5158

5159
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5160

5161 5162
	dev_priv->mm.interruptible = true;

5163
	mutex_init(&dev_priv->fb_tracking.lock);
5164
}
5165

5166 5167 5168 5169 5170 5171 5172 5173 5174
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5175
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5176
{
5177
	struct drm_i915_file_private *file_priv = file->driver_priv;
5178 5179 5180 5181 5182

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5183
	spin_lock(&file_priv->mm.lock);
5184 5185 5186 5187 5188 5189 5190 5191 5192
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5193
	spin_unlock(&file_priv->mm.lock);
5194

5195
	if (!list_empty(&file_priv->rps.link)) {
5196
		spin_lock(&to_i915(dev)->rps.client_lock);
5197
		list_del(&file_priv->rps.link);
5198
		spin_unlock(&to_i915(dev)->rps.client_lock);
5199
	}
5200 5201 5202 5203 5204
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5205
	int ret;
5206 5207 5208 5209 5210 5211 5212 5213 5214

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5215
	file_priv->file = file;
5216
	INIT_LIST_HEAD(&file_priv->rps.link);
5217 5218 5219 5220

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5221 5222
	file_priv->bsd_ring = -1;

5223 5224 5225
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5226

5227
	return ret;
5228 5229
}

5230 5231
/**
 * i915_gem_track_fb - update frontbuffer tracking
5232 5233 5234
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5235 5236 5237 5238
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5256
/* All the new VM stuff */
5257 5258
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5259 5260 5261 5262
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5263
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5264

5265
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5266
		if (vma->is_ggtt &&
5267 5268 5269
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5270 5271
			return vma->node.start;
	}
5272

5273 5274
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5275 5276 5277
	return -1;
}

5278 5279
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5280
{
5281 5282
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5283 5284
	struct i915_vma *vma;

5285
	list_for_each_entry(vma, &o->vma_list, obj_link)
5286
		if (vma->vm == &ggtt->base &&
5287
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5288 5289
			return vma->node.start;

5290
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5291 5292 5293 5294 5295 5296 5297 5298
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5299
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5300
		if (vma->is_ggtt &&
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5311
				  const struct i915_ggtt_view *view)
5312
{
5313 5314
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5315 5316
	struct i915_vma *vma;

5317
	list_for_each_entry(vma, &o->vma_list, obj_link)
5318
		if (vma->vm == &ggtt->base &&
5319
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5320
		    drm_mm_node_allocated(&vma->node))
5321 5322 5323 5324 5325 5326 5327
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5328
	struct i915_vma *vma;
5329

5330
	list_for_each_entry(vma, &o->vma_list, obj_link)
5331
		if (drm_mm_node_allocated(&vma->node))
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5343
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5344 5345 5346

	BUG_ON(list_empty(&o->vma_list));

5347
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5348
		if (vma->is_ggtt &&
5349 5350
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5351 5352
		if (vma->vm == vm)
			return vma->node.size;
5353
	}
5354 5355 5356
	return 0;
}

5357
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5358 5359
{
	struct i915_vma *vma;
5360
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5361 5362
		if (vma->pin_count > 0)
			return true;
5363

5364
	return false;
5365
}
5366

5367 5368 5369 5370 5371 5372 5373
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5374
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5375 5376 5377 5378 5379 5380 5381
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5407
	obj->dirty = 1;		/* Backing store is now out of date */
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}