intel_pm.c 287.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36 37
#include "i915_drv.h"
#include "intel_drv.h"
38
#include "../../../platform/x86/intel_ips.h"
39

B
Ben Widawsky 已提交
40
/**
41 42
 * DOC: RC6
 *
B
Ben Widawsky 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

60
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
61
{
62 63 64
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
65
		 * Display WA #0390: skl,kbl
66 67 68 69 70 71 72 73 74
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

75
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
76 77 78
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

79
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
80 81
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
82

83 84
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
85 86 87
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
88

89
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
90 91
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
92 93 94 95 96 97

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
98 99
}

100
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
101
{
102
	gen9_init_clock_gating(dev_priv);
103

104 105 106 107
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

108 109
	/*
	 * FIXME:
110
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
111 112
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
113
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
114 115 116 117 118

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
119 120
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
121 122
}

123 124 125 126 127 128 129 130 131 132 133
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
134 135 136 137 138 139 140 141 142 143

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

144 145
}

146
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

184
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

211
	dev_priv->ips.r_t = dev_priv->mem_freq;
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
243
		dev_priv->ips.c_m = 0;
244
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
245
		dev_priv->ips.c_m = 1;
246
	} else {
247
		dev_priv->ips.c_m = 2;
248 249 250
	}
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

289 290
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

313 314 315 316
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

317
	mutex_lock(&dev_priv->pcu_lock);
318 319 320 321 322 323 324 325 326 327 328 329 330 331

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

332
	mutex_unlock(&dev_priv->pcu_lock);
333 334
}

335 336 337 338
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

339
	mutex_lock(&dev_priv->pcu_lock);
340

341
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
342 343 344 345
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
346
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
347

348
	mutex_unlock(&dev_priv->pcu_lock);
349 350
}

351 352 353
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

354
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
355
{
356
	bool was_enabled;
357
	u32 val;
358

359
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
361
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
362
		POSTING_READ(FW_BLC_SELF_VLV);
363
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
364
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
365
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
366
		POSTING_READ(FW_BLC_SELF);
367
	} else if (IS_PINEVIEW(dev_priv)) {
368 369 370 371 372 373
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
374
		I915_WRITE(DSPFW3, val);
375
		POSTING_READ(DSPFW3);
376
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
377
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
378 379 380
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
381
		POSTING_READ(FW_BLC_SELF);
382
	} else if (IS_I915GM(dev_priv)) {
383 384 385 386 387
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
388
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
389 390 391
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
392
		POSTING_READ(INSTPM);
393
	} else {
394
		return false;
395
	}
396

397 398
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

399 400 401 402 403
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
404 405
}

V
Ville Syrjälä 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
443
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
444
{
445 446
	bool ret;

447
	mutex_lock(&dev_priv->wm.wm_mutex);
448
	ret = _intel_set_memory_cxsr(dev_priv, enable);
449 450 451 452
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
453
	mutex_unlock(&dev_priv->wm.wm_mutex);
454 455

	return ret;
456
}
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
472
static const int pessimal_latency_ns = 5000;
473

474 475 476
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

477
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
478
{
479
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
480
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
481
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
482 483
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
484

485
	switch (pipe) {
486
		u32 dsparb, dsparb2, dsparb3;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
506 507
		MISSING_CASE(pipe);
		return;
508 509
	}

510 511 512 513
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
514 515
}

516 517
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
518
{
519
	u32 dsparb = I915_READ(DSPARB);
520 521 522
	int size;

	size = dsparb & 0x7f;
523
	if (i9xx_plane == PLANE_B)
524 525
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

526 527
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
528 529 530 531

	return size;
}

532 533
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
534
{
535
	u32 dsparb = I915_READ(DSPARB);
536 537 538
	int size;

	size = dsparb & 0x1ff;
539
	if (i9xx_plane == PLANE_B)
540 541 542
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

543 544
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
545 546 547 548

	return size;
}

549 550
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
551
{
552
	u32 dsparb = I915_READ(DSPARB);
553 554 555 556 557
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

558 559
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
560 561 562 563 564 565

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
566 567 568 569 570
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
571 572
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
573 574 575 576 577
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
578 579
};
static const struct intel_watermark_params pineview_cursor_wm = {
580 581 582 583 584
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
585 586
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
587 588 589 590 591
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
592 593
};
static const struct intel_watermark_params i965_cursor_wm_info = {
594 595 596 597 598
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
599 600
};
static const struct intel_watermark_params i945_wm_info = {
601 602 603 604 605
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
606 607
};
static const struct intel_watermark_params i915_wm_info = {
608 609 610 611 612
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
613
};
614
static const struct intel_watermark_params i830_a_wm_info = {
615 616 617 618 619
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
620
};
621 622 623 624 625 626 627
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
628
static const struct intel_watermark_params i845_wm_info = {
629 630 631 632 633
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
634 635
};

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
673
	u64 ret;
674

675
	ret = (u64)pixel_rate * cpp * latency;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

732 733
/**
 * intel_calculate_wm - calculate watermark level
734
 * @pixel_rate: pixel clock
735
 * @wm: chip FIFO params
736
 * @fifo_size: size of the FIFO buffer
737
 * @cpp: bytes per pixel
738 739 740 741 742 743 744 745 746 747 748 749 750
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
751 752 753 754
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
755
{
756
	int entries, wm_size;
757 758 759 760 761 762 763

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
764 765 766 767 768
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
769

770 771
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
772 773

	/* Don't promote wm_size to unsigned... */
774
	if (wm_size > wm->max_wm)
775 776 777
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
778 779 780 781 782 783 784 785 786 787 788

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

789 790 791
	return wm_size;
}

792 793 794 795 796 797 798 799 800 801
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

802 803 804 805 806
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

830
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
831
{
832
	struct intel_crtc *crtc, *enabled = NULL;
833

834
	for_each_intel_crtc(&dev_priv->drm, crtc) {
835
		if (intel_crtc_active(crtc)) {
836 837 838 839 840 841 842 843 844
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

845
static void pineview_update_wm(struct intel_crtc *unused_crtc)
846
{
847
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
848
	struct intel_crtc *crtc;
849 850
	const struct cxsr_latency *latency;
	u32 reg;
851
	unsigned int wm;
852

853 854 855 856
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
857 858
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
859
		intel_set_memory_cxsr(dev_priv, false);
860 861 862
		return;
	}

863
	crtc = single_enabled_crtc(dev_priv);
864
	if (crtc) {
865 866 867 868
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
869
		int cpp = fb->format->cpp[0];
870
		int clock = adjusted_mode->crtc_clock;
871 872 873 874

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
875
					cpp, latency->display_sr);
876 877
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
878
		reg |= FW_WM(wm, SR);
879 880 881 882 883 884
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
885
					4, latency->cursor_sr);
886 887
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
888
		reg |= FW_WM(wm, CURSOR_SR);
889 890 891 892 893
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
894
					cpp, latency->display_hpll_disable);
895 896
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
897
		reg |= FW_WM(wm, HPLL_SR);
898 899 900 901 902
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
903
					4, latency->cursor_hpll_disable);
904 905
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
906
		reg |= FW_WM(wm, HPLL_CURSOR);
907 908 909
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

910
		intel_set_memory_cxsr(dev_priv, true);
911
	} else {
912
		intel_set_memory_cxsr(dev_priv, false);
913 914 915
	}
}

916 917 918 919 920 921 922 923 924 925
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
926
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
927 928 929 930 931 932
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

933 934
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
935
{
936 937 938 939 940
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
958

959
	POSTING_READ(DSPFW1);
960 961
}

962 963 964
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

965
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
966 967
				const struct vlv_wm_values *wm)
{
968 969 970
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
971 972
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

973 974 975 976 977 978
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
979

980 981 982 983 984 985 986 987 988 989 990
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

991
	I915_WRITE(DSPFW1,
992
		   FW_WM(wm->sr.plane, SR) |
993 994 995
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
996
	I915_WRITE(DSPFW2,
997 998 999
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1000
	I915_WRITE(DSPFW3,
1001
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1002 1003 1004

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1007
		I915_WRITE(DSPFW8_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1010
		I915_WRITE(DSPFW9_CHV,
1011 1012
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1013
		I915_WRITE(DSPHOWM,
1014
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1015 1016 1017 1018 1019 1020 1021 1022 1023
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024 1025
	} else {
		I915_WRITE(DSPFW7,
1026 1027
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1028
		I915_WRITE(DSPHOWM,
1029
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1030 1031 1032 1033 1034 1035
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1036 1037 1038
	}

	POSTING_READ(DSPFW1);
1039 1040
}

1041 1042
#undef FW_WM_VLV

1043 1044 1045 1046 1047
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1048
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1049

1050
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1095 1096 1097
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1098 1099 1100 1101 1102
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1103 1104
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1143
		unsigned int small, large;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1156
	return min_t(unsigned int, wm, USHRT_MAX);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1194 1195 1196
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1325 1326
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1327 1328 1329 1330 1331
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1332 1333 1334 1335
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1336 1337 1338
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1339
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1405
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1406
{
1407
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1408 1409 1410 1411 1412 1413 1414
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1415 1416
	enum plane_id plane_id;

1417 1418 1419 1420 1421 1422 1423 1424
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1425
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1426
		!new_crtc_state->disable_cxsr;
1427
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1428
		!new_crtc_state->disable_cxsr;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1470
out:
1471 1472 1473 1474 1475
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1476
		new_crtc_state->wm.need_postvbl_update = true;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1573 1574
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1575 1576
				   unsigned int htotal,
				   unsigned int width,
1577
				   unsigned int cpp,
1578 1579 1580 1581
				   unsigned int latency)
{
	unsigned int ret;

1582 1583
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1584 1585 1586 1587 1588
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1589
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1590 1591 1592 1593
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1594 1595
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1596 1597 1598
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1599 1600

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1601 1602 1603
	}
}

1604 1605 1606
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1607
{
1608
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1609
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1610 1611
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1612
	unsigned int clock, htotal, cpp, width, wm;
1613 1614 1615 1616

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1617
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1618 1619
		return 0;

1620
	cpp = plane_state->base.fb->format->cpp[0];
1621 1622 1623
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1624

1625
	if (plane->id == PLANE_CURSOR) {
1626 1627 1628 1629 1630 1631 1632 1633
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1634
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1635 1636 1637
				    dev_priv->wm.pri_latency[level] * 10);
	}

1638
	return min_t(unsigned int, wm, USHRT_MAX);
1639 1640
}

1641 1642 1643 1644 1645 1646
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1647
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1648
{
1649
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1650
	const struct g4x_pipe_wm *raw =
1651
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1652
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1653 1654 1655
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1656
	int fifo_extra, fifo_left = fifo_size;
1657
	int sprite0_fifo_extra = 0;
1658 1659
	unsigned int total_rate;
	enum plane_id plane_id;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1672 1673
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1674 1675
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1676

1677 1678
	if (total_rate > fifo_size)
		return -EINVAL;
1679

1680 1681
	if (total_rate == 0)
		total_rate = 1;
1682

1683
	for_each_plane_id_on_crtc(crtc, plane_id) {
1684 1685
		unsigned int rate;

1686 1687
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1688 1689 1690
			continue;
		}

1691 1692 1693
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1694 1695
	}

1696 1697 1698
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1699 1700 1701
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1702 1703

	/* spread the remainder evenly */
1704
	for_each_plane_id_on_crtc(crtc, plane_id) {
1705 1706 1707 1708 1709
		int plane_extra;

		if (fifo_left == 0)
			break;

1710
		if ((active_planes & BIT(plane_id)) == 0)
1711 1712 1713
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1714
		fifo_state->plane[plane_id] += plane_extra;
1715 1716 1717
		fifo_left -= plane_extra;
	}

1718 1719 1720 1721 1722 1723 1724 1725 1726
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1727 1728
}

1729 1730 1731 1732 1733 1734
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1735
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1746 1747 1748 1749 1750 1751 1752 1753
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1754 1755 1756 1757
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1758
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1759
				 int level, enum plane_id plane_id, u16 value)
1760
{
1761
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1762
	int num_levels = intel_wm_num_levels(dev_priv);
1763
	bool dirty = false;
1764

1765
	for (; level < num_levels; level++) {
1766
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1767

1768
		dirty |= raw->plane[plane_id] != value;
1769
		raw->plane[plane_id] = value;
1770
	}
1771 1772

	return dirty;
1773 1774
}

1775 1776
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1777
{
1778 1779
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1780
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1781
	int level;
1782
	bool dirty = false;
1783

1784
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1785 1786
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1787
	}
1788

1789
	for (level = 0; level < num_levels; level++) {
1790
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1791 1792
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1793

1794 1795
		if (wm > max_wm)
			break;
1796

1797
		dirty |= raw->plane[plane_id] != wm;
1798 1799
		raw->plane[plane_id] = wm;
	}
1800

1801
	/* mark all higher levels as invalid */
1802
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1803

1804 1805
out:
	if (dirty)
1806
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1807 1808 1809 1810 1811 1812
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1813
}
1814

1815 1816
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1817
{
1818
	const struct g4x_pipe_wm *raw =
1819 1820 1821
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1822

1823 1824
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1825

1826
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1827
{
1828 1829 1830 1831
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1845
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1846 1847
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1848 1849 1850
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1851
	unsigned int dirty = 0;
1852

1853 1854 1855 1856
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1857 1858
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1859

1860
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1879
			intel_atomic_get_old_crtc_state(state, crtc);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1891
	}
1892

1893
	/* initially allow all levels */
1894
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1895 1896 1897 1898 1899
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1900
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1901

1902
	for (level = 0; level < wm_state->num_levels; level++) {
1903
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1904
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1905

1906
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1907
			break;
1908

1909 1910 1911 1912 1913 1914 1915 1916
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1917
						 raw->plane[PLANE_SPRITE0],
1918 1919
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1920

1921 1922 1923
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1924 1925
	}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1936 1937
}

1938 1939 1940
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1941 1942
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1943
{
1944
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1945
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1946 1947
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1948
	int sprite0_start, sprite1_start, fifo_size;
1949

1950 1951 1952
	if (!crtc_state->fifo_changed)
		return;

1953 1954 1955
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1956

1957 1958
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1959

1960 1961
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1972

1973
	switch (crtc->pipe) {
1974
		u32 dsparb, dsparb2, dsparb3;
1975
	case PIPE_A:
1976 1977
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1989 1990
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1991 1992
		break;
	case PIPE_B:
1993 1994
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2006 2007
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2008 2009
		break;
	case PIPE_C:
2010 2011
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2023 2024
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2025 2026 2027 2028
		break;
	default:
		break;
	}
2029

2030
	POSTING_READ_FW(DSPARB);
2031

2032
	spin_unlock(&dev_priv->uncore.lock);
2033 2034 2035 2036
}

#undef VLV_FIFO

2037
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2038
{
2039
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2040 2041 2042 2043 2044 2045 2046
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2047 2048
	int level;

2049 2050 2051 2052 2053 2054 2055
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2056
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2057
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2058
		!new_crtc_state->disable_cxsr;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2077
out:
2078 2079 2080 2081
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2082
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2083
		new_crtc_state->wm.need_postvbl_update = true;
2084 2085 2086 2087

	return 0;
}

2088
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2089 2090 2091 2092 2093
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2094
	wm->level = dev_priv->wm.max_level;
2095 2096
	wm->cxsr = true;

2097
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2098
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2113 2114 2115
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2116
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2117
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2118 2119 2120
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2121
		if (crtc->active && wm->cxsr)
2122 2123
			wm->sr = wm_state->sr[wm->level];

2124 2125 2126 2127
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2128 2129 2130
	}
}

2131
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2132
{
2133 2134
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2135

2136
	vlv_merge_wm(dev_priv, &new_wm);
2137

2138
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2139 2140
		return;

2141
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2142 2143
		chv_set_memory_dvfs(dev_priv, false);

2144
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2145 2146
		chv_set_memory_pm5(dev_priv, false);

2147
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2148
		_intel_set_memory_cxsr(dev_priv, false);
2149

2150
	vlv_write_wm_values(dev_priv, &new_wm);
2151

2152
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2153
		_intel_set_memory_cxsr(dev_priv, true);
2154

2155
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2156 2157
		chv_set_memory_pm5(dev_priv, true);

2158
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2159 2160
		chv_set_memory_dvfs(dev_priv, true);

2161
	*old_wm = new_wm;
2162 2163
}

2164 2165 2166 2167 2168 2169 2170
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2187 2188 2189 2190
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2191
static void i965_update_wm(struct intel_crtc *unused_crtc)
2192
{
2193
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2194
	struct intel_crtc *crtc;
2195 2196
	int srwm = 1;
	int cursor_sr = 16;
2197
	bool cxsr_enabled;
2198 2199

	/* Calc sr entries for one plane configs */
2200
	crtc = single_enabled_crtc(dev_priv);
2201 2202 2203
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2204 2205 2206 2207
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2208
		int clock = adjusted_mode->crtc_clock;
2209
		int htotal = adjusted_mode->crtc_htotal;
2210
		int hdisplay = crtc->config->pipe_src_w;
2211
		int cpp = fb->format->cpp[0];
2212 2213
		int entries;

2214 2215
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2216 2217 2218 2219 2220 2221 2222 2223
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2224 2225 2226
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2227
		entries = DIV_ROUND_UP(entries,
2228 2229
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2230

2231
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2232 2233 2234 2235 2236 2237
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2238
		cxsr_enabled = true;
2239
	} else {
2240
		cxsr_enabled = false;
2241
		/* Turn off self refresh if both pipes are enabled */
2242
		intel_set_memory_cxsr(dev_priv, false);
2243 2244 2245 2246 2247 2248
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2249 2250 2251 2252 2253 2254
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2255
	/* update cursor SR watermark */
2256
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2257 2258 2259

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2260 2261
}

2262 2263
#undef FW_WM

2264
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2265
{
2266
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2267
	const struct intel_watermark_params *wm_info;
2268 2269
	u32 fwater_lo;
	u32 fwater_hi;
2270 2271 2272
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2273
	struct intel_crtc *crtc, *enabled = NULL;
2274

2275
	if (IS_I945GM(dev_priv))
2276
		wm_info = &i945_wm_info;
2277
	else if (!IS_GEN(dev_priv, 2))
2278 2279
		wm_info = &i915_wm_info;
	else
2280
		wm_info = &i830_a_wm_info;
2281

2282 2283
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2284 2285 2286 2287 2288 2289 2290
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2291
		if (IS_GEN(dev_priv, 2))
2292
			cpp = 4;
2293
		else
2294
			cpp = fb->format->cpp[0];
2295

2296
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2297
					       wm_info, fifo_size, cpp,
2298
					       pessimal_latency_ns);
2299
		enabled = crtc;
2300
	} else {
2301
		planea_wm = fifo_size - wm_info->guard_size;
2302 2303 2304 2305
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2306
	if (IS_GEN(dev_priv, 2))
2307
		wm_info = &i830_bc_wm_info;
2308

2309 2310
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2311 2312 2313 2314 2315 2316 2317
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2318
		if (IS_GEN(dev_priv, 2))
2319
			cpp = 4;
2320
		else
2321
			cpp = fb->format->cpp[0];
2322

2323
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2324
					       wm_info, fifo_size, cpp,
2325
					       pessimal_latency_ns);
2326 2327 2328 2329
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2330
	} else {
2331
		planeb_wm = fifo_size - wm_info->guard_size;
2332 2333 2334
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2335 2336 2337

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2338
	if (IS_I915GM(dev_priv) && enabled) {
2339
		struct drm_i915_gem_object *obj;
2340

2341
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2342 2343

		/* self-refresh seems busted with untiled */
2344
		if (!i915_gem_object_is_tiled(obj))
2345 2346 2347
			enabled = NULL;
	}

2348 2349 2350 2351 2352 2353
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2354
	intel_set_memory_cxsr(dev_priv, false);
2355 2356

	/* Calc sr entries for one plane configs */
2357
	if (HAS_FW_BLC(dev_priv) && enabled) {
2358 2359
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2360 2361 2362 2363
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2364
		int clock = adjusted_mode->crtc_clock;
2365
		int htotal = adjusted_mode->crtc_htotal;
2366 2367
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2368 2369
		int entries;

2370
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2371
			cpp = 4;
2372
		else
2373
			cpp = fb->format->cpp[0];
2374

2375 2376
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2377 2378 2379 2380 2381 2382
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2383
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2384 2385
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2386
		else
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2403 2404
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2405 2406
}

2407
static void i845_update_wm(struct intel_crtc *unused_crtc)
2408
{
2409
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2410
	struct intel_crtc *crtc;
2411
	const struct drm_display_mode *adjusted_mode;
2412
	u32 fwater_lo;
2413 2414
	int planea_wm;

2415
	crtc = single_enabled_crtc(dev_priv);
2416 2417 2418
	if (crtc == NULL)
		return;

2419
	adjusted_mode = &crtc->config->base.adjusted_mode;
2420
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2421
				       &i845_wm_info,
2422
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2423
				       4, pessimal_latency_ns);
2424 2425 2426 2427 2428 2429 2430 2431
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2432
/* latency must be in 0.1us units. */
2433 2434 2435
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2436
{
2437
	unsigned int ret;
2438

2439 2440
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2441 2442 2443 2444

	return ret;
}

2445
/* latency must be in 0.1us units. */
2446 2447 2448 2449 2450
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2451
{
2452
	unsigned int ret;
2453

2454 2455
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2456
	ret = DIV_ROUND_UP(ret, 64) + 2;
2457

2458 2459 2460
	return ret;
}

2461
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2462
{
2463 2464 2465 2466 2467 2468
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2469
	if (WARN_ON(!cpp))
2470 2471 2472 2473
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2474
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2475 2476
}

2477
struct ilk_wm_maximums {
2478 2479 2480 2481
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2482 2483
};

2484 2485 2486 2487
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2488 2489 2490
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value, bool is_lp)
2491
{
2492
	u32 method1, method2;
2493
	int cpp;
2494

2495 2496 2497
	if (mem_value == 0)
		return U32_MAX;

2498
	if (!intel_wm_plane_visible(cstate, pstate))
2499 2500
		return 0;

2501
	cpp = pstate->base.fb->format->cpp[0];
2502

2503
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2504 2505 2506 2507

	if (!is_lp)
		return method1;

2508
	method2 = ilk_wm_method2(cstate->pixel_rate,
2509
				 cstate->base.adjusted_mode.crtc_htotal,
2510
				 drm_rect_width(&pstate->base.dst),
2511
				 cpp, mem_value);
2512 2513

	return min(method1, method2);
2514 2515
}

2516 2517 2518 2519
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2520 2521 2522
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2523
{
2524
	u32 method1, method2;
2525
	int cpp;
2526

2527 2528 2529
	if (mem_value == 0)
		return U32_MAX;

2530
	if (!intel_wm_plane_visible(cstate, pstate))
2531 2532
		return 0;

2533
	cpp = pstate->base.fb->format->cpp[0];
2534

2535 2536
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2537
				 cstate->base.adjusted_mode.crtc_htotal,
2538
				 drm_rect_width(&pstate->base.dst),
2539
				 cpp, mem_value);
2540 2541 2542
	return min(method1, method2);
}

2543 2544 2545 2546
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2547 2548 2549
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2550
{
2551 2552
	int cpp;

2553 2554 2555
	if (mem_value == 0)
		return U32_MAX;

2556
	if (!intel_wm_plane_visible(cstate, pstate))
2557 2558
		return 0;

2559 2560
	cpp = pstate->base.fb->format->cpp[0];

2561
	return ilk_wm_method2(cstate->pixel_rate,
2562
			      cstate->base.adjusted_mode.crtc_htotal,
2563
			      pstate->base.crtc_w, cpp, mem_value);
2564 2565
}

2566
/* Only for WM_LP. */
2567 2568 2569
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val)
2570
{
2571
	int cpp;
2572

2573
	if (!intel_wm_plane_visible(cstate, pstate))
2574 2575
		return 0;

2576
	cpp = pstate->base.fb->format->cpp[0];
2577

2578
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2579 2580
}

2581 2582
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2583
{
2584
	if (INTEL_GEN(dev_priv) >= 8)
2585
		return 3072;
2586
	else if (INTEL_GEN(dev_priv) >= 7)
2587 2588 2589 2590 2591
		return 768;
	else
		return 512;
}

2592 2593 2594
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2595
{
2596
	if (INTEL_GEN(dev_priv) >= 8)
2597 2598
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2599
	else if (INTEL_GEN(dev_priv) >= 7)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2610 2611
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2612
{
2613
	if (INTEL_GEN(dev_priv) >= 7)
2614 2615 2616 2617 2618
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2619
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2620
{
2621
	if (INTEL_GEN(dev_priv) >= 8)
2622 2623 2624 2625 2626
		return 31;
	else
		return 15;
}

2627
/* Calculate the maximum primary/sprite plane watermark */
2628
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2629
				     int level,
2630
				     const struct intel_wm_config *config,
2631 2632 2633
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2634
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2635 2636

	/* if sprites aren't enabled, sprites get nothing */
2637
	if (is_sprite && !config->sprites_enabled)
2638 2639 2640
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2641
	if (level == 0 || config->num_pipes_active > 1) {
2642
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2643 2644 2645 2646 2647 2648

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2649
		if (INTEL_GEN(dev_priv) <= 6)
2650 2651 2652
			fifo_size /= 2;
	}

2653
	if (config->sprites_enabled) {
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2665
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2666 2667 2668
}

/* Calculate the maximum cursor plane watermark */
2669
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2670 2671
				      int level,
				      const struct intel_wm_config *config)
2672 2673
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2674
	if (level > 0 && config->num_pipes_active > 1)
2675 2676 2677
		return 64;

	/* otherwise just report max that registers can hold */
2678
	return ilk_cursor_wm_reg_max(dev_priv, level);
2679 2680
}

2681
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2682 2683 2684
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2685
				    struct ilk_wm_maximums *max)
2686
{
2687 2688 2689 2690
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2691 2692
}

2693
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2694 2695 2696
					int level,
					struct ilk_wm_maximums *max)
{
2697 2698 2699 2700
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2701 2702
}

2703
static bool ilk_validate_wm_level(int level,
2704
				  const struct ilk_wm_maximums *max,
2705
				  struct intel_wm_level *result)
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2735 2736 2737
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2738 2739 2740 2741 2742 2743
		result->enable = true;
	}

	return ret;
}

2744
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2745
				 const struct intel_crtc *intel_crtc,
2746
				 int level,
2747
				 struct intel_crtc_state *cstate,
2748 2749 2750
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2751
				 struct intel_wm_level *result)
2752
{
2753 2754 2755
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2756 2757 2758 2759 2760 2761 2762 2763

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2776 2777 2778
	result->enable = true;
}

2779
static u32
2780
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2781
{
2782 2783
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2784 2785
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2786
	u32 linetime, ips_linetime;
2787

2788 2789 2790 2791
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2792
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2793
		return 0;
2794

2795 2796 2797
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2798 2799 2800
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2801
					 intel_state->cdclk.logical.cdclk);
2802

2803 2804
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2805 2806
}

2807
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2808
				  u16 wm[8])
2809
{
2810
	if (INTEL_GEN(dev_priv) >= 9) {
2811
		u32 val;
2812
		int ret, i;
2813
		int level, max_level = ilk_wm_max_level(dev_priv);
2814 2815 2816

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2817
		mutex_lock(&dev_priv->pcu_lock);
2818 2819 2820
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2821
		mutex_unlock(&dev_priv->pcu_lock);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2838
		mutex_lock(&dev_priv->pcu_lock);
2839 2840 2841
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2842
		mutex_unlock(&dev_priv->pcu_lock);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2869
		/*
2870
		 * WaWmMemoryReadLatency:skl+,glk
2871
		 *
2872
		 * punit doesn't take into account the read latency so we need
2873 2874
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2875
		 */
2876 2877 2878 2879 2880
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2881
				wm[level] += 2;
2882
			}
2883 2884
		}

2885 2886 2887 2888 2889 2890
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2891
		if (dev_priv->dram_info.is_16gb_dimm)
2892 2893
			wm[0] += 1;

2894
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2895
		u64 sskpd = I915_READ64(MCH_SSKPD);
2896 2897 2898 2899

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2900 2901 2902 2903
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2904
	} else if (INTEL_GEN(dev_priv) >= 6) {
2905
		u32 sskpd = I915_READ(MCH_SSKPD);
2906 2907 2908 2909 2910

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2911
	} else if (INTEL_GEN(dev_priv) >= 5) {
2912
		u32 mltr = I915_READ(MLTR_ILK);
2913 2914 2915 2916 2917

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2918 2919
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2920 2921 2922
	}
}

2923
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2924
				       u16 wm[5])
2925 2926
{
	/* ILK sprite LP0 latency is 1300 ns */
2927
	if (IS_GEN(dev_priv, 5))
2928 2929 2930
		wm[0] = 13;
}

2931
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2932
				       u16 wm[5])
2933 2934
{
	/* ILK cursor LP0 latency is 1300 ns */
2935
	if (IS_GEN(dev_priv, 5))
2936 2937 2938
		wm[0] = 13;
}

2939
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2940 2941
{
	/* how many WM levels are we expecting */
2942
	if (INTEL_GEN(dev_priv) >= 9)
2943
		return 7;
2944
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2945
		return 4;
2946
	else if (INTEL_GEN(dev_priv) >= 6)
2947
		return 3;
2948
	else
2949 2950
		return 2;
}
2951

2952
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2953
				   const char *name,
2954
				   const u16 wm[8])
2955
{
2956
	int level, max_level = ilk_wm_max_level(dev_priv);
2957 2958 2959 2960 2961

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2962 2963
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2964 2965 2966
			continue;
		}

2967 2968 2969 2970
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2971
		if (INTEL_GEN(dev_priv) >= 9)
2972 2973
			latency *= 10;
		else if (level > 0)
2974 2975 2976 2977 2978 2979 2980 2981
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2982
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2983
				    u16 wm[5], u16 min)
2984
{
2985
	int level, max_level = ilk_wm_max_level(dev_priv);
2986 2987 2988 2989 2990 2991

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2992
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2993 2994 2995 2996

	return true;
}

2997
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3013 3014 3015
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016 3017
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3046
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3047
{
3048
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3049 3050 3051 3052 3053 3054

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3055
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3056
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3057

3058 3059 3060
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3061

3062
	if (IS_GEN(dev_priv, 6)) {
3063
		snb_wm_latency_quirk(dev_priv);
3064 3065
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3066 3067
}

3068
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3069
{
3070
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3071
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3072 3073
}

3074
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3086
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3097
/* Compute new watermarks for the pipe */
3098
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3099
{
3100 3101
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3102
	struct intel_pipe_wm *pipe_wm;
3103
	struct drm_device *dev = state->dev;
3104
	const struct drm_i915_private *dev_priv = to_i915(dev);
3105 3106 3107 3108 3109
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3110
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3111
	struct ilk_wm_maximums max;
3112

3113
	pipe_wm = &cstate->wm.ilk.optimal;
3114

3115 3116
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3117

3118
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3119
			pristate = ps;
3120
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3121
			sprstate = ps;
3122
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3123
			curstate = ps;
3124 3125
	}

3126
	pipe_wm->pipe_enabled = cstate->base.active;
3127
	if (sprstate) {
3128 3129 3130 3131
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3132 3133
	}

3134 3135
	usable_level = max_level;

3136
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3137
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3138
		usable_level = 1;
3139 3140

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3141
	if (pipe_wm->sprites_scaled)
3142
		usable_level = 0;
3143

3144
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3145 3146
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3147

3148
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3149
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3150

3151
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3152
		return -EINVAL;
3153

3154
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3155

3156 3157
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3158

3159
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3160
				     pristate, sprstate, curstate, wm);
3161 3162 3163 3164 3165 3166

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3167 3168 3169 3170
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3171 3172
	}

3173
	return 0;
3174 3175
}

3176 3177 3178 3179 3180
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3181
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3182
{
3183 3184
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3185
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3186 3187 3188 3189 3190
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3191
	int level, max_level = ilk_wm_max_level(dev_priv);
3192 3193 3194 3195 3196 3197

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3198
	*a = newstate->wm.ilk.optimal;
3199 3200
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3201 3202
		return 0;

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3224
	if (!ilk_validate_pipe_wm(dev_priv, a))
3225 3226 3227 3228 3229 3230
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3231 3232
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3233 3234 3235 3236

	return 0;
}

3237 3238 3239
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3240
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3241 3242 3243 3244 3245
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3246 3247
	ret_wm->enable = true;

3248
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3249
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3250 3251 3252 3253
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3254

3255 3256 3257 3258 3259
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3260
		if (!wm->enable)
3261
			ret_wm->enable = false;
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3273
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3274
			 const struct intel_wm_config *config,
3275
			 const struct ilk_wm_maximums *max,
3276 3277
			 struct intel_pipe_wm *merged)
{
3278
	int level, max_level = ilk_wm_max_level(dev_priv);
3279
	int last_enabled_level = max_level;
3280

3281
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3282
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3283
	    config->num_pipes_active > 1)
3284
		last_enabled_level = 0;
3285

3286
	/* ILK: FBC WM must be disabled always */
3287
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3288 3289 3290 3291 3292

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3293
		ilk_merge_wm_level(dev_priv, level, wm);
3294

3295 3296 3297 3298 3299
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3300 3301 3302 3303 3304 3305

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3306 3307
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3308 3309 3310
			wm->fbc_val = 0;
		}
	}
3311 3312 3313 3314 3315 3316 3317

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3318
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3319
	    intel_fbc_is_active(dev_priv)) {
3320 3321 3322 3323 3324 3325
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3326 3327
}

3328 3329 3330 3331 3332 3333
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3334
/* The value we need to program into the WM_LPx latency field */
3335 3336
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3337
{
3338
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3339 3340 3341 3342 3343
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3344
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3345
				   const struct intel_pipe_wm *merged,
3346
				   enum intel_ddb_partitioning partitioning,
3347
				   struct ilk_wm_values *results)
3348
{
3349 3350
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3351

3352
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3353
	results->partitioning = partitioning;
3354

3355
	/* LP1+ register values */
3356
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3357
		const struct intel_wm_level *r;
3358

3359
		level = ilk_wm_lp_to_level(wm_lp, merged);
3360

3361
		r = &merged->wm[level];
3362

3363 3364 3365 3366 3367
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3368
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3369 3370 3371
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3372 3373 3374
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3375
		if (INTEL_GEN(dev_priv) >= 8)
3376 3377 3378 3379 3380 3381
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3382 3383 3384 3385
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3386
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3387 3388 3389 3390
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3391
	}
3392

3393
	/* LP0 register values */
3394
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3395
		enum pipe pipe = intel_crtc->pipe;
3396 3397
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3398 3399 3400 3401

		if (WARN_ON(!r->enable))
			continue;

3402
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3403

3404 3405 3406 3407
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3408 3409 3410
	}
}

3411 3412
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3413 3414 3415 3416
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3417
{
3418
	int level, max_level = ilk_wm_max_level(dev_priv);
3419
	int level1 = 0, level2 = 0;
3420

3421 3422 3423 3424 3425
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3426 3427
	}

3428 3429
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3430 3431 3432
			return r2;
		else
			return r1;
3433
	} else if (level1 > level2) {
3434 3435 3436 3437 3438 3439
		return r1;
	} else {
		return r2;
	}
}

3440 3441 3442 3443 3444 3445 3446 3447
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3448
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3449 3450
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3451 3452 3453 3454 3455
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3456
	for_each_pipe(dev_priv, pipe) {
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3500 3501
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3502
{
3503
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3504
	bool changed = false;
3505

3506 3507 3508
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3509
		changed = true;
3510 3511 3512 3513
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3514
		changed = true;
3515 3516 3517 3518
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3519
		changed = true;
3520
	}
3521

3522 3523 3524 3525
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3526

3527 3528 3529 3530 3531 3532 3533
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3534 3535
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3536
{
3537
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3538
	unsigned int dirty;
3539
	u32 val;
3540

3541
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3542 3543 3544 3545 3546
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3547
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3548
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3549
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3550
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3551
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3552 3553
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3554
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3555
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3556
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3557
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3558
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3559 3560
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3561
	if (dirty & WM_DIRTY_DDB) {
3562
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3577 3578
	}

3579
	if (dirty & WM_DIRTY_FBC) {
3580 3581 3582 3583 3584 3585 3586 3587
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3588 3589 3590 3591
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3592
	if (INTEL_GEN(dev_priv) >= 7) {
3593 3594 3595 3596 3597
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3598

3599
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3600
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3601
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3602
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3603
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3604
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3605 3606

	dev_priv->wm.hw = *results;
3607 3608
}

3609
bool ilk_disable_lp_wm(struct drm_device *dev)
3610
{
3611
	struct drm_i915_private *dev_priv = to_i915(dev);
3612 3613 3614 3615

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3627 3628 3629 3630 3631 3632
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3633 3634 3635 3636 3637
		enabled_slices++;

	return enabled_slices;
}

3638 3639 3640 3641
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3642
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3643
{
3644
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3645 3646
}

3647 3648 3649
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3650 3651
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3652 3653
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3666
intel_enable_sagv(struct drm_i915_private *dev_priv)
3667 3668 3669
{
	int ret;

3670 3671 3672 3673
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3674 3675
		return 0;

3676
	DRM_DEBUG_KMS("Enabling SAGV\n");
3677
	mutex_lock(&dev_priv->pcu_lock);
3678 3679 3680 3681

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3682
	/* We don't need to wait for SAGV when enabling */
3683
	mutex_unlock(&dev_priv->pcu_lock);
3684 3685 3686

	/*
	 * Some skl systems, pre-release machines in particular,
3687
	 * don't actually have SAGV.
3688
	 */
3689
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3690
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3691
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3692 3693
		return 0;
	} else if (ret < 0) {
3694
		DRM_ERROR("Failed to enable SAGV\n");
3695 3696 3697
		return ret;
	}

3698
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3699 3700 3701 3702
	return 0;
}

int
3703
intel_disable_sagv(struct drm_i915_private *dev_priv)
3704
{
3705
	int ret;
3706

3707 3708 3709 3710
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3711 3712
		return 0;

3713
	DRM_DEBUG_KMS("Disabling SAGV\n");
3714
	mutex_lock(&dev_priv->pcu_lock);
3715 3716

	/* bspec says to keep retrying for at least 1 ms */
3717 3718 3719 3720
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3721
	mutex_unlock(&dev_priv->pcu_lock);
3722 3723 3724

	/*
	 * Some skl systems, pre-release machines in particular,
3725
	 * don't actually have SAGV.
3726
	 */
3727
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3728
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3729
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3730
		return 0;
3731
	} else if (ret < 0) {
3732
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3733
		return ret;
3734 3735
	}

3736
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3737 3738 3739
	return 0;
}

3740
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3741 3742 3743 3744
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3745 3746
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3747
	struct intel_crtc_state *cstate;
3748
	enum pipe pipe;
3749
	int level, latency;
3750
	int sagv_block_time_us;
3751

3752 3753 3754
	if (!intel_has_sagv(dev_priv))
		return false;

3755
	if (IS_GEN(dev_priv, 9))
3756
		sagv_block_time_us = 30;
3757
	else if (IS_GEN(dev_priv, 10))
3758 3759 3760 3761
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3762
	/*
3763
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3775
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3776
	cstate = to_intel_crtc_state(crtc->base.state);
3777

3778
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3779 3780
		return false;

3781
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3782 3783
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3784

3785
		/* Skip this plane if it's not enabled */
3786
		if (!wm->wm[0].plane_en)
3787 3788 3789
			continue;

		/* Find the highest enabled wm level for this plane */
3790
		for (level = ilk_wm_max_level(dev_priv);
3791
		     !wm->wm[level].plane_en; --level)
3792 3793
		     { }

3794 3795
		latency = dev_priv->wm.skl_latency[level];

3796
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3797
		    plane->base.state->fb->modifier ==
3798 3799 3800
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3801
		/*
3802 3803
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3804
		 * can't enable SAGV.
3805
		 */
3806
		if (latency < sagv_block_time_us)
3807 3808 3809 3810 3811 3812
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3813 3814
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3815
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3816 3817
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3829
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3830 3831 3832

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3833 3834 3835 3836 3837
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3838
	 */
3839
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3840 3841 3842 3843 3844 3845 3846 3847 3848
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3849
static void
3850
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3851
				   const struct intel_crtc_state *cstate,
3852
				   const u64 total_data_rate,
3853
				   struct skl_ddb_allocation *ddb,
3854 3855
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3856
{
3857 3858
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3859
	struct drm_crtc *for_crtc = cstate->base.crtc;
3860 3861 3862 3863 3864 3865
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3866

3867
	if (WARN_ON(!state) || !cstate->base.active) {
3868 3869
		alloc->start = 0;
		alloc->end = 0;
3870
		*num_active = hweight32(dev_priv->active_crtcs);
3871 3872 3873
		return;
	}

3874 3875 3876 3877 3878
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3879 3880
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3881

3882
	/*
3883 3884 3885 3886 3887 3888
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3889
	 */
3890
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3891 3892 3893 3894 3895
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3896
		return;
3897
	}
3898

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3925 3926
}

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3941
{
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
		skl_compute_plane_wm(crtc_state, 7, &wp, &wm, &wm);
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3962

3963
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3964 3965
}

3966 3967
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3968
{
3969

3970 3971
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3972

3973 3974
	if (entry->end)
		entry->end += 1;
3975 3976
}

3977 3978 3979 3980
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3981 3982
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3983
{
3984 3985
	u32 val, val2;
	u32 fourcc = 0;
3986 3987 3988 3989

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3990
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3991 3992 3993 3994 3995 3996
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3997 3998 3999 4000
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4001

4002 4003 4004 4005 4006
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4007
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4008

4009
		if (is_planar_yuv_format(fourcc))
4010 4011 4012 4013
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4014 4015 4016
	}
}

4017 4018 4019
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4020
{
4021 4022 4023
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4024
	intel_wakeref_t wakeref;
4025
	enum plane_id plane_id;
4026

4027
	power_domain = POWER_DOMAIN_PIPE(pipe);
4028 4029
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4030
		return;
4031

4032 4033 4034 4035 4036
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4037

4038
	intel_display_power_put(dev_priv, power_domain, wakeref);
4039
}
4040

4041 4042 4043 4044
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4045 4046
}

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4063
static uint_fixed_16_16_t
4064 4065
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4066
{
4067
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4068
	u32 src_w, src_h, dst_w, dst_h;
4069 4070
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4071

4072
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4073
		return u32_to_fixed16(0);
4074 4075

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4076
	if (plane->id == PLANE_CURSOR) {
4077 4078 4079 4080
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4081 4082
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4083 4084 4085
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4086 4087 4088 4089 4090
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4091 4092
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4093 4094 4095 4096
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4097 4098 4099 4100
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4101

4102
	return mul_fixed16(downscale_w, downscale_h);
4103 4104
}

4105 4106 4107
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4108
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4109 4110 4111 4112 4113

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4114 4115
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4127 4128 4129 4130
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4141
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4142 4143 4144 4145 4146
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4147
	int crtc_clock, dotclk;
4148
	u32 pipe_max_pixel_rate;
4149
	uint_fixed_16_16_t pipe_downscale;
4150
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4151 4152 4153 4154 4155 4156

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4157
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4175
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4176 4177 4178 4179 4180 4181
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4182 4183
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4184
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4185 4186 4187
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4188 4189

	if (pipe_max_pixel_rate < crtc_clock) {
4190
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4191 4192 4193 4194 4195 4196
		return -EINVAL;
	}

	return 0;
}

4197
static u64
4198
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4199
			     const struct intel_plane_state *intel_pstate,
4200
			     const int plane)
4201
{
4202 4203
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4204 4205
	u32 data_rate;
	u32 width = 0, height = 0;
4206 4207
	struct drm_framebuffer *fb;
	u32 format;
4208
	uint_fixed_16_16_t down_scale_amount;
4209
	u64 rate;
4210

4211
	if (!intel_pstate->base.visible)
4212
		return 0;
4213

4214
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4215
	format = fb->format->format;
4216

4217
	if (intel_plane->id == PLANE_CURSOR)
4218
		return 0;
4219
	if (plane == 1 && !is_planar_yuv_format(format))
4220
		return 0;
4221

4222 4223 4224 4225 4226
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4227 4228
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4229

4230
	/* UV plane does 1/2 pixel sub-sampling */
4231
	if (plane == 1 && is_planar_yuv_format(format)) {
4232 4233
		width /= 2;
		height /= 2;
4234 4235
	}

4236
	data_rate = width * height;
4237

4238
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4239

4240 4241 4242 4243
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4244 4245
}

4246
static u64
4247
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4248 4249
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4250
{
4251 4252
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4253 4254
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4255
	u64 total_data_rate = 0;
4256 4257 4258

	if (WARN_ON(!state))
		return 0;
4259

4260
	/* Calculate and cache data rate for each plane */
4261
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4262
		enum plane_id plane_id = to_intel_plane(plane)->id;
4263
		u64 rate;
4264 4265
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4266

4267
		/* packed/y */
4268
		rate = skl_plane_relative_data_rate(intel_cstate,
4269
						    intel_pstate, 0);
4270
		plane_data_rate[plane_id] = rate;
4271
		total_data_rate += rate;
4272

4273
		/* uv-plane */
4274
		rate = skl_plane_relative_data_rate(intel_cstate,
4275
						    intel_pstate, 1);
4276
		uv_plane_data_rate[plane_id] = rate;
4277
		total_data_rate += rate;
4278 4279 4280 4281 4282
	}

	return total_data_rate;
}

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4338
static int
4339
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4340 4341
		      struct skl_ddb_allocation *ddb /* out */)
{
4342
	struct drm_atomic_state *state = cstate->base.state;
4343
	struct drm_crtc *crtc = cstate->base.crtc;
4344
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4345
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4346
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4347 4348 4349
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4350
	u64 total_data_rate;
4351
	enum plane_id plane_id;
4352
	int num_active;
4353 4354
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4355
	u32 blocks;
4356
	int level;
4357

4358
	/* Clear the partitioning for disabled planes. */
4359 4360
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4361

4362 4363 4364
	if (WARN_ON(!state))
		return 0;

4365
	if (!cstate->base.active) {
4366
		alloc->start = alloc->end = 0;
4367 4368 4369
		return 0;
	}

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
	if (INTEL_GEN(dev_priv) < 11)
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
	else
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4382
	alloc_size = skl_ddb_entry_size(alloc);
4383
	if (alloc_size == 0)
4384
		return 0;
4385

4386
	/* Allocate fixed number of blocks for cursor. */
4387
	total[PLANE_CURSOR] = skl_cursor_allocation(cstate, num_active);
4388 4389 4390 4391 4392 4393 4394
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4395

4396
	/*
4397 4398
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4399
	 */
4400
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4401
		blocks = 0;
4402
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4403 4404
			const struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4405 4406 4407 4408 4409 4410 4411

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4412
				continue;
4413
			}
4414

4415 4416
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4417 4418
		}

4419
		if (blocks <= alloc_size) {
4420 4421 4422
			alloc_size -= blocks;
			break;
		}
4423 4424
	}

4425
	if (level < 0) {
4426
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4427 4428
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4429 4430 4431
		return -EINVAL;
	}

4432
	/*
4433 4434 4435
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4436
	 */
4437
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4438 4439
		const struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];
4440 4441
		u64 rate;
		u16 extra;
4442

4443
		if (plane_id == PLANE_CURSOR)
4444 4445
			continue;

4446
		/*
4447 4448
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4449
		 */
4450 4451
		if (total_data_rate == 0)
			break;
4452

4453 4454 4455 4456
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4457
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4458 4459
		alloc_size -= extra;
		total_data_rate -= rate;
4460

4461 4462
		if (total_data_rate == 0)
			break;
4463

4464 4465 4466 4467
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4468
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4469 4470 4471 4472 4473 4474 4475 4476
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4477 4478 4479 4480
		struct skl_ddb_entry *plane_alloc =
			&cstate->wm.skl.plane_ddb_y[plane_id];
		struct skl_ddb_entry *uv_plane_alloc =
			&cstate->wm.skl.plane_ddb_uv[plane_id];
4481 4482 4483 4484

		if (plane_id == PLANE_CURSOR)
			continue;

4485
		/* Gen11+ uses a separate plane for UV watermarks */
4486 4487 4488 4489 4490 4491 4492 4493
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4494

4495 4496 4497 4498
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4499
		}
4500
	}
4501

4502 4503 4504 4505 4506 4507 4508 4509
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4510 4511
			struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4528

4529 4530 4531 4532
			/*
			 * Wa_1408961008:icl
			 * Underruns with WM1+ disabled
			 */
4533 4534 4535
			if (IS_ICELAKE(dev_priv) &&
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4536 4537
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4538
			}
4539 4540 4541 4542 4543 4544 4545 4546
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4547 4548 4549
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];

4550
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4551
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4552 4553
	}

4554
	return 0;
4555 4556
}

4557 4558
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4559
 * for the read latency) and cpp should always be <= 8, so that
4560 4561 4562
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4563
static uint_fixed_16_16_t
4564 4565
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4566
{
4567
	u32 wm_intermediate_val;
4568
	uint_fixed_16_16_t ret;
4569 4570

	if (latency == 0)
4571
		return FP_16_16_MAX;
4572

4573
	wm_intermediate_val = latency * pixel_rate * cpp;
4574
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4575 4576 4577 4578

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4579 4580 4581
	return ret;
}

4582 4583 4584
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4585
{
4586
	u32 wm_intermediate_val;
4587
	uint_fixed_16_16_t ret;
4588 4589

	if (latency == 0)
4590
		return FP_16_16_MAX;
4591 4592

	wm_intermediate_val = latency * pixel_rate;
4593 4594
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4595
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4596 4597 4598
	return ret;
}

4599
static uint_fixed_16_16_t
4600
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4601
{
4602 4603
	u32 pixel_rate;
	u32 crtc_htotal;
4604 4605 4606
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4607
		return u32_to_fixed16(0);
4608 4609 4610 4611

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4612
		return u32_to_fixed16(0);
4613 4614

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4615
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4616 4617 4618 4619

	return linetime_us;
}

4620
static u32
4621 4622
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4623
{
4624
	u64 adjusted_pixel_rate;
4625
	uint_fixed_16_16_t downscale_amount;
4626 4627

	/* Shouldn't reach here on disabled planes... */
4628
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4629 4630 4631 4632 4633 4634
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4635
	adjusted_pixel_rate = cstate->pixel_rate;
4636
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4637

4638 4639
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4640 4641
}

4642
static int
4643 4644 4645 4646 4647
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4648
{
4649 4650
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4651
	u32 interm_pbpl;
4652

4653
	/* only planar format has two planes */
4654
	if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4655
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4656 4657 4658
		return -EINVAL;
	}

4659 4660 4661 4662 4663 4664 4665 4666
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->is_planar = is_planar_yuv_format(format->format);
4667

4668
	wp->width = width;
4669
	if (color_plane == 1 && wp->is_planar)
4670 4671
		wp->width /= 2;

4672 4673
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4674

4675
	if (INTEL_GEN(dev_priv) >= 11 &&
4676
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4677 4678 4679 4680
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4681
	if (drm_rotation_90_or_270(rotation)) {
4682
		switch (wp->cpp) {
4683
		case 1:
4684
			wp->y_min_scanlines = 16;
4685 4686
			break;
		case 2:
4687
			wp->y_min_scanlines = 8;
4688 4689
			break;
		case 4:
4690
			wp->y_min_scanlines = 4;
4691
			break;
4692
		default:
4693
			MISSING_CASE(wp->cpp);
4694
			return -EINVAL;
4695 4696
		}
	} else {
4697
		wp->y_min_scanlines = 4;
4698 4699
	}

4700
	if (skl_needs_memory_bw_wa(dev_priv))
4701
		wp->y_min_scanlines *= 2;
4702

4703 4704 4705
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4706 4707
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4708 4709 4710 4711

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4712 4713
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4714
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4715 4716
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4717
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4718
	} else {
4719 4720
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4721
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4722 4723
	}

4724 4725
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4726

4727
	wp->linetime_us = fixed16_to_u32_round_up(
4728
					intel_get_linetime_us(crtc_state));
4729 4730 4731 4732

	return 0;
}

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

	if (plane->id == PLANE_CURSOR) {
		width = plane_state->base.crtc_w;
	} else {
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
		width = drm_rect_width(&plane_state->base.src) >> 16;
	}

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4760 4761 4762 4763 4764 4765 4766 4767 4768
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4769 4770 4771 4772 4773
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4774
{
4775
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4776
	u32 latency = dev_priv->wm.skl_latency[level];
4777 4778
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4779
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4780

4781 4782 4783
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4784
		return;
4785
	}
4786

4787
	/* Display WA #1141: kbl,cfl */
4788 4789
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4790 4791 4792
	    dev_priv->ipc_enabled)
		latency += 4;

4793
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4794 4795 4796
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4797
				 wp->cpp, latency, wp->dbuf_block_size);
4798
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4799
				 cstate->base.adjusted_mode.crtc_htotal,
4800
				 latency,
4801
				 wp->plane_blocks_per_line);
4802

4803 4804
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4805
	} else {
4806
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4807
		     wp->dbuf_block_size < 1) &&
4808
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4809
			selected_result = method2;
4810
		} else if (latency >= wp->linetime_us) {
4811
			if (IS_GEN(dev_priv, 9) &&
4812 4813 4814 4815 4816
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4817
			selected_result = method1;
4818
		}
4819
	}
4820

4821
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4822
	res_lines = div_round_up_fixed16(selected_result,
4823
					 wp->plane_blocks_per_line);
4824

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4840

4841 4842 4843 4844 4845 4846 4847 4848 4849
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4850
	}
4851

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4870 4871 4872
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4873 4874 4875
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4876
		return;
4877
	}
4878 4879 4880 4881 4882 4883 4884

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4885 4886
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4887 4888
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4889
	result->plane_en = true;
4890 4891
}

4892
static void
4893
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4894
		      const struct skl_wm_params *wm_params,
4895
		      struct skl_wm_level *levels)
4896
{
4897
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4898
	int level, max_level = ilk_wm_max_level(dev_priv);
4899
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4900

4901
	for (level = 0; level <= max_level; level++) {
4902
		struct skl_wm_level *result = &levels[level];
4903

4904
		skl_compute_plane_wm(cstate, level, wm_params,
4905
				     result_prev, result);
4906 4907

		result_prev = result;
4908
	}
4909 4910
}

4911
static u32
4912
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4913
{
M
Mahesh Kumar 已提交
4914 4915
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4916
	uint_fixed_16_16_t linetime_us;
4917
	u32 linetime_wm;
4918

4919
	linetime_us = intel_get_linetime_us(cstate);
4920
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4921

4922 4923
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4924
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4925 4926

	return linetime_wm;
4927 4928
}

4929
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4930
				      const struct skl_wm_params *wp,
4931
				      struct skl_plane_wm *wm)
4932
{
4933 4934
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
4935 4936 4937
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4938 4939 4940

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4941
		return;
4942 4943 4944

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4945
		return;
4946

4947 4948
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4949 4950 4951 4952
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4963
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4964

4965
	if (wp->y_tiled) {
4966 4967
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4968
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4969 4970
				trans_offset_b;
	} else {
4971
		res_blocks = wm0_sel_res_b + trans_offset_b;
4972 4973 4974 4975 4976 4977 4978

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4979 4980 4981 4982 4983 4984 4985
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4986 4987
}

4988
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4989 4990
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4991
{
4992
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4993 4994 4995
	struct skl_wm_params wm_params;
	int ret;

4996
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4997 4998 4999 5000
					  &wm_params, color_plane);
	if (ret)
		return ret;

5001
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5002
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5003 5004 5005 5006

	return 0;
}

5007
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5008 5009
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5010
{
5011
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5012 5013 5014
	struct skl_wm_params wm_params;
	int ret;

5015
	wm->is_planar = true;
5016 5017

	/* uv plane watermarks must also be validated for NV12/Planar */
5018
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5019 5020 5021
					  &wm_params, 1);
	if (ret)
		return ret;
5022

5023
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5024

5025
	return 0;
5026 5027
}

5028
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5029
			      const struct intel_plane_state *plane_state)
5030
{
5031 5032 5033
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
5034 5035
	int ret;

5036 5037 5038
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5039
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5040
					plane_id, 0);
5041 5042 5043
	if (ret)
		return ret;

5044
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5045
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5046 5047 5048 5049 5050 5051 5052 5053
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5054
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5072
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5073 5074 5075 5076
						y_plane_id, 0);
		if (ret)
			return ret;

5077
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5078 5079 5080 5081
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5082
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5083 5084 5085 5086 5087 5088
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5089 5090
}

5091
static int skl_build_pipe_wm(struct intel_crtc_state *cstate)
5092
{
5093
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5094
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5095 5096 5097
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
5098
	int ret;
5099

L
Lyude 已提交
5100 5101 5102 5103 5104 5105
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5106 5107 5108 5109
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5110
		if (INTEL_GEN(dev_priv) >= 11)
5111
			ret = icl_build_plane_wm(cstate, intel_pstate);
5112
		else
5113
			ret = skl_build_plane_wm(cstate, intel_pstate);
5114 5115
		if (ret)
			return ret;
5116
	}
5117

5118
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5119

5120
	return 0;
5121 5122
}

5123 5124
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5125 5126 5127
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5128
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5129
	else
5130
		I915_WRITE_FW(reg, 0);
5131 5132
}

5133 5134 5135 5136
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5137
	u32 val = 0;
5138

5139
	if (level->plane_en)
5140
		val |= PLANE_WM_EN;
5141 5142 5143 5144
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5145

5146
	I915_WRITE_FW(reg, val);
5147 5148
}

5149 5150
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5151
{
5152
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5153
	int level, max_level = ilk_wm_max_level(dev_priv);
5154 5155 5156 5157 5158 5159 5160 5161
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5162 5163

	for (level = 0; level <= max_level; level++) {
5164
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5165
				   &wm->wm[level]);
5166
	}
5167
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5168
			   &wm->trans_wm);
5169

5170
	if (INTEL_GEN(dev_priv) >= 11) {
5171
		skl_ddb_entry_write(dev_priv,
5172 5173
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5174
	}
5175 5176 5177 5178 5179 5180 5181 5182

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5183 5184
}

5185 5186
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5187
{
5188
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5189
	int level, max_level = ilk_wm_max_level(dev_priv);
5190 5191 5192 5193 5194 5195
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5196 5197

	for (level = 0; level <= max_level; level++) {
5198 5199
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5200
	}
5201
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5202

5203
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5204 5205
}

5206 5207 5208
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5209
	return l1->plane_en == l2->plane_en &&
5210
		l1->ignore_lines == l2->ignore_lines &&
5211 5212 5213
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5214

5215 5216 5217 5218 5219
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5220

5221 5222 5223 5224 5225 5226 5227
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5228 5229
}

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5247 5248
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5249
{
5250
	return a->start < b->end && b->start < a->end;
5251 5252
}

5253 5254 5255
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
				 const struct skl_ddb_entry entries[],
				 int num_entries, int ignore_idx)
5256
{
5257
	int i;
5258

5259 5260 5261
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5262
			return true;
5263
	}
5264

5265
	return false;
5266 5267
}

5268
static u32
5269
pipes_modified(struct intel_atomic_state *state)
5270
{
5271 5272
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5273
	u32 i, ret = 0;
5274

5275 5276
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5277 5278 5279 5280

	return ret;
}

5281
static int
5282 5283
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5284
{
5285 5286 5287 5288
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5289

5290 5291 5292
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5293

5294 5295 5296 5297
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5298 5299
			continue;

5300
		plane_state = intel_atomic_get_plane_state(state, plane);
5301 5302
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5303

5304
		new_crtc_state->update_planes |= BIT(plane_id);
5305 5306 5307 5308 5309 5310
	}

	return 0;
}

static int
5311
skl_compute_ddb(struct intel_atomic_state *state)
5312
{
5313 5314
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5315 5316
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5317 5318
	struct intel_crtc *crtc;
	int ret, i;
5319

5320 5321
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5322
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5323 5324
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5325 5326 5327
		if (ret)
			return ret;

5328 5329
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5330 5331
		if (ret)
			return ret;
5332 5333 5334 5335 5336
	}

	return 0;
}

5337 5338 5339 5340 5341
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5342
static void
5343
skl_print_wm_changes(struct intel_atomic_state *state)
5344
{
5345 5346 5347 5348 5349
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5350
	int i;
5351

5352 5353 5354
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5355 5356
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5357 5358 5359 5360 5361
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5362 5363
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5364 5365
			const struct skl_ddb_entry *old, *new;

5366 5367
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5368 5369 5370 5371

			if (skl_ddb_entry_equal(old, new))
				continue;

5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5402 5403
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5404
				      plane->base.base.id, plane->base.name,
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5441
				      plane->base.base.id, plane->base.name,
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5452 5453 5454 5455
		}
	}
}

5456
static int
5457
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5458
{
5459
	struct drm_device *dev = state->base.dev;
5460
	const struct drm_i915_private *dev_priv = to_i915(dev);
5461 5462
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5463
	u32 realloc_pipes = pipes_modified(state);
5464
	int ret, i;
5465

5466 5467 5468 5469
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5470 5471
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5472

5473 5474 5475 5476 5477 5478 5479 5480
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5481
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5482
		(*changed) = true;
5483

5484
	if (!*changed)
5485 5486
		return 0;

5487 5488 5489 5490 5491 5492 5493 5494
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5495
				       state->base.acquire_ctx);
5496 5497 5498
		if (ret)
			return ret;

5499
		state->active_pipe_changes = ~0;
5500 5501

		/*
5502
		 * We usually only initialize state->active_crtcs if we
5503 5504 5505 5506
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5507 5508
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5524
	if (state->active_pipe_changes || state->modeset) {
5525
		realloc_pipes = ~0;
5526
		state->wm_results.dirty_pipes = ~0;
5527 5528 5529 5530 5531 5532
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5533 5534 5535 5536
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5537 5538 5539 5540 5541
	}

	return 0;
}

5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5602
static int
5603
skl_compute_wm(struct intel_atomic_state *state)
5604
{
5605
	struct intel_crtc *crtc;
5606
	struct intel_crtc_state *new_crtc_state;
5607 5608
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5609 5610 5611
	bool changed = false;
	int ret, i;

5612 5613 5614
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5615 5616 5617 5618
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5619 5620
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5621
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5622 5623 5624
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5625
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5626 5627
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5628 5629 5630
		if (ret)
			return ret;

5631
		ret = skl_wm_add_affected_planes(state, crtc);
5632 5633 5634
		if (ret)
			return ret;

5635 5636 5637
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5638
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5639 5640
	}

5641 5642 5643 5644
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5645
	skl_print_wm_changes(state);
5646

5647 5648 5649
	return 0;
}

5650 5651 5652 5653 5654 5655 5656
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5657 5658 5659

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5660 5661 5662 5663

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5664 5665
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5666
{
5667
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5668
	struct drm_device *dev = intel_crtc->base.dev;
5669
	struct drm_i915_private *dev_priv = to_i915(dev);
5670
	struct skl_ddb_values *results = &state->wm_results;
5671

5672
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5673 5674
		return;

5675
	mutex_lock(&dev_priv->wm.wm_mutex);
5676

5677 5678
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5679

5680
	mutex_unlock(&dev_priv->wm.wm_mutex);
5681 5682
}

5683
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5684 5685 5686 5687 5688
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5689
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5701
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5702
{
5703
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5704
	struct ilk_wm_maximums max;
5705
	struct intel_wm_config config = {};
5706
	struct ilk_wm_values results = {};
5707
	enum intel_ddb_partitioning partitioning;
5708

5709
	ilk_compute_wm_config(dev_priv, &config);
5710

5711 5712
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5713 5714

	/* 5/6 split only in single pipe config on IVB+ */
5715
	if (INTEL_GEN(dev_priv) >= 7 &&
5716
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5717 5718
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5719

5720
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5721
	} else {
5722
		best_lp_wm = &lp_wm_1_2;
5723 5724
	}

5725
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5726
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5727

5728
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5729

5730
	ilk_write_wm_values(dev_priv, &results);
5731 5732
}

5733 5734
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5735
{
5736 5737
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5738

5739
	mutex_lock(&dev_priv->wm.wm_mutex);
5740
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5741 5742 5743
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5744

5745 5746
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5747 5748 5749
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5750

5751 5752
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5753
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5754 5755 5756
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5757 5758
}

5759
static inline void skl_wm_level_from_reg_val(u32 val,
5760
					     struct skl_wm_level *level)
5761
{
5762
	level->plane_en = val & PLANE_WM_EN;
5763
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5764 5765 5766
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5767 5768
}

5769
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5770
			      struct skl_pipe_wm *out)
5771
{
5772 5773
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5774 5775
	int level, max_level;
	enum plane_id plane_id;
5776
	u32 val;
5777

5778
	max_level = ilk_wm_max_level(dev_priv);
5779

5780
	for_each_plane_id_on_crtc(crtc, plane_id) {
5781
		struct skl_plane_wm *wm = &out->planes[plane_id];
5782

5783
		for (level = 0; level <= max_level; level++) {
5784 5785
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5786 5787
			else
				val = I915_READ(CUR_WM(pipe, level));
5788

5789
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5790 5791
		}

5792 5793
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5794 5795 5796 5797
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5798 5799
	}

5800
	if (!crtc->active)
5801
		return;
5802

5803
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5804 5805
}

5806
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5807
{
5808
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5809
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5810
	struct intel_crtc *crtc;
5811
	struct intel_crtc_state *cstate;
5812

5813
	skl_ddb_get_hw_state(dev_priv, ddb);
5814 5815
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5816 5817 5818

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5819 5820
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5821
	}
5822

5823 5824 5825 5826
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5827 5828
}

5829
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5830
{
5831
	struct drm_device *dev = crtc->base.dev;
5832
	struct drm_i915_private *dev_priv = to_i915(dev);
5833
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5834
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5835
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5836
	enum pipe pipe = crtc->pipe;
5837
	static const i915_reg_t wm0_pipe_reg[] = {
5838 5839 5840 5841 5842 5843
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5844
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5845
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5846

5847 5848
	memset(active, 0, sizeof(*active));

5849
	active->pipe_enabled = crtc->active;
5850 5851

	if (active->pipe_enabled) {
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5866
		int level, max_level = ilk_wm_max_level(dev_priv);
5867 5868 5869 5870 5871 5872 5873 5874 5875

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5876

5877
	crtc->wm.active.ilk = *active;
5878 5879
}

5880 5881 5882 5883 5884
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5885 5886 5887
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5888
	u32 tmp;
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5911 5912 5913 5914
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5915
	u32 tmp;
5916 5917 5918 5919

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5920
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5921
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5922
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5923
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5924
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5925
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5926
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5927 5928 5929 5930 5931
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5932 5933 5934
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5935 5936

	tmp = I915_READ(DSPFW2);
5937 5938 5939
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5940 5941 5942 5943 5944 5945

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5946 5947
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5948 5949

		tmp = I915_READ(DSPFW8_CHV);
5950 5951
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5952 5953

		tmp = I915_READ(DSPFW9_CHV);
5954 5955
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5956 5957 5958

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5959 5960 5961 5962 5963 5964 5965 5966 5967
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5968 5969
	} else {
		tmp = I915_READ(DSPFW7);
5970 5971
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5972 5973 5974

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5975 5976 5977 5978 5979 5980
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5981 5982 5983 5984 5985 5986
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5987
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5988 5989 5990 5991 5992 5993 5994 5995
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5996
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6127
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6128 6129
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6130
	struct intel_crtc *crtc;
6131 6132 6133 6134 6135 6136 6137 6138
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6139
		mutex_lock(&dev_priv->pcu_lock);
6140

6141
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6142 6143 6144
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6145 6146 6147 6148 6149 6150 6151 6152 6153
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6154
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6168

6169
		mutex_unlock(&dev_priv->pcu_lock);
6170 6171
	}

6172
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6188
			struct g4x_pipe_wm *raw =
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6210
		crtc_state->wm.vlv.intermediate = *active;
6211

6212
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6213 6214 6215 6216 6217
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6218
	}
6219 6220 6221 6222 6223

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6248
			struct g4x_pipe_wm *raw =
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6289
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6290
{
6291
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6292
	struct intel_crtc *crtc;
6293

6294 6295
	ilk_init_lp_watermarks(dev_priv);

6296
	for_each_intel_crtc(&dev_priv->drm, crtc)
6297 6298 6299 6300 6301 6302 6303
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6304
	if (INTEL_GEN(dev_priv) >= 7) {
6305 6306 6307
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6308

6309
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6310 6311
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6312
	else if (IS_IVYBRIDGE(dev_priv))
6313 6314
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6315 6316 6317 6318 6319

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6320 6321
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6322
 * @crtc: the #intel_crtc on which to compute the WM
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6353
void intel_update_watermarks(struct intel_crtc *crtc)
6354
{
6355
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6356 6357

	if (dev_priv->display.update_wm)
6358
		dev_priv->display.update_wm(crtc);
6359 6360
}

6361 6362 6363 6364
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6365 6366 6367
	if (!HAS_IPC(dev_priv))
		return;

6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6383 6384 6385 6386 6387 6388
	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
	else
		dev_priv->ipc_enabled = true;

6389 6390 6391
	intel_enable_ipc(dev_priv);
}

6392
/*
6393 6394 6395 6396
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

6397
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6398 6399 6400
{
	u16 rgvswctl;

6401
	lockdep_assert_held(&mchdev_lock);
6402

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6420
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6421
{
6422
	u32 rgvmodectl;
6423 6424
	u8 fmax, fmin, fstart, vstart;

6425 6426
	spin_lock_irq(&mchdev_lock);

6427 6428
	rgvmodectl = I915_READ(MEMMODECTL);

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6449
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6450 6451
		PXVFREQ_PX_SHIFT;

6452 6453
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6454

6455 6456 6457
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6474
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6475
		DRM_ERROR("stuck trying to change perf mode\n");
6476
	mdelay(1);
6477

6478
	ironlake_set_drps(dev_priv, fstart);
6479

6480 6481
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6482
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6483
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6484
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6485 6486

	spin_unlock_irq(&mchdev_lock);
6487 6488
}

6489
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6490
{
6491 6492 6493 6494 6495
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6496 6497 6498 6499 6500 6501 6502 6503 6504

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6505
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6506
	mdelay(1);
6507 6508
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6509
	mdelay(1);
6510

6511
	spin_unlock_irq(&mchdev_lock);
6512 6513
}

6514 6515 6516 6517 6518
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6519
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6520
{
6521
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6522
	u32 limits;
6523

6524 6525 6526 6527 6528 6529
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6530
	if (INTEL_GEN(dev_priv) >= 9) {
6531 6532 6533
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6534
	} else {
6535 6536 6537
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6538
	}
6539 6540 6541 6542

	return limits;
}

C
Chris Wilson 已提交
6543
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6544
{
6545
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6546 6547
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6548

C
Chris Wilson 已提交
6549
	lockdep_assert_held(&rps->power.mutex);
6550

C
Chris Wilson 已提交
6551
	if (new_power == rps->power.mode)
6552 6553 6554 6555 6556 6557
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6558 6559
		ei_up = 16000;
		threshold_up = 95;
6560 6561

		/* Downclock if less than 85% busy over 32ms */
6562 6563
		ei_down = 32000;
		threshold_down = 85;
6564 6565 6566 6567
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6568 6569
		ei_up = 13000;
		threshold_up = 90;
6570 6571

		/* Downclock if less than 75% busy over 32ms */
6572 6573
		ei_down = 32000;
		threshold_down = 75;
6574 6575 6576 6577
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6578 6579
		ei_up = 10000;
		threshold_up = 85;
6580 6581

		/* Downclock if less than 60% busy over 32ms */
6582 6583
		ei_down = 32000;
		threshold_down = 60;
6584 6585 6586
		break;
	}

6587 6588 6589 6590 6591 6592
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6593
	I915_WRITE(GEN6_RP_UP_EI,
6594
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6595
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6596 6597
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6598 6599

	I915_WRITE(GEN6_RP_DOWN_EI,
6600
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6601
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6612

6613
skip_hw_write:
C
Chris Wilson 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6658 6659
}

C
Chris Wilson 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6678 6679
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6680
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6681 6682
	u32 mask = 0;

6683
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6684
	if (val > rps->min_freq_softlimit)
6685
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6686
	if (val < rps->max_freq_softlimit)
6687
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6688

6689 6690
	mask &= dev_priv->pm_rps_events;

6691
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6692 6693
}

6694 6695 6696
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6697
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6698
{
6699 6700
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6701 6702 6703
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6704
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6705
		gen6_set_rps_thresholds(dev_priv, val);
6706

6707
		if (INTEL_GEN(dev_priv) >= 9)
6708 6709
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6710
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6711 6712 6713 6714 6715 6716 6717
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6718
	}
6719 6720 6721 6722

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6723
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6724
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6725

6726
	rps->cur_freq = val;
6727
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6728 6729

	return 0;
6730 6731
}

6732
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6733
{
6734 6735
	int err;

6736
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6737 6738 6739
		      "Odd GPU freq value\n"))
		val &= ~1;

6740 6741
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6742
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6743 6744 6745 6746
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6747
		gen6_set_rps_thresholds(dev_priv, val);
6748
	}
6749

6750
	dev_priv->gt_pm.rps.cur_freq = val;
6751
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6752 6753

	return 0;
6754 6755
}

6756
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6757 6758
 *
 * * If Gfx is Idle, then
6759 6760 6761
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6762 6763 6764
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6765 6766
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6767
	int err;
6768

6769
	if (rps->cur_freq <= val)
6770 6771
		return;

6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6784
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6785
	err = valleyview_set_rps(dev_priv, val);
6786
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6787 6788 6789

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6790 6791
}

6792 6793
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6794 6795
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6796
	mutex_lock(&dev_priv->pcu_lock);
6797
	if (rps->enabled) {
6798 6799
		u8 freq;

6800
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6801 6802
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6803
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6804

6805 6806
		gen6_enable_rps_interrupts(dev_priv);

6807 6808 6809
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6810 6811
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6812

6813
		if (intel_set_rps(dev_priv,
6814
				  clamp(freq,
6815 6816
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6817
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6818
	}
6819
	mutex_unlock(&dev_priv->pcu_lock);
6820 6821
}

6822 6823
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6824 6825
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6826 6827 6828 6829 6830 6831 6832
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6833
	mutex_lock(&dev_priv->pcu_lock);
6834
	if (rps->enabled) {
6835
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6836
			vlv_set_rps_idle(dev_priv);
6837
		else
6838 6839
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6840 6841
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6842
	}
6843
	mutex_unlock(&dev_priv->pcu_lock);
6844 6845
}

6846
void gen6_rps_boost(struct i915_request *rq)
6847
{
6848
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6849
	unsigned long flags;
6850 6851
	bool boost;

6852 6853 6854
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6855
	if (!rps->enabled)
6856
		return;
6857

6858
	if (i915_request_signaled(rq))
6859 6860
		return;

6861
	/* Serializes with i915_request_retire() */
6862
	boost = false;
6863
	spin_lock_irqsave(&rq->lock, flags);
6864 6865
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6866
		rq->waitboost = true;
6867
	}
6868
	spin_unlock_irqrestore(&rq->lock, flags);
6869 6870 6871
	if (!boost)
		return;

6872 6873
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6874

6875
	atomic_inc(&rps->boosts);
6876 6877
}

6878
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6879
{
6880
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6881 6882
	int err;

6883
	lockdep_assert_held(&dev_priv->pcu_lock);
6884 6885
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6886

6887 6888
	if (!rps->enabled) {
		rps->cur_freq = val;
6889 6890 6891
		return 0;
	}

6892
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6893
		err = valleyview_set_rps(dev_priv, val);
6894
	else
6895 6896 6897
		err = gen6_set_rps(dev_priv, val);

	return err;
6898 6899
}

6900
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6901 6902
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6903
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6904 6905
}

6906
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6907 6908 6909 6910
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6911
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6912 6913
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6914 6915 6916 6917
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6918
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6919
	I915_WRITE(GEN6_RP_CONTROL, 0);
6920 6921
}

6922
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6923 6924 6925 6926
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6927 6928 6929 6930 6931
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6932
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6933
{
6934
	/* We're doing forcewake before Disabling RC6,
6935
	 * This what the BIOS expects when going into suspend */
6936
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6937

6938
	I915_WRITE(GEN6_RC_CONTROL, 0);
6939

6940
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6941 6942
}

6943 6944 6945 6946 6947
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6948
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6949 6950 6951
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6963 6964

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6965
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6966 6967 6968 6969 6970 6971 6972 6973
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6974 6975
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6976
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6977 6978 6979 6980 6981 6982 6983
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6984
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6985 6986 6987
		enable_rc6 = false;
	}

6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7002 7003 7004 7005 7006 7007
		enable_rc6 = false;
	}

	return enable_rc6;
}

7008
static bool sanitize_rc6(struct drm_i915_private *i915)
7009
{
7010
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
7011

7012 7013 7014
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
7015

7016 7017
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7018
		DRM_INFO("RC6 disabled by BIOS\n");
7019
		info->has_rc6 = 0;
7020 7021
	}

7022 7023 7024 7025 7026 7027 7028 7029
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
7030

7031
	return info->has_rc6;
7032 7033
}

7034
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7035
{
7036 7037
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7038
	/* All of these values are in units of 50MHz */
7039

7040
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
7041
	if (IS_GEN9_LP(dev_priv)) {
7042
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7043 7044 7045
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
7046
	} else {
7047
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7048 7049 7050
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
7051
	}
7052
	/* hw_max = RP0 until we check for overclocking */
7053
	rps->max_freq = rps->rp0_freq;
7054

7055
	rps->efficient_freq = rps->rp1_freq;
7056
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7057
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7058 7059 7060 7061 7062
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
7063
			rps->efficient_freq =
7064 7065
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
7066 7067
					rps->min_freq,
					rps->max_freq);
7068 7069
	}

7070
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7071
		/* Store the frequency values in 16.66 MHZ units, which is
7072 7073
		 * the natural hardware unit for SKL
		 */
7074 7075 7076 7077 7078
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
7079
	}
7080 7081
}

7082
static void reset_rps(struct drm_i915_private *dev_priv,
7083
		      int (*set)(struct drm_i915_private *, u8))
7084
{
7085 7086
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
7087 7088

	/* force a reset */
C
Chris Wilson 已提交
7089
	rps->power.mode = -1;
7090
	rps->cur_freq = -1;
7091

7092 7093
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
7094 7095
}

J
Jesse Barnes 已提交
7096
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
7097
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
7098 7099 7100
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

7101
	/* Program defaults and thresholds for RPS */
7102
	if (IS_GEN(dev_priv, 9))
7103 7104
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7105 7106 7107 7108 7109

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
7110 7111
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

7112 7113 7114
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7115
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
7116 7117 7118 7119

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7120
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
7121
{
7122
	struct intel_engine_cs *engine;
7123
	enum intel_engine_id id;
7124
	u32 rc6_mode;
Z
Zhe Wang 已提交
7125 7126 7127 7128 7129 7130

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7131
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7132 7133 7134 7135 7136

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
7137 7138 7139 7140 7141 7142 7143 7144
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
7145
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
7146
	} else {
7147
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
7148 7149
	}

Z
Zhe Wang 已提交
7150 7151
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7152
	for_each_engine(engine, dev_priv, id)
7153
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7154

7155
	if (HAS_GUC(dev_priv))
7156 7157
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
7158 7159
	I915_WRITE(GEN6_RC_SLEEP, 0);

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7183

Z
Zhe Wang 已提交
7184
	/* 3a: Enable RC6 */
7185
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
7186 7187 7188 7189 7190 7191 7192

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7193
	I915_WRITE(GEN6_RC_CONTROL,
7194 7195 7196
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7197

7198 7199
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7200
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7201
	 */
7202
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7203 7204
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7205 7206
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7207

7208
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7209 7210
}

7211
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7212
{
7213
	struct intel_engine_cs *engine;
7214
	enum intel_engine_id id;
7215 7216 7217 7218

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7219
	/* 1b: Get forcewake during program sequence. Although the driver
7220
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7221
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7222 7223 7224 7225 7226 7227 7228 7229

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7230
	for_each_engine(engine, dev_priv, id)
7231
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7232
	I915_WRITE(GEN6_RC_SLEEP, 0);
7233
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7234 7235

	/* 3: Enable RC6 */
7236

7237 7238 7239 7240
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7241

7242 7243 7244 7245 7246
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7247 7248
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7249 7250 7251
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
7252
	I915_WRITE(GEN6_RPNSWREQ,
7253
		   HSW_FREQUENCY(rps->rp1_freq));
7254
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7255
		   HSW_FREQUENCY(rps->rp1_freq));
7256 7257 7258 7259 7260
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7261 7262
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7263 7264 7265 7266 7267 7268 7269

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7270

7271
	/* 2: Enable RPS */
7272 7273 7274 7275 7276 7277 7278 7279
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7280
	reset_rps(dev_priv, gen6_set_rps);
7281

7282
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7283 7284
}

7285
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7286
{
7287
	struct intel_engine_cs *engine;
7288
	enum intel_engine_id id;
7289
	u32 rc6vids, rc6_mask;
7290
	u32 gtfifodbg;
7291
	int ret;
7292 7293 7294 7295

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7296 7297
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7298 7299 7300 7301
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7302
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7313
	for_each_engine(engine, dev_priv, id)
7314
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7315 7316 7317

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7318
	if (IS_IVYBRIDGE(dev_priv))
7319 7320 7321
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7322
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7323 7324
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7325
	/* We don't use those on Haswell */
7326 7327 7328 7329 7330
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7331 7332 7333 7334 7335
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7336 7337
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7338
	if (IS_GEN(dev_priv, 6) && ret) {
7339
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7340
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7341 7342 7343 7344 7345 7346 7347 7348 7349
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7350
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7351 7352
}

7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7372
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7373
{
7374
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7375 7376
	const int min_freq = 15;
	const int scaling_factor = 180;
7377 7378
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7379
	unsigned int max_gpu_freq, min_gpu_freq;
7380
	struct cpufreq_policy *policy;
7381

7382
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7383

7384 7385 7386
	if (rps->max_freq <= rps->min_freq)
		return;

7387 7388 7389 7390 7391 7392 7393 7394 7395
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7396
		max_ia_freq = tsc_khz;
7397
	}
7398 7399 7400 7401

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7402
	min_ring_freq = I915_READ(DCLK) & 0xf;
7403 7404
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7405

7406 7407
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7408
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7409
		/* Convert GT frequency to 50 HZ units */
7410 7411
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7412 7413
	}

7414 7415 7416 7417 7418
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7419
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7420
		const int diff = max_gpu_freq - gpu_freq;
7421 7422
		unsigned int ia_freq = 0, ring_freq = 0;

7423
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7424 7425 7426 7427 7428
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7429
		} else if (INTEL_GEN(dev_priv) >= 8) {
7430 7431
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7432
		} else if (IS_HASWELL(dev_priv)) {
7433
			ring_freq = mult_frac(gpu_freq, 5, 4);
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7450

B
Ben Widawsky 已提交
7451 7452
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7453 7454 7455
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7456 7457 7458
	}
}

7459
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7460 7461 7462
{
	u32 val, rp0;

7463
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7464

7465
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7480
	}
7481 7482 7483

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7497 7498 7499 7500
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7501 7502 7503
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7504 7505 7506
	return rp1;
}

7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7529
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7530 7531 7532
{
	u32 val, rp0;

7533
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7546
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7547
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7548
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7549 7550 7551 7552 7553
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7554
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7555
{
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7567 7568
}

7569 7570 7571 7572 7573
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7574
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7575 7576 7577
			     dev_priv->vlv_pctx->stolen->start);
}

7578 7579 7580 7581 7582 7583 7584 7585 7586

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7587
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7588
{
7589 7590
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7591 7592 7593 7594
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7595
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7596 7597
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7598 7599 7600 7601

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7602 7603

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7604 7605
}

7606
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7607 7608
{
	struct drm_i915_gem_object *pctx;
7609 7610
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7611 7612 7613 7614 7615
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7616
		resource_size_t pcbr_offset;
7617

7618
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7619
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7620
								      pcbr_offset,
7621
								      I915_GTT_OFFSET_NONE,
7622 7623 7624 7625
								      pctx_size);
		goto out;
	}

7626 7627
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7628 7629 7630 7631 7632 7633 7634 7635
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7636
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7637 7638
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7639
		goto out;
7640 7641
	}

7642 7643 7644 7645 7646
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7647 7648 7649
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7650
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7651 7652 7653
	dev_priv->vlv_pctx = pctx;
}

7654
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7655
{
7656
	struct drm_i915_gem_object *pctx;
7657

7658 7659 7660
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7661 7662
}

7663 7664
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7665
	dev_priv->gt_pm.rps.gpll_ref_freq =
7666 7667 7668 7669 7670
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7671
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7672 7673
}

7674
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7675
{
7676
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7677
	u32 val;
7678

7679
	valleyview_setup_pctx(dev_priv);
7680

7681 7682
	vlv_init_gpll_ref_freq(dev_priv);

7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7696
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7697

7698 7699
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7700
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7701 7702
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7703

7704
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7705
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7706 7707
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7708

7709
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7710
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7711 7712
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7713

7714
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7715
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7716 7717
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7718 7719
}

7720
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7721
{
7722
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7723
	u32 val;
7724

7725
	cherryview_setup_pctx(dev_priv);
7726

7727 7728
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7729
	mutex_lock(&dev_priv->sb_lock);
7730
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7731
	mutex_unlock(&dev_priv->sb_lock);
7732

7733 7734 7735 7736
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7737
	default:
7738 7739 7740
		dev_priv->mem_freq = 1600;
		break;
	}
7741
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7742

7743 7744
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7745
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7746 7747
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7748

7749
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7750
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7751 7752
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7753

7754
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7755
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7756 7757
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7758

7759
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7760
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7761 7762
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7763

7764 7765
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7766
		  "Odd GPU freq values\n");
7767 7768
}

7769
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7770
{
7771
	valleyview_cleanup_pctx(dev_priv);
7772 7773
}

7774
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7775
{
7776
	struct intel_engine_cs *engine;
7777
	enum intel_engine_id id;
7778
	u32 gtfifodbg, rc6_mode, pcbr;
7779

7780 7781
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7782 7783 7784 7785 7786 7787 7788 7789 7790 7791
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7792
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7793

7794 7795 7796
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7797 7798 7799 7800 7801
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7802
	for_each_engine(engine, dev_priv, id)
7803
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7804 7805
	I915_WRITE(GEN6_RC_SLEEP, 0);

7806 7807
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7808

7809
	/* Allows RC6 residency counter to work */
7810 7811 7812 7813 7814 7815 7816 7817 7818
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7819 7820
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7821
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7822 7823
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7834
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7835 7836 7837 7838 7839 7840 7841
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7842
	/* 2: Enable RPS */
7843 7844
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7845
		   GEN6_RP_MEDIA_IS_GFX |
7846 7847 7848 7849
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7850 7851 7852 7853 7854 7855
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7856 7857
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7858 7859 7860
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7861
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7862 7863
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7864
	reset_rps(dev_priv, valleyview_set_rps);
7865

7866
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7867 7868
}

7869
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7870
{
7871
	struct intel_engine_cs *engine;
7872
	enum intel_engine_id id;
7873
	u32 gtfifodbg;
7874

7875 7876
	valleyview_check_pctx(dev_priv);

7877 7878
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7879 7880
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7881 7882 7883
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7884
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7885

7886 7887 7888
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7889 7890 7891 7892
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7893
	for_each_engine(engine, dev_priv, id)
7894
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7895

7896
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7897

7898
	/* Allows RC6 residency counter to work */
7899
	I915_WRITE(VLV_COUNTER_CONTROL,
7900 7901
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7902
				      VLV_RENDER_RC0_COUNT_EN |
7903 7904
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7905

7906 7907
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7908

7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7934 7935 7936 7937 7938 7939
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7940
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7941

7942 7943 7944
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7945
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7946 7947
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7948
	reset_rps(dev_priv, valleyview_set_rps);
7949

7950
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7951 7952
}

7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7982
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7983 7984 7985 7986 7987 7988
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7989
	lockdep_assert_held(&mchdev_lock);
7990

7991
	diff1 = now - dev_priv->ips.last_time1;
7992 7993 7994 7995 7996 7997 7998

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7999
		return dev_priv->ips.chipset_power;
8000 8001 8002 8003 8004 8005 8006 8007

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
8008 8009
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
8010 8011
		diff += total_count;
	} else {
8012
		diff = total_count - dev_priv->ips.last_count1;
8013 8014 8015
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8016 8017
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

8028 8029
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
8030

8031
	dev_priv->ips.chipset_power = ret;
8032 8033 8034 8035

	return ret;
}

8036 8037
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
8038 8039
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8040

8041
	if (!IS_GEN(dev_priv, 5))
8042 8043
		return 0;

8044 8045 8046 8047 8048
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8049 8050 8051 8052

	return val;
}

8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8080
{
8081 8082 8083
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

8084
	if (INTEL_INFO(dev_priv)->is_mobile)
8085 8086 8087
		return vm > 0 ? vm : 0;

	return vd;
8088 8089
}

8090
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8091
{
8092
	u64 now, diff, diffms;
8093 8094
	u32 count;

8095
	lockdep_assert_held(&mchdev_lock);
8096

8097 8098 8099
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
8100 8101 8102 8103 8104 8105 8106

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

8107 8108
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
8109 8110
		diff += count;
	} else {
8111
		diff = count - dev_priv->ips.last_count2;
8112 8113
	}

8114 8115
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
8116 8117 8118 8119

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
8120
	dev_priv->ips.gfx_power = diff;
8121 8122
}

8123 8124
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
8125 8126
	intel_wakeref_t wakeref;

8127
	if (!IS_GEN(dev_priv, 5))
8128 8129
		return;

8130 8131 8132 8133 8134
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8135 8136
}

8137
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8138 8139 8140 8141
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

8142
	lockdep_assert_held(&mchdev_lock);
8143

8144
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
8164
	corr2 = (corr * dev_priv->ips.corr);
8165 8166 8167 8168

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

8169
	__i915_update_gfx_val(dev_priv);
8170

8171
	return dev_priv->ips.gfx_power + state2;
8172 8173
}

8174 8175
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
8176 8177
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8178

8179
	if (!IS_GEN(dev_priv, 5))
8180 8181
		return 0;

8182 8183 8184 8185 8186
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8187

8188 8189
	return val;
}
8190

8191
static struct drm_i915_private *i915_mch_dev;
8192

8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
	i915 = i915_mch_dev;
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
8204 8205
}

8206 8207 8208 8209 8210 8211 8212 8213
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
8214 8215 8216 8217
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
8218

8219 8220 8221
	i915 = mchdev_get();
	if (!i915)
		return 0;
8222

8223 8224 8225 8226 8227 8228
	with_intel_runtime_pm(i915, wakeref) {
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
8229

8230 8231
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
8242
	struct drm_i915_private *i915;
8243

8244 8245 8246
	i915 = mchdev_get();
	if (!i915)
		return false;
8247

8248 8249 8250
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
8251
	spin_unlock_irq(&mchdev_lock);
8252

8253 8254
	drm_dev_put(&i915->drm);
	return true;
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
8266
	struct drm_i915_private *i915;
8267

8268 8269 8270
	i915 = mchdev_get();
	if (!i915)
		return false;
8271

8272 8273 8274
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
8275
	spin_unlock_irq(&mchdev_lock);
8276

8277 8278
	drm_dev_put(&i915->drm);
	return true;
8279 8280 8281 8282 8283 8284 8285 8286 8287 8288
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
8289 8290
	struct drm_i915_private *i915;
	bool ret;
8291

8292 8293 8294
	i915 = mchdev_get();
	if (!i915)
		return false;
8295

8296 8297 8298
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
8311 8312
	struct drm_i915_private *i915;
	bool ret;
8313

8314 8315 8316
	i915 = mchdev_get();
	if (!i915)
		return false;
8317

8318 8319 8320
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
8321
	spin_unlock_irq(&mchdev_lock);
8322

8323
	drm_dev_put(&i915->drm);
8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8350 8351
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8352
	rcu_assign_pointer(i915_mch_dev, dev_priv);
8353 8354 8355 8356 8357 8358

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8359
	rcu_assign_pointer(i915_mch_dev, NULL);
8360
}
8361

8362
static void intel_init_emon(struct drm_i915_private *dev_priv)
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8379
		I915_WRITE(PEW(i), 0);
8380
	for (i = 0; i < 3; i++)
8381
		I915_WRITE(DEW(i), 0);
8382 8383 8384

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8385
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8406
		I915_WRITE(PXW(i), val);
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8422
		I915_WRITE(PXWL(i), 0);
8423 8424 8425 8426 8427 8428

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8429
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8430 8431
}

8432
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8433
{
8434 8435
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8436 8437 8438 8439
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8440
	if (!sanitize_rc6(dev_priv)) {
8441
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8442
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8443
	}
I
Imre Deak 已提交
8444

8445
	mutex_lock(&dev_priv->pcu_lock);
8446 8447

	/* Initialize RPS limits (for userspace) */
8448 8449 8450 8451
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8452
	else if (INTEL_GEN(dev_priv) >= 6)
8453 8454 8455
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8456 8457
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8458

8459 8460
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8461 8462

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8463
		rps->min_freq_softlimit =
8464
			max_t(int,
8465
			      rps->efficient_freq,
8466 8467
			      intel_freq_opcode(dev_priv, 450));

8468
	/* After setting max-softlimit, find the overclock max freq */
8469
	if (IS_GEN(dev_priv, 6) ||
8470 8471 8472 8473 8474 8475
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8476
					 (rps->max_freq & 0xff) * 50,
8477
					 (params & 0xff) * 50);
8478
			rps->max_freq = params & 0xff;
8479 8480 8481
		}
	}

8482
	/* Finally allow us to boost to max by default */
8483
	rps->boost_freq = rps->max_freq;
8484

8485
	mutex_unlock(&dev_priv->pcu_lock);
8486 8487
}

8488
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8489
{
8490
	if (IS_VALLEYVIEW(dev_priv))
8491
		valleyview_cleanup_gt_powersave(dev_priv);
8492

8493
	if (!HAS_RC6(dev_priv))
8494
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8495 8496
}

8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8513 8514
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8515 8516
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8517
	intel_disable_gt_powersave(dev_priv);
8518

8519 8520
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8521
	else if (INTEL_GEN(dev_priv) >= 6)
8522
		gen6_reset_rps_interrupts(dev_priv);
8523 8524
}

8525 8526 8527 8528
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8529 8530 8531
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8532
	/* Currently there is no HW configuration to be done to disable. */
8533 8534

	i915->gt_pm.llc_pstate.enabled = false;
8535 8536
}

8537
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8538
{
8539
	lockdep_assert_held(&dev_priv->pcu_lock);
8540

8541 8542 8543
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8544 8545 8546 8547 8548 8549 8550 8551
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8552 8553

	dev_priv->gt_pm.rc6.enabled = false;
8554
}
8555

8556 8557 8558
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8559

8560 8561 8562
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8563
	if (INTEL_GEN(dev_priv) >= 9)
8564
		gen9_disable_rps(dev_priv);
8565
	else if (IS_CHERRYVIEW(dev_priv))
8566
		cherryview_disable_rps(dev_priv);
8567
	else if (IS_VALLEYVIEW(dev_priv))
8568
		valleyview_disable_rps(dev_priv);
8569
	else if (INTEL_GEN(dev_priv) >= 6)
8570
		gen6_disable_rps(dev_priv);
8571
	else if (IS_IRONLAKE_M(dev_priv))
8572
		ironlake_disable_drps(dev_priv);
8573 8574

	dev_priv->gt_pm.rps.enabled = false;
8575 8576 8577 8578 8579
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8580

8581 8582
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8583 8584 8585
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8586
	mutex_unlock(&dev_priv->pcu_lock);
8587 8588
}

8589 8590 8591 8592
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8593 8594 8595
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8596
	gen6_update_ring_freq(i915);
8597 8598

	i915->gt_pm.llc_pstate.enabled = true;
8599 8600
}

8601
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8602
{
8603
	lockdep_assert_held(&dev_priv->pcu_lock);
8604

8605 8606 8607
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8618 8619

	dev_priv->gt_pm.rc6.enabled = true;
8620
}
8621

8622 8623 8624
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8625

8626
	lockdep_assert_held(&dev_priv->pcu_lock);
8627

8628 8629 8630
	if (rps->enabled)
		return;

8631 8632 8633 8634
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8635
	} else if (INTEL_GEN(dev_priv) >= 9) {
8636 8637 8638
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8639
	} else if (INTEL_GEN(dev_priv) >= 6) {
8640
		gen6_enable_rps(dev_priv);
8641 8642 8643
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8644
	}
8645

8646 8647
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8648

8649 8650
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8651 8652

	rps->enabled = true;
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8663 8664
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8665 8666 8667
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8668

8669
	mutex_unlock(&dev_priv->pcu_lock);
8670
}
I
Imre Deak 已提交
8671

8672
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8673 8674 8675 8676 8677 8678 8679 8680 8681
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8682
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8683
{
8684
	enum pipe pipe;
8685

8686
	for_each_pipe(dev_priv, pipe) {
8687 8688 8689
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8690 8691 8692

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8693 8694 8695
	}
}

8696
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8697
{
8698
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8699

8700 8701 8702 8703
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8704 8705 8706
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8724
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8725 8726 8727
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8728

8729 8730 8731 8732 8733 8734 8735
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8736
	if (IS_IRONLAKE_M(dev_priv)) {
8737
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8738 8739 8740 8741 8742 8743 8744 8745
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8746 8747
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8748 8749 8750 8751 8752 8753
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8754

8755
	/* WaDisableRenderCachePipelinedFlush:ilk */
8756 8757
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8758

8759 8760 8761
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8762
	g4x_disable_trickle_feed(dev_priv);
8763

8764
	ibx_init_clock_gating(dev_priv);
8765 8766
}

8767
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8768 8769
{
	int pipe;
8770
	u32 val;
8771 8772 8773 8774 8775 8776

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8777 8778 8779
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8780 8781
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8782 8783 8784
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8785
	for_each_pipe(dev_priv, pipe) {
8786 8787 8788
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8789
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8790
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8791 8792 8793
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8794 8795
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8796
	/* WADP0ClockGatingDisable */
8797
	for_each_pipe(dev_priv, pipe) {
8798 8799 8800
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8801 8802
}

8803
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8804
{
8805
	u32 tmp;
8806 8807

	tmp = I915_READ(MCH_SSKPD);
8808 8809 8810
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8811 8812
}

8813
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8814
{
8815
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8816

8817
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8818 8819 8820 8821 8822

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8823
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8824 8825 8826
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8827 8828 8829
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8830 8831 8832
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8833 8834 8835 8836
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8837 8838
	 */
	I915_WRITE(GEN6_GT_MODE,
8839
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8840

8841
	I915_WRITE(CACHE_MODE_0,
8842
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8858
	 *
8859 8860
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8861 8862 8863 8864 8865
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8866
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8867 8868
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8869

8870 8871 8872 8873 8874 8875 8876 8877
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8878 8879 8880 8881 8882 8883 8884 8885
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8886 8887
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8888 8889 8890 8891 8892 8893 8894
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8895 8896 8897 8898
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8899

8900
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8901

8902
	cpt_init_clock_gating(dev_priv);
8903

8904
	gen6_check_mch_setup(dev_priv);
8905 8906 8907 8908
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8909
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8910

8911
	/*
8912
	 * WaVSThreadDispatchOverride:ivb,vlv
8913 8914 8915 8916
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8917 8918 8919 8920 8921 8922 8923 8924
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8925
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8926 8927 8928 8929 8930
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8931
	if (HAS_PCH_LPT_LP(dev_priv))
8932 8933 8934
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8935 8936

	/* WADPOClockGatingDisable:hsw */
8937 8938
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8939
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8940 8941
}

8942
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8943
{
8944
	if (HAS_PCH_LPT_LP(dev_priv)) {
8945
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8946 8947 8948 8949 8950 8951

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8952 8953 8954 8955 8956
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8957
	u32 val;
8958 8959 8960 8961 8962

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8963 8964 8965 8966 8967
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8968 8969 8970 8971 8972 8973 8974 8975 8976 8977

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8978 8979 8980 8981 8982
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8983 8984 8985 8986

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8987 8988
}

8989 8990 8991 8992 8993
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8994
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8995 8996
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8997 8998
}

8999
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9000
{
9001
	u32 val;
9002 9003
	cnp_init_clock_gating(dev_priv);

9004 9005 9006 9007
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

9008 9009 9010 9011 9012 9013 9014 9015
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

9016 9017 9018
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
9019 9020
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9021 9022
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9023

R
Rodrigo Vivi 已提交
9024 9025 9026 9027 9028
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

9029
	/* WaDisableVFclkgate:cnl */
9030
	/* WaVFUnitClockGatingDisable:cnl */
9031 9032 9033
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9034 9035
}

9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

9046
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9047
{
9048
	gen9_init_clock_gating(dev_priv);
9049 9050 9051 9052 9053

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9054 9055 9056 9057 9058

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9059

9060
	/* WaFbcNukeOnHostModify:kbl */
9061 9062
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9063 9064
}

9065
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9066
{
9067
	gen9_init_clock_gating(dev_priv);
9068 9069 9070 9071

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
9072 9073 9074 9075

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9076 9077
}

9078
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
9079
{
9080 9081 9082
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
9083
	enum pipe pipe;
B
Ben Widawsky 已提交
9084

9085
	/* WaSwitchSolVfFArbitrationPriority:bdw */
9086
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9087

9088
	/* WaPsrDPAMaskVBlankInSRD:bdw */
9089 9090 9091
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

9092
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9093
	for_each_pipe(dev_priv, pipe) {
9094
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
9095
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
9096
			   BDW_DPRS_MASK_VBLANK_SRD);
9097
	}
9098

9099 9100 9101 9102 9103
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9104

9105 9106
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9107 9108 9109 9110

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9111

9112 9113
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
9114

9115 9116
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9117

9118 9119 9120 9121
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

9122
	lpt_init_clock_gating(dev_priv);
9123 9124 9125 9126 9127 9128 9129 9130

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
9131 9132
}

9133
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9134
{
9135 9136 9137 9138 9139
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

9140
	/* This is required by WaCatErrorRejectionIssue:hsw */
9141 9142 9143 9144
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9145 9146 9147
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9148

9149 9150 9151
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9152 9153 9154 9155
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

9156
	/* WaDisable4x2SubspanOptimization:hsw */
9157 9158
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9159

9160 9161 9162
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9163 9164 9165 9166
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9167 9168
	 */
	I915_WRITE(GEN7_GT_MODE,
9169
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9170

9171 9172 9173 9174
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

9175
	/* WaSwitchSolVfFArbitrationPriority:hsw */
9176 9177
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

9178
	lpt_init_clock_gating(dev_priv);
9179 9180
}

9181
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9182
{
9183
	u32 snpcr;
9184

9185
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9186

9187
	/* WaDisableEarlyCull:ivb */
9188 9189 9190
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9191
	/* WaDisableBackToBackFlipFix:ivb */
9192 9193 9194 9195
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9196
	/* WaDisablePSDDualDispatchEnable:ivb */
9197
	if (IS_IVB_GT1(dev_priv))
9198 9199 9200
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9201 9202 9203
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9204
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9205 9206 9207
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9208
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9209 9210 9211
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9212
		   GEN7_WA_L3_CHICKEN_MODE);
9213
	if (IS_IVB_GT1(dev_priv))
9214 9215
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9216 9217 9218 9219
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9220 9221
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9222
	}
9223

9224
	/* WaForceL3Serialization:ivb */
9225 9226 9227
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9228
	/*
9229
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9230
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9231 9232
	 */
	I915_WRITE(GEN6_UCGCTL2,
9233
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9234

9235
	/* This is required by WaCatErrorRejectionIssue:ivb */
9236 9237 9238 9239
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9240
	g4x_disable_trickle_feed(dev_priv);
9241 9242

	gen7_setup_fixed_func_scheduler(dev_priv);
9243

9244 9245 9246 9247 9248
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9249

9250
	/* WaDisable4x2SubspanOptimization:ivb */
9251 9252
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9253

9254 9255 9256
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9257 9258 9259 9260
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9261 9262
	 */
	I915_WRITE(GEN7_GT_MODE,
9263
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9264

9265 9266 9267 9268
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9269

9270
	if (!HAS_PCH_NOP(dev_priv))
9271
		cpt_init_clock_gating(dev_priv);
9272

9273
	gen6_check_mch_setup(dev_priv);
9274 9275
}

9276
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9277
{
9278
	/* WaDisableEarlyCull:vlv */
9279 9280 9281
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9282
	/* WaDisableBackToBackFlipFix:vlv */
9283 9284 9285 9286
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9287
	/* WaPsdDispatchEnable:vlv */
9288
	/* WaDisablePSDDualDispatchEnable:vlv */
9289
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9290 9291
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9292

9293 9294 9295
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9296
	/* WaForceL3Serialization:vlv */
9297 9298 9299
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9300
	/* WaDisableDopClockGating:vlv */
9301 9302 9303
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9304
	/* This is required by WaCatErrorRejectionIssue:vlv */
9305 9306 9307 9308
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9309 9310
	gen7_setup_fixed_func_scheduler(dev_priv);

9311
	/*
9312
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9313
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9314 9315
	 */
	I915_WRITE(GEN6_UCGCTL2,
9316
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9317

9318 9319 9320 9321 9322
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9323

9324 9325 9326 9327
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9328 9329
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9330

9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9342 9343 9344 9345 9346 9347
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9348
	/*
9349
	 * WaDisableVLVClockGating_VBIIssue:vlv
9350 9351 9352
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9353
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9354 9355
}

9356
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9357
{
9358 9359 9360 9361 9362
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9363 9364 9365 9366

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9367 9368 9369 9370

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9371 9372 9373 9374

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9375

9376 9377 9378 9379 9380 9381 9382
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9383 9384 9385 9386 9387
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9388 9389
}

9390
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9391
{
9392
	u32 dspclk_gate;
9393 9394 9395 9396 9397 9398 9399 9400 9401

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9402
	if (IS_GM45(dev_priv))
9403 9404
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9405 9406 9407 9408

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9409

9410 9411 9412
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9413
	g4x_disable_trickle_feed(dev_priv);
9414 9415
}

9416
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9417 9418 9419 9420 9421 9422
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9423 9424
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9425 9426 9427

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9428 9429
}

9430
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9431 9432 9433 9434 9435 9436 9437
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9438 9439
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9440 9441 9442

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9443 9444
}

9445
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9446 9447 9448 9449 9450 9451
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9452

9453
	if (IS_PINEVIEW(dev_priv))
9454
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9455 9456 9457

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9458 9459

	/* interrupts should cause a wake up from C3 */
9460
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9461 9462 9463

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9464 9465 9466

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9467 9468
}

9469
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9470 9471
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9472 9473 9474 9475

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9476 9477 9478

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9479 9480
}

9481
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9482
{
9483 9484 9485
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9486 9487
}

9488
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9489
{
9490
	dev_priv->display.init_clock_gating(dev_priv);
9491 9492
}

9493
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9494
{
9495 9496
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9497 9498
}

9499
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9515
	if (IS_ICELAKE(dev_priv))
O
Oscar Mateo 已提交
9516
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9517
	else if (IS_CANNONLAKE(dev_priv))
9518
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9519 9520
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9521
	else if (IS_SKYLAKE(dev_priv))
9522
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9523
	else if (IS_KABYLAKE(dev_priv))
9524
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9525
	else if (IS_BROXTON(dev_priv))
9526
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9527 9528
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9529
	else if (IS_BROADWELL(dev_priv))
9530
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9531
	else if (IS_CHERRYVIEW(dev_priv))
9532
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9533
	else if (IS_HASWELL(dev_priv))
9534
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9535
	else if (IS_IVYBRIDGE(dev_priv))
9536
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9537
	else if (IS_VALLEYVIEW(dev_priv))
9538
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9539
	else if (IS_GEN(dev_priv, 6))
9540
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9541
	else if (IS_GEN(dev_priv, 5))
9542
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9543 9544
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9545
	else if (IS_I965GM(dev_priv))
9546
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9547
	else if (IS_I965G(dev_priv))
9548
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9549
	else if (IS_GEN(dev_priv, 3))
9550 9551 9552
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9553
	else if (IS_GEN(dev_priv, 2))
9554 9555 9556 9557 9558 9559 9560
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9561
/* Set up chip specific power management-related functions */
9562
void intel_init_pm(struct drm_i915_private *dev_priv)
9563
{
9564
	/* For cxsr */
9565
	if (IS_PINEVIEW(dev_priv))
9566
		i915_pineview_get_mem_freq(dev_priv);
9567
	else if (IS_GEN(dev_priv, 5))
9568
		i915_ironlake_get_mem_freq(dev_priv);
9569

9570
	/* For FIFO watermark updates */
9571
	if (INTEL_GEN(dev_priv) >= 9) {
9572
		skl_setup_wm_latency(dev_priv);
9573
		dev_priv->display.initial_watermarks = skl_initial_wm;
9574
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9575
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9576
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9577
		ilk_setup_wm_latency(dev_priv);
9578

9579
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9580
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9581
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9582
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9583
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9584 9585 9586 9587 9588 9589
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9590 9591 9592 9593
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9594
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9595
		vlv_setup_wm_latency(dev_priv);
9596
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9597
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9598
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9599
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9600
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9601 9602 9603 9604 9605 9606
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9607
	} else if (IS_PINEVIEW(dev_priv)) {
9608
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9609 9610 9611 9612 9613 9614 9615 9616 9617
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9618
			intel_set_memory_cxsr(dev_priv, false);
9619 9620 9621
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9622
	} else if (IS_GEN(dev_priv, 4)) {
9623
		dev_priv->display.update_wm = i965_update_wm;
9624
	} else if (IS_GEN(dev_priv, 3)) {
9625 9626
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9627
	} else if (IS_GEN(dev_priv, 2)) {
9628
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9629
			dev_priv->display.update_wm = i845_update_wm;
9630
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9631 9632
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9633
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9634 9635 9636
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9637 9638 9639
	}
}

9640 9641
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9642
	u32 flags =
9643 9644 9645 9646 9647 9648
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9649
		return -ENODEV;
9650 9651 9652
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9653
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9654 9655 9656 9657
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9658
		MISSING_CASE(flags);
9659 9660 9661 9662 9663 9664
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9665
	u32 flags =
9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9685
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9686
{
9687 9688
	int status;

9689
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9690

9691 9692 9693 9694 9695 9696
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9697 9698
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9699 9700 9701
		return -EAGAIN;
	}

9702 9703 9704
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9705

9706 9707 9708
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9709 9710
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9711 9712 9713
		return -ETIMEDOUT;
	}

9714 9715
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9716

9717 9718 9719 9720 9721 9722
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9723 9724
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9725 9726 9727
		return status;
	}

B
Ben Widawsky 已提交
9728 9729 9730
	return 0;
}

9731
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9732 9733
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9734
{
9735 9736
	int status;

9737
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9738

9739 9740 9741 9742 9743 9744
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9745 9746
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9747 9748 9749
		return -EAGAIN;
	}

9750
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9751
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9752
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9753

9754 9755
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9756 9757
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9758 9759
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9760 9761 9762
		return -ETIMEDOUT;
	}

9763
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9764

9765 9766 9767 9768 9769 9770
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9771 9772
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9773 9774 9775
		return status;
	}

B
Ben Widawsky 已提交
9776 9777
	return 0;
}
9778

9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9800
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9801 9802
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9803
 * for @timeout_base_ms and if this times out for another 50 ms with
9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9815
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9830
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9831 9832 9833 9834 9835 9836 9837 9838
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9839
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9840
	 * account for interrupts that could reduce the number of these
9841 9842
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9843 9844 9845 9846
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9847
	ret = wait_for_atomic(COND, 50);
9848 9849 9850 9851 9852 9853 9854
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9855 9856
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9857 9858
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9859 9860 9861 9862
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9863
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9864 9865
}

9866
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9867
{
9868 9869 9870
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9871 9872
}

9873
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9874
{
9875 9876
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9877 9878 9879 9880
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9881
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9882 9883
}

9884
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9885
{
9886 9887
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9888
	/* CHV needs even values */
9889
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9890 9891
}

9892
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9893
{
9894
	if (INTEL_GEN(dev_priv) >= 9)
9895 9896
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9897
	else if (IS_CHERRYVIEW(dev_priv))
9898
		return chv_gpu_freq(dev_priv, val);
9899
	else if (IS_VALLEYVIEW(dev_priv))
9900 9901 9902
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9903 9904
}

9905 9906
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9907
	if (INTEL_GEN(dev_priv) >= 9)
9908 9909
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9910
	else if (IS_CHERRYVIEW(dev_priv))
9911
		return chv_freq_opcode(dev_priv, val);
9912
	else if (IS_VALLEYVIEW(dev_priv))
9913 9914
		return byt_freq_opcode(dev_priv, val);
	else
9915
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9916
}
9917

9918
void intel_pm_setup(struct drm_i915_private *dev_priv)
9919
{
9920
	mutex_init(&dev_priv->pcu_lock);
C
Chris Wilson 已提交
9921
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9922

9923
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9924

9925 9926
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9927
}
9928

9929 9930 9931
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9932
	u32 lower, upper, tmp;
9933
	int loop = 2;
9934

9935 9936
	/*
	 * The register accessed do not need forcewake. We borrow
9937 9938
	 * uncore lock to prevent concurrent access to range reg.
	 */
9939
	lockdep_assert_held(&dev_priv->uncore.lock);
9940

9941 9942
	/*
	 * vlv and chv residency counters are 40 bits in width.
9943 9944
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9945 9946 9947 9948 9949
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9950
	 */
9951 9952
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9964
	} while (upper != tmp && --loop);
9965

9966 9967
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9968 9969 9970 9971
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9972 9973 9974
	return lower | (u64)upper << 8;
}

9975
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9976
			   const i915_reg_t reg)
9977
{
9978 9979 9980 9981
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9982
	u32 mul, div;
9983

9984
	if (!HAS_RC6(dev_priv))
9985 9986
		return 0;

9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

10004 10005
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10006
		mul = 1000000;
10007
		div = dev_priv->czclk_freq;
10008
		overflow_hw = BIT_ULL(40);
10009 10010
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
10011 10012 10013 10014 10015 10016 10017 10018
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
10019

10020 10021
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
10022
	}
10023

10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
10047
}
T
Tvrtko Ursulin 已提交
10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}