i915_gem.c 124.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
612
				    unsigned int *needs_clflush)
613 614 615 616 617
{
	int ret;

	*needs_clflush = 0;

618 619
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
620

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626
	i915_gem_object_flush_gtt_write_domain(obj);

627 628 629 630 631 632
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
633 634
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
635 636 637 638 639 640 641 642 643 644 645 646 647 648

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret) {
			i915_gem_object_unpin_pages(obj);
			return ret;
		}
		*needs_clflush = 0;
649 650
	}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	return 0;
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

667 668
	i915_gem_object_flush_gtt_write_domain(obj);

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

684 685 686 687 688 689
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret) {
			i915_gem_object_unpin_pages(obj);
			return ret;
		}
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
	return 0;
705 706
}

707 708 709
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
710
static int
711 712 713 714 715 716 717
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

718
	if (unlikely(page_do_bit17_swizzling))
719 720 721 722 723 724 725 726 727 728 729
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

730
	return ret ? -EFAULT : 0;
731 732
}

733 734 735 736
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
737
	if (unlikely(swizzled)) {
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

755 756 757 758 759 760 761 762 763 764 765 766
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
767 768 769
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
770 771 772 773 774 775 776 777 778 779 780

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

781
	return ret ? - EFAULT : 0;
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
811
	struct drm_i915_private *dev_priv = to_i915(dev);
812
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
813
	struct i915_vma *vma;
814 815 816 817 818 819
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
820
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
821 822 823 824 825 826 827 828 829
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
830
	if (IS_ERR(vma)) {
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
918
		i915_vma_unpin(vma);
919 920 921 922 923
	}
out:
	return ret;
}

924
static int
925 926 927 928
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
929
{
930
	char __user *user_data;
931
	ssize_t remain;
932
	loff_t offset;
933
	int shmem_page_offset, page_length, ret = 0;
934
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
935
	int prefaulted = 0;
936
	int needs_clflush = 0;
937
	struct sg_page_iter sg_iter;
938

939
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
940 941 942
	if (ret)
		return ret;

943 944
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
945
	offset = args->offset;
946
	remain = args->size;
947

948 949
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
950
		struct page *page = sg_page_iter_page(&sg_iter);
951 952 953 954

		if (remain <= 0)
			break;

955 956 957 958 959
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
960
		shmem_page_offset = offset_in_page(offset);
961 962 963 964
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

965 966 967
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

968 969 970 971 972
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
973 974 975

		mutex_unlock(&dev->struct_mutex);

976
		if (likely(!i915.prefault_disable) && !prefaulted) {
977
			ret = fault_in_multipages_writeable(user_data, remain);
978 979 980 981 982 983 984
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
985

986 987 988
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
989

990
		mutex_lock(&dev->struct_mutex);
991 992

		if (ret)
993 994
			goto out;

995
next_page:
996
		remain -= page_length;
997
		user_data += page_length;
998 999 1000
		offset += page_length;
	}

1001
out:
1002
	i915_gem_obj_finish_shmem_access(obj);
1003

1004 1005 1006
	return ret;
}

1007 1008
/**
 * Reads data from the object referenced by handle.
1009 1010 1011
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1012 1013 1014 1015 1016
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1017
		     struct drm_file *file)
1018 1019
{
	struct drm_i915_gem_pread *args = data;
1020
	struct drm_i915_gem_object *obj;
1021
	int ret = 0;
1022

1023 1024 1025 1026
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1027
		       u64_to_user_ptr(args->data_ptr),
1028 1029 1030
		       args->size))
		return -EFAULT;

1031
	obj = i915_gem_object_lookup(file, args->handle);
1032 1033
	if (!obj)
		return -ENOENT;
1034

1035
	/* Bounds check source.  */
1036 1037
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1038
		ret = -EINVAL;
1039
		goto err;
C
Chris Wilson 已提交
1040 1041
	}

C
Chris Wilson 已提交
1042 1043
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1044 1045 1046 1047 1048 1049 1050 1051
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1052
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1053

1054
	/* pread for non shmem backed objects */
1055 1056
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
1057 1058
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
1059 1060
		intel_runtime_pm_put(to_i915(dev));
	}
1061

1062
	i915_gem_object_put(obj);
1063
	mutex_unlock(&dev->struct_mutex);
1064 1065 1066 1067 1068

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1069
	return ret;
1070 1071
}

1072 1073
/* This is the fast write path which cannot handle
 * page faults in the source data
1074
 */
1075 1076 1077 1078 1079 1080

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1081
{
1082 1083
	void __iomem *vaddr_atomic;
	void *vaddr;
1084
	unsigned long unwritten;
1085

P
Peter Zijlstra 已提交
1086
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1087 1088 1089
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1090
						      user_data, length);
P
Peter Zijlstra 已提交
1091
	io_mapping_unmap_atomic(vaddr_atomic);
1092
	return unwritten;
1093 1094
}

1095 1096 1097
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1098
 * @i915: i915 device private data
1099 1100 1101
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1102
 */
1103
static int
1104
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1105
			 struct drm_i915_gem_object *obj,
1106
			 struct drm_i915_gem_pwrite *args,
1107
			 struct drm_file *file)
1108
{
1109
	struct i915_ggtt *ggtt = &i915->ggtt;
1110
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1111
	struct i915_vma *vma;
1112 1113
	struct drm_mm_node node;
	uint64_t remain, offset;
1114
	char __user *user_data;
1115
	int ret;
1116 1117
	bool hit_slow_path = false;

1118
	if (i915_gem_object_is_tiled(obj))
1119
		return -EFAULT;
D
Daniel Vetter 已提交
1120

C
Chris Wilson 已提交
1121
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1122
				       PIN_MAPPABLE | PIN_NONBLOCK);
1123 1124 1125 1126 1127 1128 1129 1130 1131
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1132
	if (IS_ERR(vma)) {
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1145 1146 1147 1148 1149

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1150
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1151
	obj->dirty = true;
1152

1153 1154 1155 1156
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1157 1158
		/* Operation in this page
		 *
1159 1160 1161
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1162
		 */
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1176
		/* If we get a fault while copying data, then (presumably) our
1177 1178
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1179 1180
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1181
		 */
1182
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1183
				    page_offset, user_data, page_length)) {
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1196
		}
1197

1198 1199 1200
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1201 1202
	}

1203
out_flush:
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1217
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1218
out_unpin:
1219 1220 1221 1222 1223 1224 1225 1226
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1227
		i915_vma_unpin(vma);
1228
	}
D
Daniel Vetter 已提交
1229
out:
1230
	return ret;
1231 1232
}

1233 1234 1235 1236
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1237
static int
1238 1239 1240 1241 1242
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1243
{
1244
	char *vaddr;
1245
	int ret;
1246

1247
	if (unlikely(page_do_bit17_swizzling))
1248
		return -EINVAL;
1249

1250 1251 1252 1253
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1254 1255
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1256 1257 1258 1259
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1260

1261
	return ret ? -EFAULT : 0;
1262 1263
}

1264 1265
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1266
static int
1267 1268 1269 1270 1271
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1272
{
1273 1274
	char *vaddr;
	int ret;
1275

1276
	vaddr = kmap(page);
1277
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1278 1279 1280
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1281 1282
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1283 1284
						user_data,
						page_length);
1285 1286 1287 1288 1289
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1290 1291 1292
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1293
	kunmap(page);
1294

1295
	return ret ? -EFAULT : 0;
1296 1297 1298
}

static int
1299 1300 1301 1302
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1303 1304
{
	ssize_t remain;
1305 1306
	loff_t offset;
	char __user *user_data;
1307
	int shmem_page_offset, page_length, ret = 0;
1308
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1309
	int hit_slowpath = 0;
1310
	unsigned int needs_clflush;
1311
	struct sg_page_iter sg_iter;
1312

1313
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1314 1315 1316
	if (ret)
		return ret;

1317 1318
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1319
	offset = args->offset;
1320
	remain = args->size;
1321

1322 1323
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1324
		struct page *page = sg_page_iter_page(&sg_iter);
1325
		int partial_cacheline_write;
1326

1327 1328 1329
		if (remain <= 0)
			break;

1330 1331 1332 1333 1334
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1335
		shmem_page_offset = offset_in_page(offset);
1336 1337 1338 1339 1340

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1341 1342 1343
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1344
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1345 1346 1347
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1348 1349 1350
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1351 1352 1353
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1354
					needs_clflush & CLFLUSH_AFTER);
1355 1356
		if (ret == 0)
			goto next_page;
1357 1358 1359

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1360 1361 1362
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1363
					needs_clflush & CLFLUSH_AFTER);
1364

1365
		mutex_lock(&dev->struct_mutex);
1366 1367

		if (ret)
1368 1369
			goto out;

1370
next_page:
1371
		remain -= page_length;
1372
		user_data += page_length;
1373
		offset += page_length;
1374 1375
	}

1376
out:
1377
	i915_gem_obj_finish_shmem_access(obj);
1378

1379
	if (hit_slowpath) {
1380 1381 1382 1383 1384
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1385
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1386
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1387
			if (i915_gem_clflush_object(obj, obj->pin_display))
1388
				needs_clflush |= CLFLUSH_AFTER;
1389
		}
1390
	}
1391

1392
	if (needs_clflush & CLFLUSH_AFTER)
1393
		i915_gem_chipset_flush(to_i915(dev));
1394

1395
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1396
	return ret;
1397 1398 1399 1400
}

/**
 * Writes data to the object referenced by handle.
1401 1402 1403
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1404 1405 1406 1407 1408
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1409
		      struct drm_file *file)
1410
{
1411
	struct drm_i915_private *dev_priv = to_i915(dev);
1412
	struct drm_i915_gem_pwrite *args = data;
1413
	struct drm_i915_gem_object *obj;
1414 1415 1416 1417 1418 1419
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1420
		       u64_to_user_ptr(args->data_ptr),
1421 1422 1423
		       args->size))
		return -EFAULT;

1424
	if (likely(!i915.prefault_disable)) {
1425
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1426 1427 1428 1429
						   args->size);
		if (ret)
			return -EFAULT;
	}
1430

1431
	obj = i915_gem_object_lookup(file, args->handle);
1432 1433
	if (!obj)
		return -ENOENT;
1434

1435
	/* Bounds check destination. */
1436 1437
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1438
		ret = -EINVAL;
1439
		goto err;
C
Chris Wilson 已提交
1440 1441
	}

C
Chris Wilson 已提交
1442 1443
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1454
	ret = -EFAULT;
1455 1456 1457 1458 1459 1460
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1461 1462
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1463
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1464 1465 1466
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1467
	}
1468

1469
	if (ret == -EFAULT || ret == -ENOSPC) {
1470 1471
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1472
		else
1473
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1474
	}
1475

1476
	i915_gem_object_put(obj);
1477
	mutex_unlock(&dev->struct_mutex);
1478 1479
	intel_runtime_pm_put(dev_priv);

1480
	return ret;
1481 1482 1483 1484 1485 1486

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1487 1488
}

1489
static inline enum fb_op_origin
1490 1491 1492 1493 1494 1495
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1496
/**
1497 1498
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1499 1500 1501
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1502 1503 1504
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1505
			  struct drm_file *file)
1506 1507
{
	struct drm_i915_gem_set_domain *args = data;
1508
	struct drm_i915_gem_object *obj;
1509 1510
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1511 1512
	int ret;

1513
	/* Only handle setting domains to types used by the CPU. */
1514
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1515 1516 1517 1518 1519 1520 1521 1522
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1523
	obj = i915_gem_object_lookup(file, args->handle);
1524 1525
	if (!obj)
		return -ENOENT;
1526

1527 1528 1529 1530
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1531 1532 1533 1534 1535
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1536
	if (ret)
1537
		goto err;
1538

1539
	if (read_domains & I915_GEM_DOMAIN_GTT)
1540
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1541
	else
1542
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1543

1544
	if (write_domain != 0)
1545
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1546

1547
	i915_gem_object_put(obj);
1548 1549
	mutex_unlock(&dev->struct_mutex);
	return ret;
1550 1551 1552 1553

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1554 1555 1556 1557
}

/**
 * Called when user space has done writes to this buffer
1558 1559 1560
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1561 1562 1563
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1564
			 struct drm_file *file)
1565 1566
{
	struct drm_i915_gem_sw_finish *args = data;
1567
	struct drm_i915_gem_object *obj;
1568
	int err = 0;
1569

1570
	obj = i915_gem_object_lookup(file, args->handle);
1571 1572
	if (!obj)
		return -ENOENT;
1573 1574

	/* Pinned buffers may be scanout, so flush the cache */
1575 1576 1577 1578 1579 1580 1581
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1582

1583 1584
	i915_gem_object_put_unlocked(obj);
	return err;
1585 1586 1587
}

/**
1588 1589 1590 1591 1592
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1593 1594 1595
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1606 1607 1608
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1609
		    struct drm_file *file)
1610 1611
{
	struct drm_i915_gem_mmap *args = data;
1612
	struct drm_i915_gem_object *obj;
1613 1614
	unsigned long addr;

1615 1616 1617
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1618
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1619 1620
		return -ENODEV;

1621 1622
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1623
		return -ENOENT;
1624

1625 1626 1627
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1628
	if (!obj->base.filp) {
1629
		i915_gem_object_put_unlocked(obj);
1630 1631 1632
		return -EINVAL;
	}

1633
	addr = vm_mmap(obj->base.filp, 0, args->size,
1634 1635
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1636 1637 1638 1639
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1640
		if (down_write_killable(&mm->mmap_sem)) {
1641
			i915_gem_object_put_unlocked(obj);
1642 1643
			return -EINTR;
		}
1644 1645 1646 1647 1648 1649 1650
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1651 1652

		/* This may race, but that's ok, it only gets set */
1653
		WRITE_ONCE(obj->has_wc_mmap, true);
1654
	}
1655
	i915_gem_object_put_unlocked(obj);
1656 1657 1658 1659 1660 1661 1662 1663
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1664 1665
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1666
 * @area: CPU VMA in question
1667
 * @vmf: fault info
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
C
Chris Wilson 已提交
1680
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1681
{
C
Chris Wilson 已提交
1682
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1683
	struct drm_device *dev = obj->base.dev;
1684 1685
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1686
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1687
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1688
	struct i915_vma *vma;
1689 1690
	pgoff_t page_offset;
	unsigned long pfn;
1691
	int ret;
1692

1693
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1694
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1695 1696
		PAGE_SHIFT;

C
Chris Wilson 已提交
1697 1698
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1699
	/* Try to flush the object off the GPU first without holding the lock.
1700
	 * Upon acquiring the lock, we will perform our sanity checks and then
1701 1702 1703
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1704
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1705
	if (ret)
1706 1707 1708 1709 1710 1711 1712
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1713

1714 1715
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1716
		ret = -EFAULT;
1717
		goto err_unlock;
1718 1719
	}

1720
	/* Use a partial view if the object is bigger than the aperture. */
1721
	if (obj->base.size >= ggtt->mappable_end &&
1722
	    !i915_gem_object_is_tiled(obj)) {
1723
		static const unsigned int chunk_size = 256; // 1 MiB
1724

1725 1726 1727 1728 1729 1730
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
C
Chris Wilson 已提交
1731
			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1732 1733 1734 1735
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
C
Chris Wilson 已提交
1736 1737 1738
	vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1739
		goto err_unlock;
C
Chris Wilson 已提交
1740
	}
1741

1742 1743
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1744
		goto err_unpin;
1745

1746
	ret = i915_gem_object_get_fence(obj);
1747
	if (ret)
1748
		goto err_unpin;
1749

1750
	/* Finally, remap it using the new GTT offset */
1751
	pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1752
	pfn >>= PAGE_SHIFT;
1753

1754 1755 1756 1757 1758 1759
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
C
Chris Wilson 已提交
1760
		unsigned long base = area->vm_start +
1761 1762
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1763

1764
		for (i = 0; i < view.params.partial.size; i++) {
C
Chris Wilson 已提交
1765 1766 1767
			ret = vm_insert_pfn(area,
					    base + i * PAGE_SIZE,
					    pfn + i);
1768 1769 1770 1771 1772
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1773 1774
	} else {
		if (!obj->fault_mappable) {
C
Chris Wilson 已提交
1775 1776 1777 1778 1779
			unsigned long size =
				min_t(unsigned long,
				      area->vm_end - area->vm_start,
				      obj->base.size) >> PAGE_SHIFT;
			unsigned long base = area->vm_start;
1780 1781
			int i;

C
Chris Wilson 已提交
1782 1783 1784
			for (i = 0; i < size; i++) {
				ret = vm_insert_pfn(area,
						    base + i * PAGE_SIZE,
1785 1786 1787 1788 1789 1790 1791
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
C
Chris Wilson 已提交
1792
			ret = vm_insert_pfn(area,
1793 1794 1795
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1796
err_unpin:
C
Chris Wilson 已提交
1797
	__i915_vma_unpin(vma);
1798
err_unlock:
1799
	mutex_unlock(&dev->struct_mutex);
1800 1801 1802
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1803
	switch (ret) {
1804
	case -EIO:
1805 1806 1807 1808 1809 1810 1811
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1812 1813 1814
			ret = VM_FAULT_SIGBUS;
			break;
		}
1815
	case -EAGAIN:
D
Daniel Vetter 已提交
1816 1817 1818 1819
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1820
		 */
1821 1822
	case 0:
	case -ERESTARTSYS:
1823
	case -EINTR:
1824 1825 1826 1827 1828
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1829 1830
		ret = VM_FAULT_NOPAGE;
		break;
1831
	case -ENOMEM:
1832 1833
		ret = VM_FAULT_OOM;
		break;
1834
	case -ENOSPC:
1835
	case -EFAULT:
1836 1837
		ret = VM_FAULT_SIGBUS;
		break;
1838
	default:
1839
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1840 1841
		ret = VM_FAULT_SIGBUS;
		break;
1842
	}
1843
	return ret;
1844 1845
}

1846 1847 1848 1849
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1850
 * Preserve the reservation of the mmapping with the DRM core code, but
1851 1852 1853 1854 1855 1856 1857 1858 1859
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1860
void
1861
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1862
{
1863 1864 1865 1866 1867 1868
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1869 1870
	if (!obj->fault_mappable)
		return;
1871

1872 1873
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1884
	obj->fault_mappable = false;
1885 1886
}

1887 1888 1889 1890 1891 1892 1893 1894 1895
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1896 1897
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1898
 * @dev_priv: i915 device
1899 1900 1901 1902 1903 1904
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1905 1906
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1907
{
1908
	u64 ggtt_size;
1909

1910 1911
	GEM_BUG_ON(size == 0);

1912
	if (INTEL_GEN(dev_priv) >= 4 ||
1913 1914
	    tiling_mode == I915_TILING_NONE)
		return size;
1915 1916

	/* Previous chips need a power-of-two fence region when tiling */
1917
	if (IS_GEN3(dev_priv))
1918
		ggtt_size = 1024*1024;
1919
	else
1920
		ggtt_size = 512*1024;
1921

1922 1923
	while (ggtt_size < size)
		ggtt_size <<= 1;
1924

1925
	return ggtt_size;
1926 1927
}

1928
/**
1929
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1930
 * @dev_priv: i915 device
1931 1932
 * @size: object size
 * @tiling_mode: tiling mode
1933
 * @fenced: is fenced alignment required or not
1934
 *
1935
 * Return the required global GTT alignment for an object, taking into account
1936
 * potential fence register mapping.
1937
 */
1938
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1939
				int tiling_mode, bool fenced)
1940
{
1941 1942
	GEM_BUG_ON(size == 0);

1943 1944 1945 1946
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1947
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1948
	    tiling_mode == I915_TILING_NONE)
1949 1950
		return 4096;

1951 1952 1953 1954
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1955
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1956 1957
}

1958 1959
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1960
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1961
	int err;
1962

1963 1964 1965
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1966

1967 1968 1969
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1970
	 */
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1981

1982
	return err;
1983 1984 1985 1986 1987 1988 1989
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1990
int
1991 1992
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1993
		  uint32_t handle,
1994
		  uint64_t *offset)
1995
{
1996
	struct drm_i915_gem_object *obj;
1997 1998
	int ret;

1999
	obj = i915_gem_object_lookup(file, handle);
2000 2001
	if (!obj)
		return -ENOENT;
2002

2003
	ret = i915_gem_object_create_mmap_offset(obj);
2004 2005
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2006

2007
	i915_gem_object_put_unlocked(obj);
2008
	return ret;
2009 2010
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2032
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2033 2034
}

D
Daniel Vetter 已提交
2035 2036 2037
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2038
{
2039
	i915_gem_object_free_mmap_offset(obj);
2040

2041 2042
	if (obj->base.filp == NULL)
		return;
2043

D
Daniel Vetter 已提交
2044 2045 2046 2047 2048
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2049
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2050 2051
	obj->madv = __I915_MADV_PURGED;
}
2052

2053 2054 2055
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2056
{
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2069
	mapping = obj->base.filp->f_mapping,
2070
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2071 2072
}

2073
static void
2074
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2075
{
2076 2077
	struct sgt_iter sgt_iter;
	struct page *page;
2078
	int ret;
2079

2080
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2081

C
Chris Wilson 已提交
2082
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2083
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2084 2085 2086
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2087
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2088 2089 2090
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2091 2092
	i915_gem_gtt_finish_object(obj);

2093
	if (i915_gem_object_needs_bit17_swizzle(obj))
2094 2095
		i915_gem_object_save_bit_17_swizzle(obj);

2096 2097
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2098

2099
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2100
		if (obj->dirty)
2101
			set_page_dirty(page);
2102

2103
		if (obj->madv == I915_MADV_WILLNEED)
2104
			mark_page_accessed(page);
2105

2106
		put_page(page);
2107
	}
2108
	obj->dirty = 0;
2109

2110 2111
	sg_free_table(obj->pages);
	kfree(obj->pages);
2112
}
C
Chris Wilson 已提交
2113

2114
int
2115 2116 2117 2118
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2119
	if (obj->pages == NULL)
2120 2121
		return 0;

2122 2123 2124
	if (obj->pages_pin_count)
		return -EBUSY;

2125
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2126

2127 2128 2129
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2130
	list_del(&obj->global_list);
2131

2132
	if (obj->mapping) {
2133 2134 2135 2136 2137
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2138
		else
2139 2140
			kunmap(kmap_to_page(ptr));

2141 2142 2143
		obj->mapping = NULL;
	}

2144
	ops->put_pages(obj);
2145
	obj->pages = NULL;
2146

2147
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2148 2149 2150 2151

	return 0;
}

2152
static int
C
Chris Wilson 已提交
2153
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2154
{
2155
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2156 2157
	int page_count, i;
	struct address_space *mapping;
2158 2159
	struct sg_table *st;
	struct scatterlist *sg;
2160
	struct sgt_iter sgt_iter;
2161
	struct page *page;
2162
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2163
	int ret;
C
Chris Wilson 已提交
2164
	gfp_t gfp;
2165

C
Chris Wilson 已提交
2166 2167 2168 2169 2170 2171 2172
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2173 2174 2175 2176
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2177
	page_count = obj->base.size / PAGE_SIZE;
2178 2179
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2180
		return -ENOMEM;
2181
	}
2182

2183 2184 2185 2186 2187
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2188
	mapping = obj->base.filp->f_mapping;
2189
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2190
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2191 2192 2193
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2194 2195
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2196 2197 2198 2199 2200
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2201 2202 2203 2204 2205 2206 2207 2208
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2209
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2210 2211
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2212
				goto err_pages;
I
Imre Deak 已提交
2213
			}
C
Chris Wilson 已提交
2214
		}
2215 2216 2217 2218 2219 2220 2221 2222
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2223 2224 2225 2226 2227 2228 2229 2230 2231
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2232 2233 2234

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2235
	}
2236 2237 2238 2239
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2240 2241
	obj->pages = st;

I
Imre Deak 已提交
2242 2243 2244 2245
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2246
	if (i915_gem_object_needs_bit17_swizzle(obj))
2247 2248
		i915_gem_object_do_bit_17_swizzle(obj);

2249
	if (i915_gem_object_is_tiled(obj) &&
2250 2251 2252
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2253 2254 2255
	return 0;

err_pages:
2256
	sg_mark_end(sg);
2257 2258
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2259 2260
	sg_free_table(st);
	kfree(st);
2261 2262 2263 2264 2265 2266 2267 2268 2269

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2270 2271 2272 2273
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2274 2275
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2286
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2287 2288 2289
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2290
	if (obj->pages)
2291 2292
		return 0;

2293
	if (obj->madv != I915_MADV_WILLNEED) {
2294
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2295
		return -EFAULT;
2296 2297
	}

2298 2299
	BUG_ON(obj->pages_pin_count);

2300 2301 2302 2303
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2304
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2305 2306 2307 2308

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2309
	return 0;
2310 2311
}

2312
/* The 'mapping' part of i915_gem_object_pin_map() below */
2313 2314
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2315 2316 2317
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2318 2319
	struct sgt_iter sgt_iter;
	struct page *page;
2320 2321
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2322
	unsigned long i = 0;
2323
	pgprot_t pgprot;
2324 2325 2326
	void *addr;

	/* A single page can always be kmapped */
2327
	if (n_pages == 1 && type == I915_MAP_WB)
2328 2329
		return kmap(sg_page(sgt->sgl));

2330 2331 2332 2333 2334 2335
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2336

2337 2338
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2339 2340 2341 2342

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2343 2344 2345 2346 2347 2348 2349 2350 2351
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2352

2353 2354
	if (pages != stack_pages)
		drm_free_large(pages);
2355 2356 2357 2358 2359

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2360 2361
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2362
{
2363 2364 2365
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2366 2367 2368
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2369
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2370 2371 2372 2373 2374 2375

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2376
	pinned = obj->pages_pin_count > 1;
2377

2378 2379 2380 2381 2382
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2383
		}
2384 2385 2386 2387 2388 2389 2390

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2391 2392
	}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2408 2409
}

2410
static void
2411 2412
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2413
{
2414 2415
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2416

2417
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2418 2419
}

2420
static void
2421 2422
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2423
{
2424 2425 2426
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2427

2428
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2429

2430 2431
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2432
		return;
2433

2434 2435 2436 2437
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2438 2439 2440
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2441

2442
	i915_gem_object_put(obj);
2443 2444
}

2445
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2446
{
2447
	unsigned long elapsed;
2448

2449
	if (ctx->hang_stats.banned)
2450 2451
		return true;

2452
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2453 2454
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2455 2456
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2457 2458 2459 2460 2461
	}

	return false;
}

2462
static void i915_set_reset_status(struct i915_gem_context *ctx,
2463
				  const bool guilty)
2464
{
2465
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2466 2467

	if (guilty) {
2468
		hs->banned = i915_context_is_banned(ctx);
2469 2470 2471 2472
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2473 2474 2475
	}
}

2476
struct drm_i915_gem_request *
2477
i915_gem_find_active_request(struct intel_engine_cs *engine)
2478
{
2479 2480
	struct drm_i915_gem_request *request;

2481 2482 2483 2484 2485 2486 2487 2488
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2489
	list_for_each_entry(request, &engine->request_list, link) {
2490
		if (i915_gem_request_completed(request))
2491
			continue;
2492

2493
		return request;
2494
	}
2495 2496 2497 2498

	return NULL;
}

2499
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2500 2501 2502 2503
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2504
	request = i915_gem_find_active_request(engine);
2505 2506 2507
	if (request == NULL)
		return;

2508
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2509

2510
	i915_set_reset_status(request->ctx, ring_hung);
2511
	list_for_each_entry_continue(request, &engine->request_list, link)
2512
		i915_set_reset_status(request->ctx, false);
2513
}
2514

2515
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2516
{
2517
	struct drm_i915_gem_request *request;
2518
	struct intel_ring *ring;
2519

2520 2521 2522 2523
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2524
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2525

2526 2527 2528 2529 2530 2531
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2532
	if (i915.enable_execlists) {
2533 2534
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2535

2536
		intel_execlists_cancel_requests(engine);
2537 2538
	}

2539 2540 2541 2542 2543 2544 2545
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2546 2547
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2548
	if (request)
2549
		i915_gem_request_retire_upto(request);
2550
	GEM_BUG_ON(intel_engine_is_active(engine));
2551 2552 2553 2554 2555 2556 2557 2558

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2559 2560 2561
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2562
	}
2563

2564
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2565 2566
}

2567
void i915_gem_reset(struct drm_device *dev)
2568
{
2569
	struct drm_i915_private *dev_priv = to_i915(dev);
2570
	struct intel_engine_cs *engine;
2571

2572 2573 2574 2575 2576
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2577
	for_each_engine(engine, dev_priv)
2578
		i915_gem_reset_engine_status(engine);
2579

2580
	for_each_engine(engine, dev_priv)
2581
		i915_gem_reset_engine_cleanup(engine);
2582
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2583

2584 2585
	i915_gem_context_reset(dev);

2586
	i915_gem_restore_fences(dev);
2587 2588
}

2589
static void
2590 2591
i915_gem_retire_work_handler(struct work_struct *work)
{
2592
	struct drm_i915_private *dev_priv =
2593
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2594
	struct drm_device *dev = &dev_priv->drm;
2595

2596
	/* Come back later if the device is busy... */
2597
	if (mutex_trylock(&dev->struct_mutex)) {
2598
		i915_gem_retire_requests(dev_priv);
2599
		mutex_unlock(&dev->struct_mutex);
2600
	}
2601 2602 2603 2604 2605

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2606 2607
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2608 2609
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2610
				   round_jiffies_up_relative(HZ));
2611
	}
2612
}
2613

2614 2615 2616 2617
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2618
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2619
	struct drm_device *dev = &dev_priv->drm;
2620
	struct intel_engine_cs *engine;
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2642

2643
	for_each_engine(engine, dev_priv)
2644
		i915_gem_batch_pool_fini(&engine->batch_pool);
2645

2646 2647 2648
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2649

2650 2651 2652 2653 2654
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2655

2656 2657 2658 2659
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2660
	}
2661 2662
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2676 2677
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2678 2679 2680
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2704
	struct intel_rps_client *rps = to_rps_client(file);
2705
	struct drm_i915_gem_object *obj;
2706 2707
	unsigned long active;
	int idx, ret = 0;
2708

2709 2710 2711
	if (args->flags != 0)
		return -EINVAL;

2712
	obj = i915_gem_object_lookup(file, args->bo_handle);
2713
	if (!obj)
2714 2715
		return -ENOENT;

2716 2717 2718 2719 2720 2721 2722
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2723 2724
	}

2725
	i915_gem_object_put_unlocked(obj);
2726
	return ret;
2727 2728
}

2729
static int
2730
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2731
		       struct drm_i915_gem_request *from)
2732 2733 2734
{
	int ret;

2735
	if (to->engine == from->engine)
2736 2737
		return 0;

2738
	if (!i915.semaphores) {
2739 2740 2741 2742
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2743 2744 2745
		if (ret)
			return ret;
	} else {
2746
		int idx = intel_engine_sync_index(from->engine, to->engine);
2747
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2748 2749
			return 0;

2750
		trace_i915_gem_ring_sync_to(to, from);
2751
		ret = to->engine->semaphore.sync_to(to, from);
2752 2753 2754
		if (ret)
			return ret;

2755
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2756 2757 2758 2759 2760
	}

	return 0;
}

2761 2762 2763 2764
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2765
 * @to: request we are wishing to use
2766 2767
 *
 * This code is meant to abstract object synchronization with the GPU.
2768 2769 2770
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2771 2772 2773 2774 2775 2776 2777
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2778 2779 2780
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2781 2782
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2783
		     struct drm_i915_gem_request *to)
2784
{
C
Chris Wilson 已提交
2785 2786 2787
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2788

C
Chris Wilson 已提交
2789
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2790

2791
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2792 2793
	if (!active_mask)
		return 0;
2794

C
Chris Wilson 已提交
2795 2796
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2797
	} else {
C
Chris Wilson 已提交
2798 2799
		active_mask = 1;
		active = &obj->last_write;
2800
	}
C
Chris Wilson 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2811
		ret = __i915_gem_object_sync(to, request);
2812 2813 2814
		if (ret)
			return ret;
	}
2815

2816
	return 0;
2817 2818
}

2819 2820 2821 2822 2823 2824 2825
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2826 2827 2828
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2840 2841
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2842
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2843 2844 2845 2846 2847 2848 2849 2850

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2851
int i915_vma_unbind(struct i915_vma *vma)
2852
{
2853
	struct drm_i915_gem_object *obj = vma->obj;
2854
	unsigned long active;
2855
	int ret;
2856

2857 2858 2859 2860
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2861
	if (active) {
2862 2863
		int idx;

2864 2865 2866 2867 2868
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2869
		__i915_vma_pin(vma);
2870

2871 2872 2873 2874
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2875
				break;
2876 2877
		}

2878
		__i915_vma_unpin(vma);
2879 2880 2881
		if (ret)
			return ret;

2882 2883 2884
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2885
	if (i915_vma_is_pinned(vma))
2886 2887
		return -EBUSY;

2888 2889
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2890

2891 2892
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2893

2894 2895
	if (i915_vma_is_ggtt(vma) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2896
		i915_gem_object_finish_gtt(obj);
2897

2898 2899 2900 2901
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2902 2903

		__i915_vma_iounmap(vma);
2904
	}
2905

2906 2907 2908 2909
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2910
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2911

2912 2913 2914
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2915
	if (i915_vma_is_ggtt(vma)) {
2916 2917
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
2918 2919 2920
		} else if (vma->pages) {
			sg_free_table(vma->pages);
			kfree(vma->pages);
2921 2922
		}
	}
2923
	vma->pages = NULL;
2924

B
Ben Widawsky 已提交
2925
	/* Since the unbound list is global, only move to that list if
2926
	 * no more VMAs exist. */
2927 2928 2929
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2930

2931 2932 2933 2934 2935 2936
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2937
destroy:
2938
	if (unlikely(i915_vma_is_closed(vma)))
2939 2940
		i915_vma_destroy(vma);

2941
	return 0;
2942 2943
}

2944 2945
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2946
{
2947
	struct intel_engine_cs *engine;
2948
	int ret;
2949

2950
	for_each_engine(engine, dev_priv) {
2951 2952 2953
		if (engine->last_context == NULL)
			continue;

2954
		ret = intel_engine_idle(engine, interruptible);
2955 2956 2957
		if (ret)
			return ret;
	}
2958

2959
	return 0;
2960 2961
}

2962
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2963 2964
				     unsigned long cache_level)
{
2965
	struct drm_mm_node *gtt_space = &vma->node;
2966 2967
	struct drm_mm_node *other;

2968 2969 2970 2971 2972 2973
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2974
	 */
2975
	if (vma->vm->mm.color_adjust == NULL)
2976 2977
		return true;

2978
	if (!drm_mm_node_allocated(gtt_space))
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2995
/**
2996 2997
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
2998
 * @size: requested size in bytes (can be larger than the VMA)
2999
 * @alignment: required alignment
3000
 * @flags: mask of PIN_* flags to use
3001 3002 3003 3004 3005 3006 3007
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3008
 */
3009 3010
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3011
{
3012 3013
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3014 3015
	u64 start, end;
	u64 min_alignment;
3016
	int ret;
3017

3018
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3019
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3020 3021 3022

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3023 3024
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3025 3026

	min_alignment =
3027 3028
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
3029 3030 3031 3032 3033 3034
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
3035
		return -EINVAL;
3036
	}
3037

3038
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3039 3040

	end = vma->vm->total;
3041
	if (flags & PIN_MAPPABLE)
3042
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3043
	if (flags & PIN_ZONE_4G)
3044
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3045

3046 3047 3048
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3049
	 */
3050
	if (size > end) {
3051
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3052
			  size, obj->base.size,
3053
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3054
			  end);
3055
		return -E2BIG;
3056 3057
	}

3058
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3059
	if (ret)
3060
		return ret;
C
Chris Wilson 已提交
3061

3062 3063
	i915_gem_object_pin_pages(obj);

3064
	if (flags & PIN_OFFSET_FIXED) {
3065
		u64 offset = flags & PIN_OFFSET_MASK;
3066
		if (offset & (alignment - 1) || offset > end - size) {
3067
			ret = -EINVAL;
3068
			goto err_unpin;
3069
		}
3070

3071 3072 3073
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3074
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3075 3076 3077
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3078 3079 3080
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3081
		}
3082
	} else {
3083 3084
		u32 search_flag, alloc_flag;

3085 3086 3087 3088 3089 3090 3091
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3092

3093 3094 3095 3096 3097 3098 3099 3100 3101
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3102
search_free:
3103 3104
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3105 3106 3107 3108 3109 3110
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3111
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3112 3113 3114 3115 3116
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3117

3118
			goto err_unpin;
3119
		}
3120
	}
3121
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3122

3123
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3124
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3125
	obj->bind_count++;
3126

3127
	return 0;
B
Ben Widawsky 已提交
3128

3129
err_unpin:
B
Ben Widawsky 已提交
3130
	i915_gem_object_unpin_pages(obj);
3131
	return ret;
3132 3133
}

3134
bool
3135 3136
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3137 3138 3139 3140 3141
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3142
	if (obj->pages == NULL)
3143
		return false;
3144

3145 3146 3147 3148
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3149
	if (obj->stolen || obj->phys_handle)
3150
		return false;
3151

3152 3153 3154 3155 3156 3157 3158 3159
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3160 3161
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3162
		return false;
3163
	}
3164

C
Chris Wilson 已提交
3165
	trace_i915_gem_object_clflush(obj);
3166
	drm_clflush_sg(obj->pages);
3167
	obj->cache_dirty = false;
3168 3169

	return true;
3170 3171 3172 3173
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3174
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3175
{
C
Chris Wilson 已提交
3176 3177
	uint32_t old_write_domain;

3178
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3179 3180
		return;

3181
	/* No actual flushing is required for the GTT write domain.  Writes
3182 3183
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3184 3185 3186 3187
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3188
	 */
3189 3190
	wmb();

3191 3192
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3193

3194
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3195

C
Chris Wilson 已提交
3196
	trace_i915_gem_object_change_domain(obj,
3197
					    obj->base.read_domains,
C
Chris Wilson 已提交
3198
					    old_write_domain);
3199 3200 3201 3202
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3203
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3204
{
C
Chris Wilson 已提交
3205
	uint32_t old_write_domain;
3206

3207
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3208 3209
		return;

3210
	if (i915_gem_clflush_object(obj, obj->pin_display))
3211
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3212

3213 3214
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3215

3216
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3217

C
Chris Wilson 已提交
3218
	trace_i915_gem_object_change_domain(obj,
3219
					    obj->base.read_domains,
C
Chris Wilson 已提交
3220
					    old_write_domain);
3221 3222
}

3223 3224
/**
 * Moves a single object to the GTT read, and possibly write domain.
3225 3226
 * @obj: object to act on
 * @write: ask for write access or read only
3227 3228 3229 3230
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3231
int
3232
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3233
{
C
Chris Wilson 已提交
3234
	uint32_t old_write_domain, old_read_domains;
3235
	struct i915_vma *vma;
3236
	int ret;
3237

3238
	ret = i915_gem_object_wait_rendering(obj, !write);
3239 3240 3241
	if (ret)
		return ret;

3242 3243 3244
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3257
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3258

3259 3260 3261 3262 3263 3264 3265
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3266 3267
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3268

3269 3270 3271
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3272 3273
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3274
	if (write) {
3275 3276 3277
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3278 3279
	}

C
Chris Wilson 已提交
3280 3281 3282 3283
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3284
	/* And bump the LRU for this access */
C
Chris Wilson 已提交
3285
	vma = i915_gem_object_to_ggtt(obj, NULL);
3286 3287 3288 3289
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3290

3291 3292 3293
	return 0;
}

3294 3295
/**
 * Changes the cache-level of an object across all VMA.
3296 3297
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3309 3310 3311
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3312
	struct i915_vma *vma;
3313
	int ret = 0;
3314 3315

	if (obj->cache_level == cache_level)
3316
		goto out;
3317

3318 3319 3320 3321 3322
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3323 3324
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3325 3326 3327
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3328
		if (i915_vma_is_pinned(vma)) {
3329 3330 3331 3332
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3345 3346
	}

3347 3348 3349 3350 3351 3352 3353
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3354
	if (obj->bind_count) {
3355 3356 3357 3358
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3359
		ret = i915_gem_object_wait_rendering(obj, false);
3360 3361 3362
		if (ret)
			return ret;

3363
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3380 3381 3382
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3383 3384 3385 3386 3387 3388 3389 3390
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3391 3392
		}

3393
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3394 3395 3396 3397 3398 3399 3400
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3401 3402
	}

3403
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3404 3405 3406
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3407
out:
3408 3409 3410 3411
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3412
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3413
		if (i915_gem_clflush_object(obj, true))
3414
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3415 3416 3417 3418 3419
	}

	return 0;
}

B
Ben Widawsky 已提交
3420 3421
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3422
{
B
Ben Widawsky 已提交
3423
	struct drm_i915_gem_caching *args = data;
3424 3425
	struct drm_i915_gem_object *obj;

3426 3427
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3428
		return -ENOENT;
3429

3430 3431 3432 3433 3434 3435
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3436 3437 3438 3439
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3440 3441 3442 3443
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3444

3445
	i915_gem_object_put_unlocked(obj);
3446
	return 0;
3447 3448
}

B
Ben Widawsky 已提交
3449 3450
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3451
{
3452
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3453
	struct drm_i915_gem_caching *args = data;
3454 3455 3456 3457
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3458 3459
	switch (args->caching) {
	case I915_CACHING_NONE:
3460 3461
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3462
	case I915_CACHING_CACHED:
3463 3464 3465 3466 3467 3468
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3469
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3470 3471
			return -ENODEV;

3472 3473
		level = I915_CACHE_LLC;
		break;
3474 3475 3476
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3477 3478 3479 3480
	default:
		return -EINVAL;
	}

3481 3482
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3483 3484
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3485
		goto rpm_put;
B
Ben Widawsky 已提交
3486

3487 3488
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3489 3490 3491 3492 3493 3494
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3495
	i915_gem_object_put(obj);
3496 3497
unlock:
	mutex_unlock(&dev->struct_mutex);
3498 3499 3500
rpm_put:
	intel_runtime_pm_put(dev_priv);

3501 3502 3503
	return ret;
}

3504
/*
3505 3506 3507
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3508
 */
C
Chris Wilson 已提交
3509
struct i915_vma *
3510 3511
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3512
				     const struct i915_ggtt_view *view)
3513
{
C
Chris Wilson 已提交
3514
	struct i915_vma *vma;
3515
	u32 old_read_domains, old_write_domain;
3516 3517
	int ret;

3518 3519 3520
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3521
	obj->pin_display++;
3522

3523 3524 3525 3526 3527 3528 3529 3530 3531
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3532 3533
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3534 3535
	if (ret) {
		vma = ERR_PTR(ret);
3536
		goto err_unpin_display;
C
Chris Wilson 已提交
3537
	}
3538

3539 3540 3541 3542
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
C
Chris Wilson 已提交
3543
	vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3544 3545
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
C
Chris Wilson 已提交
3546
	if (IS_ERR(vma))
3547
		goto err_unpin_display;
3548

C
Chris Wilson 已提交
3549 3550
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3551
	i915_gem_object_flush_cpu_write_domain(obj);
3552

3553
	old_write_domain = obj->base.write_domain;
3554
	old_read_domains = obj->base.read_domains;
3555 3556 3557 3558

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3559
	obj->base.write_domain = 0;
3560
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3561 3562 3563

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3564
					    old_write_domain);
3565

C
Chris Wilson 已提交
3566
	return vma;
3567 3568

err_unpin_display:
3569
	obj->pin_display--;
C
Chris Wilson 已提交
3570
	return vma;
3571 3572 3573
}

void
C
Chris Wilson 已提交
3574
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3575
{
C
Chris Wilson 已提交
3576
	if (WARN_ON(vma->obj->pin_display == 0))
3577 3578
		return;

C
Chris Wilson 已提交
3579
	vma->obj->pin_display--;
3580

C
Chris Wilson 已提交
3581 3582
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3583 3584
}

3585 3586
/**
 * Moves a single object to the CPU read, and possibly write domain.
3587 3588
 * @obj: object to act on
 * @write: requesting write or read-only access
3589 3590 3591 3592
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3593
int
3594
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3595
{
C
Chris Wilson 已提交
3596
	uint32_t old_write_domain, old_read_domains;
3597 3598
	int ret;

3599
	ret = i915_gem_object_wait_rendering(obj, !write);
3600 3601 3602
	if (ret)
		return ret;

3603 3604 3605
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3606
	i915_gem_object_flush_gtt_write_domain(obj);
3607

3608 3609
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3610

3611
	/* Flush the CPU cache if it's still invalid. */
3612
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3613
		i915_gem_clflush_object(obj, false);
3614

3615
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3616 3617 3618 3619 3620
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3621
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3622 3623 3624 3625 3626

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3627 3628
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3629
	}
3630

C
Chris Wilson 已提交
3631 3632 3633 3634
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3635 3636 3637
	return 0;
}

3638 3639 3640
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3641 3642 3643 3644
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3645 3646 3647
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3648
static int
3649
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3650
{
3651
	struct drm_i915_private *dev_priv = to_i915(dev);
3652
	struct drm_i915_file_private *file_priv = file->driver_priv;
3653
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3654
	struct drm_i915_gem_request *request, *target = NULL;
3655
	int ret;
3656

3657 3658 3659 3660
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3661 3662 3663
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3664

3665
	spin_lock(&file_priv->mm.lock);
3666
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3667 3668
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3669

3670 3671 3672 3673 3674 3675 3676
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3677
		target = request;
3678
	}
3679
	if (target)
3680
		i915_gem_request_get(target);
3681
	spin_unlock(&file_priv->mm.lock);
3682

3683
	if (target == NULL)
3684
		return 0;
3685

3686
	ret = i915_wait_request(target, true, NULL, NULL);
3687
	i915_gem_request_put(target);
3688

3689 3690 3691
	return ret;
}

3692
static bool
3693
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3694 3695 3696
{
	struct drm_i915_gem_object *obj = vma->obj;

3697 3698 3699
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3700 3701 3702 3703
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3704 3705 3706 3707 3708 3709 3710 3711 3712
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3713 3714 3715 3716
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3717 3718 3719
	return false;
}

3720 3721 3722
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3723
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3724 3725 3726
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3727
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3728
					    obj->base.size,
3729
					    i915_gem_object_get_tiling(obj));
3730
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3731
						      obj->base.size,
3732
						      i915_gem_object_get_tiling(obj),
3733
						      true);
3734 3735 3736 3737 3738

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3739
		    dev_priv->ggtt.mappable_end);
3740 3741 3742 3743

	obj->map_and_fenceable = mappable && fenceable;
}

3744 3745
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3746
{
3747
	unsigned int bound = vma->flags;
3748 3749
	int ret;

3750
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3751
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3752

3753 3754 3755 3756
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3757

3758
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3759 3760 3761
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3762
	}
3763

3764
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3765
	if (ret)
3766
		goto err;
3767

3768
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3769
		__i915_vma_set_map_and_fenceable(vma);
3770

3771
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3772 3773
	return 0;

3774 3775 3776
err:
	__i915_vma_unpin(vma);
	return ret;
3777 3778
}

C
Chris Wilson 已提交
3779
struct i915_vma *
3780 3781
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3782
			 u64 size,
3783 3784
			 u64 alignment,
			 u64 flags)
3785
{
C
Chris Wilson 已提交
3786
	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3787 3788
	struct i915_vma *vma;
	int ret;
3789

C
Chris Wilson 已提交
3790
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3791
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3792
		return vma;
3793 3794 3795 3796

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3797
			return ERR_PTR(-ENOSPC);
3798 3799 3800

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3801
		     " offset=%08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3802
		     " obj->map_and_fenceable=%d\n",
3803
		     i915_ggtt_offset(vma),
3804 3805 3806 3807 3808
		     alignment,
		     !!(flags & PIN_MAPPABLE),
		     obj->map_and_fenceable);
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3809
			return ERR_PTR(ret);
3810 3811
	}

C
Chris Wilson 已提交
3812 3813 3814
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3815

C
Chris Wilson 已提交
3816
	return vma;
3817 3818
}

3819
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3834 3835 3836 3837 3838 3839 3840 3841 3842
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3843 3844
}

3845
static __always_inline unsigned int
3846 3847 3848
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3849
	struct drm_i915_gem_request *request;
3850

3851 3852 3853
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3854

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3911 3912
}

3913
static __always_inline unsigned int
3914 3915 3916 3917 3918
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3919
static __always_inline unsigned int
3920 3921 3922 3923 3924
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3925 3926
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3927
		    struct drm_file *file)
3928 3929
{
	struct drm_i915_gem_busy *args = data;
3930
	struct drm_i915_gem_object *obj;
3931
	unsigned long active;
3932

3933
	obj = i915_gem_object_lookup(file, args->handle);
3934 3935
	if (!obj)
		return -ENOENT;
3936

3937
	args->busy = 0;
3938 3939 3940
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3941

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
3958 3959 3960 3961 3962 3963
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
3964 3965 3966 3967 3968 3969 3970
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3971 3972 3973 3974 3975
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
3976 3977 3978 3979 3980 3981 3982 3983 3984
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
3985
	}
3986

3987 3988
	i915_gem_object_put_unlocked(obj);
	return 0;
3989 3990 3991 3992 3993 3994
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3995
	return i915_gem_ring_throttle(dev, file_priv);
3996 3997
}

3998 3999 4000 4001
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4002
	struct drm_i915_private *dev_priv = to_i915(dev);
4003
	struct drm_i915_gem_madvise *args = data;
4004
	struct drm_i915_gem_object *obj;
4005
	int ret;
4006 4007 4008 4009 4010 4011 4012 4013 4014

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4015 4016 4017 4018
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4019 4020
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4021 4022
		ret = -ENOENT;
		goto unlock;
4023 4024
	}

4025
	if (obj->pages &&
4026
	    i915_gem_object_is_tiled(obj) &&
4027 4028 4029 4030 4031 4032 4033
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4034 4035
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4036

C
Chris Wilson 已提交
4037
	/* if the object is no longer attached, discard its backing storage */
4038
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4039 4040
		i915_gem_object_truncate(obj);

4041
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4042

4043
	i915_gem_object_put(obj);
4044
unlock:
4045
	mutex_unlock(&dev->struct_mutex);
4046
	return ret;
4047 4048
}

4049 4050
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4051
{
4052 4053
	int i;

4054
	INIT_LIST_HEAD(&obj->global_list);
4055
	for (i = 0; i < I915_NUM_ENGINES; i++)
4056 4057 4058 4059 4060
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
4061
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4062
	INIT_LIST_HEAD(&obj->vma_list);
4063
	INIT_LIST_HEAD(&obj->batch_pool_link);
4064

4065 4066
	obj->ops = ops;

4067 4068 4069
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4070
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4071 4072
}

4073
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4074
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4075 4076 4077 4078
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4079
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4080
						  size_t size)
4081
{
4082
	struct drm_i915_gem_object *obj;
4083
	struct address_space *mapping;
D
Daniel Vetter 已提交
4084
	gfp_t mask;
4085
	int ret;
4086

4087
	obj = i915_gem_object_alloc(dev);
4088
	if (obj == NULL)
4089
		return ERR_PTR(-ENOMEM);
4090

4091 4092 4093
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4094

4095 4096 4097 4098 4099 4100 4101
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4102
	mapping = obj->base.filp->f_mapping;
4103
	mapping_set_gfp_mask(mapping, mask);
4104

4105
	i915_gem_object_init(obj, &i915_gem_object_ops);
4106

4107 4108
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4109

4110 4111
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4127 4128
	trace_i915_gem_object_create(obj);

4129
	return obj;
4130 4131 4132 4133 4134

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4135 4136
}

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4161
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4162
{
4163
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4164
	struct drm_device *dev = obj->base.dev;
4165
	struct drm_i915_private *dev_priv = to_i915(dev);
4166
	struct i915_vma *vma, *next;
4167

4168 4169
	intel_runtime_pm_get(dev_priv);

4170 4171
	trace_i915_gem_object_destroy(obj);

4172 4173 4174 4175 4176 4177 4178
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4179
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4180
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4181
		GEM_BUG_ON(i915_vma_is_active(vma));
4182
		vma->flags &= ~I915_VMA_PIN_MASK;
4183
		i915_vma_close(vma);
4184
	}
4185
	GEM_BUG_ON(obj->bind_count);
4186

B
Ben Widawsky 已提交
4187 4188 4189 4190 4191
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4192
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4193

4194 4195
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4196
	    i915_gem_object_is_tiled(obj))
4197 4198
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4199 4200
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4201
	if (discard_backing_storage(obj))
4202
		obj->madv = I915_MADV_DONTNEED;
4203
	i915_gem_object_put_pages(obj);
4204

4205 4206
	BUG_ON(obj->pages);

4207 4208
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4209

4210 4211 4212
	if (obj->ops->release)
		obj->ops->release(obj);

4213 4214
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4215

4216
	kfree(obj->bit_17);
4217
	i915_gem_object_free(obj);
4218 4219

	intel_runtime_pm_put(dev_priv);
4220 4221
}

4222
int i915_gem_suspend(struct drm_device *dev)
4223
{
4224
	struct drm_i915_private *dev_priv = to_i915(dev);
4225
	int ret;
4226

4227 4228
	intel_suspend_gt_powersave(dev_priv);

4229
	mutex_lock(&dev->struct_mutex);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4243
	ret = i915_gem_wait_for_idle(dev_priv, true);
4244
	if (ret)
4245
		goto err;
4246

4247
	i915_gem_retire_requests(dev_priv);
4248

4249
	i915_gem_context_lost(dev_priv);
4250 4251
	mutex_unlock(&dev->struct_mutex);

4252
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4253 4254
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4255

4256 4257 4258
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4259
	WARN_ON(dev_priv->gt.awake);
4260

4261
	return 0;
4262 4263 4264 4265

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4266 4267
}

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4285 4286
void i915_gem_init_swizzling(struct drm_device *dev)
{
4287
	struct drm_i915_private *dev_priv = to_i915(dev);
4288

4289
	if (INTEL_INFO(dev)->gen < 5 ||
4290 4291 4292 4293 4294 4295
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4296 4297 4298
	if (IS_GEN5(dev))
		return;

4299 4300
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4301
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4302
	else if (IS_GEN7(dev))
4303
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4304 4305
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4306 4307
	else
		BUG();
4308
}
D
Daniel Vetter 已提交
4309

4310 4311
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4312
	struct drm_i915_private *dev_priv = to_i915(dev);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4337 4338 4339
int
i915_gem_init_hw(struct drm_device *dev)
{
4340
	struct drm_i915_private *dev_priv = to_i915(dev);
4341
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4342
	int ret;
4343

4344 4345 4346
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4347
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4348
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4349

4350 4351 4352
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4353

4354
	if (HAS_PCH_NOP(dev)) {
4355 4356 4357 4358 4359 4360 4361 4362 4363
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4364 4365
	}

4366 4367
	i915_gem_init_swizzling(dev);

4368 4369 4370 4371 4372 4373 4374 4375
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4376
	BUG_ON(!dev_priv->kernel_context);
4377

4378 4379 4380 4381 4382 4383 4384
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4385
	for_each_engine(engine, dev_priv) {
4386
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4387
		if (ret)
4388
			goto out;
D
Daniel Vetter 已提交
4389
	}
4390

4391 4392
	intel_mocs_init_l3cc_table(dev);

4393
	/* We can't enable contexts until all firmware is loaded */
4394 4395 4396
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4397

4398 4399
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4400
	return ret;
4401 4402
}

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4424 4425
int i915_gem_init(struct drm_device *dev)
{
4426
	struct drm_i915_private *dev_priv = to_i915(dev);
4427 4428 4429
	int ret;

	mutex_lock(&dev->struct_mutex);
4430

4431
	if (!i915.enable_execlists) {
4432
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4433
	} else {
4434
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4435 4436
	}

4437 4438 4439 4440 4441 4442 4443 4444
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4445
	i915_gem_init_userptr(dev_priv);
4446 4447 4448 4449

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4450

4451
	ret = i915_gem_context_init(dev);
4452 4453
	if (ret)
		goto out_unlock;
4454

4455
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4456
	if (ret)
4457
		goto out_unlock;
4458

4459
	ret = i915_gem_init_hw(dev);
4460
	if (ret == -EIO) {
4461
		/* Allow engine initialisation to fail by marking the GPU as
4462 4463 4464 4465
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4466
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4467
		ret = 0;
4468
	}
4469 4470

out_unlock:
4471
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4472
	mutex_unlock(&dev->struct_mutex);
4473

4474
	return ret;
4475 4476
}

4477
void
4478
i915_gem_cleanup_engines(struct drm_device *dev)
4479
{
4480
	struct drm_i915_private *dev_priv = to_i915(dev);
4481
	struct intel_engine_cs *engine;
4482

4483
	for_each_engine(engine, dev_priv)
4484
		dev_priv->gt.cleanup_engine(engine);
4485 4486
}

4487
static void
4488
init_engine_lists(struct intel_engine_cs *engine)
4489
{
4490
	INIT_LIST_HEAD(&engine->request_list);
4491 4492
}

4493 4494 4495
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4496
	struct drm_device *dev = &dev_priv->drm;
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4507
	if (intel_vgpu_active(dev_priv))
4508 4509 4510 4511 4512 4513 4514 4515 4516
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4517
void
4518
i915_gem_load_init(struct drm_device *dev)
4519
{
4520
	struct drm_i915_private *dev_priv = to_i915(dev);
4521 4522
	int i;

4523
	dev_priv->objects =
4524 4525 4526 4527
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4528 4529 4530 4531 4532
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4533 4534 4535
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4536 4537 4538
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4539
				  NULL);
4540

4541
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4542 4543
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4544
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4545 4546
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4547
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4548
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4549
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4550
			  i915_gem_retire_work_handler);
4551
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4552
			  i915_gem_idle_work_handler);
4553
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4554
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4555

4556 4557
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4558
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4559

4560
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4561

4562 4563
	dev_priv->mm.interruptible = true;

4564
	spin_lock_init(&dev_priv->fb_tracking.lock);
4565
}
4566

4567 4568 4569 4570 4571 4572 4573
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4574 4575 4576

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4577 4578
}

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4607
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4608
{
4609
	struct drm_i915_file_private *file_priv = file->driver_priv;
4610
	struct drm_i915_gem_request *request;
4611 4612 4613 4614 4615

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4616
	spin_lock(&file_priv->mm.lock);
4617
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4618
		request->file_priv = NULL;
4619
	spin_unlock(&file_priv->mm.lock);
4620

4621
	if (!list_empty(&file_priv->rps.link)) {
4622
		spin_lock(&to_i915(dev)->rps.client_lock);
4623
		list_del(&file_priv->rps.link);
4624
		spin_unlock(&to_i915(dev)->rps.client_lock);
4625
	}
4626 4627 4628 4629 4630
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4631
	int ret;
4632 4633 4634 4635 4636 4637 4638 4639

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4640
	file_priv->dev_priv = to_i915(dev);
4641
	file_priv->file = file;
4642
	INIT_LIST_HEAD(&file_priv->rps.link);
4643 4644 4645 4646

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4647
	file_priv->bsd_engine = -1;
4648

4649 4650 4651
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4652

4653
	return ret;
4654 4655
}

4656 4657
/**
 * i915_gem_track_fb - update frontbuffer tracking
4658 4659 4660
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4661 4662 4663 4664
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4665 4666 4667 4668
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4669 4670 4671 4672 4673 4674 4675 4676 4677
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4678
	if (old) {
4679 4680
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4681 4682 4683
	}

	if (new) {
4684 4685
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4686 4687 4688
	}
}

4689 4690 4691 4692 4693 4694 4695
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4696
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4697 4698 4699 4700 4701 4702 4703
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4714
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4715
	if (IS_ERR(obj))
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4729
	obj->dirty = 1;		/* Backing store is now out of date */
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4741
	i915_gem_object_put(obj);
4742 4743
	return ERR_PTR(ret);
}