intel_pm.c 280.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/pm_runtime.h>
30
#include <drm/drm_plane_helper.h>
31 32
#include "i915_drv.h"
#include "intel_drv.h"
33 34
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
35
#include <drm/drm_atomic_helper.h>
36

B
Ben Widawsky 已提交
37
/**
38 39
 * DOC: RC6
 *
B
Ben Widawsky 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

57
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58
{
59 60 61
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
62
		 * Display WA #0390: skl,kbl
63 64 65 66 67 68 69 70 71
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

72
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
73 74 75
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

76
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
77 78
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79

80 81
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
82 83 84
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
85

86
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
87 88
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
89 90 91 92 93 94

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
95 96
}

97
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98
{
99
	gen9_init_clock_gating(dev_priv);
100

101 102 103 104
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

105 106
	/*
	 * FIXME:
107
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 109
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
110
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
111 112 113 114 115

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
116 117
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

208
	dev_priv->ips.r_t = dev_priv->mem_freq;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
240
		dev_priv->ips.c_m = 0;
241
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
242
		dev_priv->ips.c_m = 1;
243
	} else {
244
		dev_priv->ips.c_m = 2;
245 246 247
	}
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

286 287
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

310 311 312 313
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

314
	mutex_lock(&dev_priv->pcu_lock);
315 316 317 318 319 320 321 322 323 324 325 326 327 328

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

329
	mutex_unlock(&dev_priv->pcu_lock);
330 331
}

332 333 334 335
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

336
	mutex_lock(&dev_priv->pcu_lock);
337 338 339 340 341 342 343 344

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

345
	mutex_unlock(&dev_priv->pcu_lock);
346 347
}

348 349 350
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

351
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
352
{
353
	bool was_enabled;
354
	u32 val;
355

356
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
357
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
358
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
359
		POSTING_READ(FW_BLC_SELF_VLV);
360
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
361
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
362
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
363
		POSTING_READ(FW_BLC_SELF);
364
	} else if (IS_PINEVIEW(dev_priv)) {
365 366 367 368 369 370
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
371
		I915_WRITE(DSPFW3, val);
372
		POSTING_READ(DSPFW3);
373
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
374
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
375 376 377
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
378
		POSTING_READ(FW_BLC_SELF);
379
	} else if (IS_I915GM(dev_priv)) {
380 381 382 383 384
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
385
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
389
		POSTING_READ(INSTPM);
390
	} else {
391
		return false;
392
	}
393

394 395
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

396 397 398 399 400
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
401 402
}

V
Ville Syrjälä 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
440
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
441
{
442 443
	bool ret;

444
	mutex_lock(&dev_priv->wm.wm_mutex);
445
	ret = _intel_set_memory_cxsr(dev_priv, enable);
446 447 448 449
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
450
	mutex_unlock(&dev_priv->wm.wm_mutex);
451 452

	return ret;
453
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
469
static const int pessimal_latency_ns = 5000;
470

471 472 473
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

474
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475
{
476
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
477
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
478
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
479 480
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
481

482
	switch (pipe) {
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
503 504
		MISSING_CASE(pipe);
		return;
505 506
	}

507 508 509 510
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
511 512
}

513 514
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
515 516 517 518 519
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
520
	if (i9xx_plane == PLANE_B)
521 522
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

523 524
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
525 526 527 528

	return size;
}

529 530
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
531 532 533 534 535
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
536
	if (i9xx_plane == PLANE_B)
537 538 539
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

540 541
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
542 543 544 545

	return size;
}

546 547
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
548 549 550 551 552 553 554
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

555 556
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
557 558 559 560 561 562

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
563 564 565 566 567
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
570 571 572 573 574
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 576
};
static const struct intel_watermark_params pineview_cursor_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 583
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 590
};
static const struct intel_watermark_params i965_cursor_wm_info = {
591 592 593 594 595
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
596 597
};
static const struct intel_watermark_params i945_wm_info = {
598 599 600 601 602
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
603 604
};
static const struct intel_watermark_params i915_wm_info = {
605 606 607 608 609
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
610
};
611
static const struct intel_watermark_params i830_a_wm_info = {
612 613 614 615 616
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
617
};
618 619 620 621 622 623 624
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
625
static const struct intel_watermark_params i845_wm_info = {
626 627 628 629 630
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
631 632
};

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

729 730
/**
 * intel_calculate_wm - calculate watermark level
731
 * @pixel_rate: pixel clock
732
 * @wm: chip FIFO params
733
 * @fifo_size: size of the FIFO buffer
734
 * @cpp: bytes per pixel
735 736 737 738 739 740 741 742 743 744 745 746 747
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
748 749 750 751
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
752
{
753
	int entries, wm_size;
754 755 756 757 758 759 760

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
761 762 763 764 765
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766

767 768
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769 770

	/* Don't promote wm_size to unsigned... */
771
	if (wm_size > wm->max_wm)
772 773 774
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
775 776 777 778 779 780 781 782 783 784 785

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

786 787 788
	return wm_size;
}

789 790 791 792 793 794 795 796 797 798
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

799 800 801 802 803
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

827
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828
{
829
	struct intel_crtc *crtc, *enabled = NULL;
830

831
	for_each_intel_crtc(&dev_priv->drm, crtc) {
832
		if (intel_crtc_active(crtc)) {
833 834 835 836 837 838 839 840 841
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

842
static void pineview_update_wm(struct intel_crtc *unused_crtc)
843
{
844
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
845
	struct intel_crtc *crtc;
846 847
	const struct cxsr_latency *latency;
	u32 reg;
848
	unsigned int wm;
849

850 851 852 853
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
854 855
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
856
		intel_set_memory_cxsr(dev_priv, false);
857 858 859
		return;
	}

860
	crtc = single_enabled_crtc(dev_priv);
861
	if (crtc) {
862 863 864 865
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
866
		int cpp = fb->format->cpp[0];
867
		int clock = adjusted_mode->crtc_clock;
868 869 870 871

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
872
					cpp, latency->display_sr);
873 874
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
875
		reg |= FW_WM(wm, SR);
876 877 878 879 880 881
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
882
					4, latency->cursor_sr);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
885
		reg |= FW_WM(wm, CURSOR_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					cpp, latency->display_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
894
		reg |= FW_WM(wm, HPLL_SR);
895 896 897 898 899
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
900
					4, latency->cursor_hpll_disable);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
903
		reg |= FW_WM(wm, HPLL_CURSOR);
904 905 906
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

907
		intel_set_memory_cxsr(dev_priv, true);
908
	} else {
909
		intel_set_memory_cxsr(dev_priv, false);
910 911 912
	}
}

913 914 915 916 917 918 919 920 921 922
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
923
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 925 926 927 928 929
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

930 931
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
932
{
933 934 935 936 937
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
955

956
	POSTING_READ(DSPFW1);
957 958
}

959 960 961
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

962
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
963 964
				const struct vlv_wm_values *wm)
{
965 966 967
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
968 969
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

970 971 972 973 974 975
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
976

977 978 979 980 981 982 983 984 985 986 987
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

988
	I915_WRITE(DSPFW1,
989
		   FW_WM(wm->sr.plane, SR) |
990 991 992
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993
	I915_WRITE(DSPFW2,
994 995 996
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997
	I915_WRITE(DSPFW3,
998
		   FW_WM(wm->sr.cursor, CURSOR_SR));
999 1000 1001

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1002 1003
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1004
		I915_WRITE(DSPFW8_CHV,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1007
		I915_WRITE(DSPFW9_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010
		I915_WRITE(DSPHOWM,
1011
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1012 1013 1014 1015 1016 1017 1018 1019 1020
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1021 1022
	} else {
		I915_WRITE(DSPFW7,
1023 1024
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025
		I915_WRITE(DSPHOWM,
1026
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1027 1028 1029 1030 1031 1032
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1033 1034 1035
	}

	POSTING_READ(DSPFW1);
1036 1037
}

1038 1039
#undef FW_WM_VLV

1040 1041 1042 1043 1044
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1045
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046

1047
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1100 1101
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1140
		unsigned int small, large;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1153
	return min_t(unsigned int, wm, USHRT_MAX);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1322 1323
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1324 1325 1326 1327 1328
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1329 1330 1331 1332
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1333 1334 1335
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1336
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1402
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1403
{
1404
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1405 1406 1407 1408 1409 1410 1411
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 1413
	enum plane_id plane_id;

1414 1415 1416 1417 1418 1419 1420 1421
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1422
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423
		!new_crtc_state->disable_cxsr;
1424
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425
		!new_crtc_state->disable_cxsr;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1467
out:
1468 1469 1470 1471 1472
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473
		new_crtc_state->wm.need_postvbl_update = true;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1570 1571
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 1573
				   unsigned int htotal,
				   unsigned int width,
1574
				   unsigned int cpp,
1575 1576 1577 1578
				   unsigned int latency)
{
	unsigned int ret;

1579 1580
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1581 1582 1583 1584 1585
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1586
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 1588 1589 1590
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1591 1592
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1593 1594 1595
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596 1597

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 1599 1600
	}
}

1601 1602
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1603 1604
				     int level)
{
1605
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 1608
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1609
	unsigned int clock, htotal, cpp, width, wm;
1610 1611 1612 1613

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1614
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 1616
		return 0;

1617
	cpp = plane_state->base.fb->format->cpp[0];
1618 1619 1620
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1621

1622
	if (plane->id == PLANE_CURSOR) {
1623 1624 1625 1626 1627 1628 1629 1630
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1631
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 1633 1634
				    dev_priv->wm.pri_latency[level] * 10);
	}

1635
	return min_t(unsigned int, wm, USHRT_MAX);
1636 1637
}

1638 1639 1640 1641 1642 1643
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1644
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645
{
1646
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647
	const struct g4x_pipe_wm *raw =
1648
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 1651 1652
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1653
	int fifo_extra, fifo_left = fifo_size;
1654
	int sprite0_fifo_extra = 0;
1655 1656
	unsigned int total_rate;
	enum plane_id plane_id;
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1669 1670
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1671 1672
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1673

1674 1675
	if (total_rate > fifo_size)
		return -EINVAL;
1676

1677 1678
	if (total_rate == 0)
		total_rate = 1;
1679

1680
	for_each_plane_id_on_crtc(crtc, plane_id) {
1681 1682
		unsigned int rate;

1683 1684
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1685 1686 1687
			continue;
		}

1688 1689 1690
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1691 1692
	}

1693 1694 1695
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1696 1697 1698
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699 1700

	/* spread the remainder evenly */
1701
	for_each_plane_id_on_crtc(crtc, plane_id) {
1702 1703 1704 1705 1706
		int plane_extra;

		if (fifo_left == 0)
			break;

1707
		if ((active_planes & BIT(plane_id)) == 0)
1708 1709 1710
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1711
		fifo_state->plane[plane_id] += plane_extra;
1712 1713 1714
		fifo_left -= plane_extra;
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1724 1725
}

1726 1727 1728 1729 1730 1731
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1732
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1743 1744 1745 1746 1747 1748 1749 1750
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1751 1752 1753 1754
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1755
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756
				 int level, enum plane_id plane_id, u16 value)
1757
{
1758
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759
	int num_levels = intel_wm_num_levels(dev_priv);
1760
	bool dirty = false;
1761

1762
	for (; level < num_levels; level++) {
1763
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764

1765
		dirty |= raw->plane[plane_id] != value;
1766
		raw->plane[plane_id] = value;
1767
	}
1768 1769

	return dirty;
1770 1771
}

1772 1773
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1774
{
1775 1776
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1777
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778
	int level;
1779
	bool dirty = false;
1780

1781
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 1783
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1784
	}
1785

1786
	for (level = 0; level < num_levels; level++) {
1787
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 1789
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790

1791 1792
		if (wm > max_wm)
			break;
1793

1794
		dirty |= raw->plane[plane_id] != wm;
1795 1796
		raw->plane[plane_id] = wm;
	}
1797

1798
	/* mark all higher levels as invalid */
1799
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800

1801 1802
out:
	if (dirty)
1803
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 1805 1806 1807 1808 1809
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1810
}
1811

1812 1813
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1814
{
1815
	const struct g4x_pipe_wm *raw =
1816 1817 1818
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1819

1820 1821
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1822

1823
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824
{
1825 1826 1827 1828
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1842
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 1844
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1845 1846 1847
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1848
	unsigned int dirty = 0;
1849

1850 1851 1852 1853
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1854 1855
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1856

1857
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1876
			intel_atomic_get_old_crtc_state(state, crtc);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1888
	}
1889

1890
	/* initially allow all levels */
1891
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 1893 1894 1895 1896
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1897
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898

1899
	for (level = 0; level < wm_state->num_levels; level++) {
1900
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902

1903
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904
			break;
1905

1906 1907 1908 1909 1910 1911 1912 1913
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914
						 raw->plane[PLANE_SPRITE0],
1915 1916
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1917

1918 1919 1920
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1921 1922
	}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1933 1934
}

1935 1936 1937
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1938 1939
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1940
{
1941
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 1944
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1945
	int sprite0_start, sprite1_start, fifo_size;
1946

1947 1948 1949
	if (!crtc_state->fifo_changed)
		return;

1950 1951 1952
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953

1954 1955
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1956

1957 1958
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1969

1970 1971 1972
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1973 1974
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1986 1987
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1988 1989
		break;
	case PIPE_B:
1990 1991
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2003 2004
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2005 2006
		break;
	case PIPE_C:
2007 2008
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2020 2021
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2022 2023 2024 2025
		break;
	default:
		break;
	}
2026

2027
	POSTING_READ_FW(DSPARB);
2028

2029
	spin_unlock(&dev_priv->uncore.lock);
2030 2031 2032 2033
}

#undef VLV_FIFO

2034
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2035
{
2036
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2037 2038 2039 2040 2041 2042 2043
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2044 2045
	int level;

2046 2047 2048 2049 2050 2051 2052
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2053
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2054
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2055
		!new_crtc_state->disable_cxsr;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2074
out:
2075 2076 2077 2078
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2079
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2080
		new_crtc_state->wm.need_postvbl_update = true;
2081 2082 2083 2084

	return 0;
}

2085
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2086 2087 2088 2089 2090
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2091
	wm->level = dev_priv->wm.max_level;
2092 2093
	wm->cxsr = true;

2094
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2095
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2110 2111 2112
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2113
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2114
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2115 2116 2117
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2118
		if (crtc->active && wm->cxsr)
2119 2120
			wm->sr = wm_state->sr[wm->level];

2121 2122 2123 2124
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2125 2126 2127
	}
}

2128
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2129
{
2130 2131
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2132

2133
	vlv_merge_wm(dev_priv, &new_wm);
2134

2135
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2136 2137
		return;

2138
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2139 2140
		chv_set_memory_dvfs(dev_priv, false);

2141
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2142 2143
		chv_set_memory_pm5(dev_priv, false);

2144
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2145
		_intel_set_memory_cxsr(dev_priv, false);
2146

2147
	vlv_write_wm_values(dev_priv, &new_wm);
2148

2149
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2150
		_intel_set_memory_cxsr(dev_priv, true);
2151

2152
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2153 2154
		chv_set_memory_pm5(dev_priv, true);

2155
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2156 2157
		chv_set_memory_dvfs(dev_priv, true);

2158
	*old_wm = new_wm;
2159 2160
}

2161 2162 2163 2164 2165 2166 2167
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2184 2185 2186 2187
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2188
static void i965_update_wm(struct intel_crtc *unused_crtc)
2189
{
2190
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2191
	struct intel_crtc *crtc;
2192 2193
	int srwm = 1;
	int cursor_sr = 16;
2194
	bool cxsr_enabled;
2195 2196

	/* Calc sr entries for one plane configs */
2197
	crtc = single_enabled_crtc(dev_priv);
2198 2199 2200
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2201 2202 2203 2204
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2205
		int clock = adjusted_mode->crtc_clock;
2206
		int htotal = adjusted_mode->crtc_htotal;
2207
		int hdisplay = crtc->config->pipe_src_w;
2208
		int cpp = fb->format->cpp[0];
2209 2210
		int entries;

2211 2212
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2213 2214 2215 2216 2217 2218 2219 2220
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2221 2222 2223
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2224
		entries = DIV_ROUND_UP(entries,
2225 2226
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2227

2228
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2229 2230 2231 2232 2233 2234
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2235
		cxsr_enabled = true;
2236
	} else {
2237
		cxsr_enabled = false;
2238
		/* Turn off self refresh if both pipes are enabled */
2239
		intel_set_memory_cxsr(dev_priv, false);
2240 2241 2242 2243 2244 2245
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2246 2247 2248 2249 2250 2251
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2252
	/* update cursor SR watermark */
2253
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2254 2255 2256

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2257 2258
}

2259 2260
#undef FW_WM

2261
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2262
{
2263
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2264 2265 2266 2267 2268 2269
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2270
	struct intel_crtc *crtc, *enabled = NULL;
2271

2272
	if (IS_I945GM(dev_priv))
2273
		wm_info = &i945_wm_info;
2274
	else if (!IS_GEN(dev_priv, 2))
2275 2276
		wm_info = &i915_wm_info;
	else
2277
		wm_info = &i830_a_wm_info;
2278

2279 2280
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2281 2282 2283 2284 2285 2286 2287
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2288
		if (IS_GEN(dev_priv, 2))
2289
			cpp = 4;
2290
		else
2291
			cpp = fb->format->cpp[0];
2292

2293
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2294
					       wm_info, fifo_size, cpp,
2295
					       pessimal_latency_ns);
2296
		enabled = crtc;
2297
	} else {
2298
		planea_wm = fifo_size - wm_info->guard_size;
2299 2300 2301 2302
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2303
	if (IS_GEN(dev_priv, 2))
2304
		wm_info = &i830_bc_wm_info;
2305

2306 2307
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2308 2309 2310 2311 2312 2313 2314
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2315
		if (IS_GEN(dev_priv, 2))
2316
			cpp = 4;
2317
		else
2318
			cpp = fb->format->cpp[0];
2319

2320
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2321
					       wm_info, fifo_size, cpp,
2322
					       pessimal_latency_ns);
2323 2324 2325 2326
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2327
	} else {
2328
		planeb_wm = fifo_size - wm_info->guard_size;
2329 2330 2331
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2332 2333 2334

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2335
	if (IS_I915GM(dev_priv) && enabled) {
2336
		struct drm_i915_gem_object *obj;
2337

2338
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2339 2340

		/* self-refresh seems busted with untiled */
2341
		if (!i915_gem_object_is_tiled(obj))
2342 2343 2344
			enabled = NULL;
	}

2345 2346 2347 2348 2349 2350
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2351
	intel_set_memory_cxsr(dev_priv, false);
2352 2353

	/* Calc sr entries for one plane configs */
2354
	if (HAS_FW_BLC(dev_priv) && enabled) {
2355 2356
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2357 2358 2359 2360
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2361
		int clock = adjusted_mode->crtc_clock;
2362
		int htotal = adjusted_mode->crtc_htotal;
2363 2364
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2365 2366
		int entries;

2367
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2368
			cpp = 4;
2369
		else
2370
			cpp = fb->format->cpp[0];
2371

2372 2373
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2374 2375 2376 2377 2378 2379
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2380
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2381 2382
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2383
		else
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2400 2401
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2402 2403
}

2404
static void i845_update_wm(struct intel_crtc *unused_crtc)
2405
{
2406
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2407
	struct intel_crtc *crtc;
2408
	const struct drm_display_mode *adjusted_mode;
2409 2410 2411
	uint32_t fwater_lo;
	int planea_wm;

2412
	crtc = single_enabled_crtc(dev_priv);
2413 2414 2415
	if (crtc == NULL)
		return;

2416
	adjusted_mode = &crtc->config->base.adjusted_mode;
2417
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2418
				       &i845_wm_info,
2419
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2420
				       4, pessimal_latency_ns);
2421 2422 2423 2424 2425 2426 2427 2428
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2429
/* latency must be in 0.1us units. */
2430 2431 2432
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2433
{
2434
	unsigned int ret;
2435

2436 2437
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2438 2439 2440 2441

	return ret;
}

2442
/* latency must be in 0.1us units. */
2443 2444 2445 2446 2447
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2448
{
2449
	unsigned int ret;
2450

2451 2452
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2453
	ret = DIV_ROUND_UP(ret, 64) + 2;
2454

2455 2456 2457
	return ret;
}

2458
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2459
			   uint8_t cpp)
2460
{
2461 2462 2463 2464 2465 2466
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2467
	if (WARN_ON(!cpp))
2468 2469 2470 2471
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2472
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2473 2474
}

2475
struct ilk_wm_maximums {
2476 2477 2478 2479 2480 2481
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2482 2483 2484 2485
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2486
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2487
				   const struct intel_plane_state *pstate,
2488 2489
				   uint32_t mem_value,
				   bool is_lp)
2490
{
2491
	uint32_t method1, method2;
2492
	int cpp;
2493

2494 2495 2496
	if (mem_value == 0)
		return U32_MAX;

2497
	if (!intel_wm_plane_visible(cstate, pstate))
2498 2499
		return 0;

2500
	cpp = pstate->base.fb->format->cpp[0];
2501

2502
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2503 2504 2505 2506

	if (!is_lp)
		return method1;

2507
	method2 = ilk_wm_method2(cstate->pixel_rate,
2508
				 cstate->base.adjusted_mode.crtc_htotal,
2509
				 drm_rect_width(&pstate->base.dst),
2510
				 cpp, mem_value);
2511 2512

	return min(method1, method2);
2513 2514
}

2515 2516 2517 2518
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2519
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2520
				   const struct intel_plane_state *pstate,
2521 2522 2523
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2524
	int cpp;
2525

2526 2527 2528
	if (mem_value == 0)
		return U32_MAX;

2529
	if (!intel_wm_plane_visible(cstate, pstate))
2530 2531
		return 0;

2532
	cpp = pstate->base.fb->format->cpp[0];
2533

2534 2535
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2536
				 cstate->base.adjusted_mode.crtc_htotal,
2537
				 drm_rect_width(&pstate->base.dst),
2538
				 cpp, mem_value);
2539 2540 2541
	return min(method1, method2);
}

2542 2543 2544 2545
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2546
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2547
				   const struct intel_plane_state *pstate,
2548 2549
				   uint32_t mem_value)
{
2550 2551
	int cpp;

2552 2553 2554
	if (mem_value == 0)
		return U32_MAX;

2555
	if (!intel_wm_plane_visible(cstate, pstate))
2556 2557
		return 0;

2558 2559
	cpp = pstate->base.fb->format->cpp[0];

2560
	return ilk_wm_method2(cstate->pixel_rate,
2561
			      cstate->base.adjusted_mode.crtc_htotal,
2562
			      pstate->base.crtc_w, cpp, mem_value);
2563 2564
}

2565
/* Only for WM_LP. */
2566
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2567
				   const struct intel_plane_state *pstate,
2568
				   uint32_t pri_val)
2569
{
2570
	int cpp;
2571

2572
	if (!intel_wm_plane_visible(cstate, pstate))
2573 2574
		return 0;

2575
	cpp = pstate->base.fb->format->cpp[0];
2576

2577
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2578 2579
}

2580 2581
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2582
{
2583
	if (INTEL_GEN(dev_priv) >= 8)
2584
		return 3072;
2585
	else if (INTEL_GEN(dev_priv) >= 7)
2586 2587 2588 2589 2590
		return 768;
	else
		return 512;
}

2591 2592 2593
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2594
{
2595
	if (INTEL_GEN(dev_priv) >= 8)
2596 2597
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2598
	else if (INTEL_GEN(dev_priv) >= 7)
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2609 2610
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2611
{
2612
	if (INTEL_GEN(dev_priv) >= 7)
2613 2614 2615 2616 2617
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2618
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2619
{
2620
	if (INTEL_GEN(dev_priv) >= 8)
2621 2622 2623 2624 2625
		return 31;
	else
		return 15;
}

2626
/* Calculate the maximum primary/sprite plane watermark */
2627
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2628
				     int level,
2629
				     const struct intel_wm_config *config,
2630 2631 2632
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2633
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2634 2635

	/* if sprites aren't enabled, sprites get nothing */
2636
	if (is_sprite && !config->sprites_enabled)
2637 2638 2639
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2640
	if (level == 0 || config->num_pipes_active > 1) {
2641
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2642 2643 2644 2645 2646 2647

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2648
		if (INTEL_GEN(dev_priv) <= 6)
2649 2650 2651
			fifo_size /= 2;
	}

2652
	if (config->sprites_enabled) {
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2664
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2665 2666 2667
}

/* Calculate the maximum cursor plane watermark */
2668
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2669 2670
				      int level,
				      const struct intel_wm_config *config)
2671 2672
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2673
	if (level > 0 && config->num_pipes_active > 1)
2674 2675 2676
		return 64;

	/* otherwise just report max that registers can hold */
2677
	return ilk_cursor_wm_reg_max(dev_priv, level);
2678 2679
}

2680
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2681 2682 2683
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2684
				    struct ilk_wm_maximums *max)
2685
{
2686 2687 2688 2689
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2690 2691
}

2692
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2693 2694 2695
					int level,
					struct ilk_wm_maximums *max)
{
2696 2697 2698 2699
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2700 2701
}

2702
static bool ilk_validate_wm_level(int level,
2703
				  const struct ilk_wm_maximums *max,
2704
				  struct intel_wm_level *result)
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2743
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2744
				 const struct intel_crtc *intel_crtc,
2745
				 int level,
2746
				 struct intel_crtc_state *cstate,
2747 2748 2749
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2750
				 struct intel_wm_level *result)
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2775 2776 2777
	result->enable = true;
}

2778
static uint32_t
2779
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2780
{
2781 2782
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2783 2784
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2785
	u32 linetime, ips_linetime;
2786

2787 2788 2789 2790
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2791
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2792
		return 0;
2793

2794 2795 2796
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2797 2798 2799
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2800
					 intel_state->cdclk.logical.cdclk);
2801

2802 2803
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2804 2805
}

2806 2807
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2808
{
2809
	if (INTEL_GEN(dev_priv) >= 9) {
2810
		uint32_t val;
2811
		int ret, i;
2812
		int level, max_level = ilk_wm_max_level(dev_priv);
2813 2814 2815

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2816
		mutex_lock(&dev_priv->pcu_lock);
2817 2818 2819
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2820
		mutex_unlock(&dev_priv->pcu_lock);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2837
		mutex_lock(&dev_priv->pcu_lock);
2838 2839 2840
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2841
		mutex_unlock(&dev_priv->pcu_lock);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2868
		/*
2869
		 * WaWmMemoryReadLatency:skl+,glk
2870
		 *
2871
		 * punit doesn't take into account the read latency so we need
2872 2873
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2874
		 */
2875 2876 2877 2878 2879
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2880
				wm[level] += 2;
2881
			}
2882 2883
		}

2884 2885 2886 2887 2888 2889
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2890
		if (dev_priv->dram_info.is_16gb_dimm)
2891 2892
			wm[0] += 1;

2893
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2894 2895 2896 2897 2898
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2899 2900 2901 2902
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2903
	} else if (INTEL_GEN(dev_priv) >= 6) {
2904 2905 2906 2907 2908 2909
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2910
	} else if (INTEL_GEN(dev_priv) >= 5) {
2911 2912 2913 2914 2915 2916
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2917 2918
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2919 2920 2921
	}
}

2922 2923
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2924 2925
{
	/* ILK sprite LP0 latency is 1300 ns */
2926
	if (IS_GEN(dev_priv, 5))
2927 2928 2929
		wm[0] = 13;
}

2930 2931
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2932 2933
{
	/* ILK cursor LP0 latency is 1300 ns */
2934
	if (IS_GEN(dev_priv, 5))
2935 2936 2937
		wm[0] = 13;
}

2938
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2939 2940
{
	/* how many WM levels are we expecting */
2941
	if (INTEL_GEN(dev_priv) >= 9)
2942
		return 7;
2943
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2944
		return 4;
2945
	else if (INTEL_GEN(dev_priv) >= 6)
2946
		return 3;
2947
	else
2948 2949
		return 2;
}
2950

2951
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2952
				   const char *name,
2953
				   const uint16_t wm[8])
2954
{
2955
	int level, max_level = ilk_wm_max_level(dev_priv);
2956 2957 2958 2959 2960

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2961 2962
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2963 2964 2965
			continue;
		}

2966 2967 2968 2969
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2970
		if (INTEL_GEN(dev_priv) >= 9)
2971 2972
			latency *= 10;
		else if (level > 0)
2973 2974 2975 2976 2977 2978 2979 2980
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2981 2982 2983
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2984
	int level, max_level = ilk_wm_max_level(dev_priv);
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2996
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3012 3013 3014
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3015 3016
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3045
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3046
{
3047
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3048 3049 3050 3051 3052 3053

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3054
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3055
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3056

3057 3058 3059
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3060

3061
	if (IS_GEN(dev_priv, 6)) {
3062
		snb_wm_latency_quirk(dev_priv);
3063 3064
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3065 3066
}

3067
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3068
{
3069
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3070
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3071 3072
}

3073
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3085
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3096
/* Compute new watermarks for the pipe */
3097
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3098
{
3099 3100
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3101
	struct intel_pipe_wm *pipe_wm;
3102
	struct drm_device *dev = state->dev;
3103
	const struct drm_i915_private *dev_priv = to_i915(dev);
3104 3105 3106 3107 3108
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3109
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3110
	struct ilk_wm_maximums max;
3111

3112
	pipe_wm = &cstate->wm.ilk.optimal;
3113

3114 3115
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3116

3117
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3118
			pristate = ps;
3119
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3120
			sprstate = ps;
3121
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3122
			curstate = ps;
3123 3124
	}

3125
	pipe_wm->pipe_enabled = cstate->base.active;
3126
	if (sprstate) {
3127 3128 3129 3130
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3131 3132
	}

3133 3134
	usable_level = max_level;

3135
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3136
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3137
		usable_level = 1;
3138 3139

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3140
	if (pipe_wm->sprites_scaled)
3141
		usable_level = 0;
3142

3143
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3144 3145
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3146

3147
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3148
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3149

3150
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3151
		return -EINVAL;
3152

3153
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3154

3155 3156
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3157

3158
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3159
				     pristate, sprstate, curstate, wm);
3160 3161 3162 3163 3164 3165

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3166 3167 3168 3169
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3170 3171
	}

3172
	return 0;
3173 3174
}

3175 3176 3177 3178 3179
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3180
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3181
{
3182 3183
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3184
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3185 3186 3187 3188 3189
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3190
	int level, max_level = ilk_wm_max_level(dev_priv);
3191 3192 3193 3194 3195 3196

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3197
	*a = newstate->wm.ilk.optimal;
3198 3199
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3200 3201
		return 0;

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3223
	if (!ilk_validate_pipe_wm(dev_priv, a))
3224 3225 3226 3227 3228 3229
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3230 3231
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3232 3233 3234 3235

	return 0;
}

3236 3237 3238
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3239
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3240 3241 3242 3243 3244
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3245 3246
	ret_wm->enable = true;

3247
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3248
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3249 3250 3251 3252
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3253

3254 3255 3256 3257 3258
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3259
		if (!wm->enable)
3260
			ret_wm->enable = false;
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3272
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3273
			 const struct intel_wm_config *config,
3274
			 const struct ilk_wm_maximums *max,
3275 3276
			 struct intel_pipe_wm *merged)
{
3277
	int level, max_level = ilk_wm_max_level(dev_priv);
3278
	int last_enabled_level = max_level;
3279

3280
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3281
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3282
	    config->num_pipes_active > 1)
3283
		last_enabled_level = 0;
3284

3285
	/* ILK: FBC WM must be disabled always */
3286
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3287 3288 3289 3290 3291

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3292
		ilk_merge_wm_level(dev_priv, level, wm);
3293

3294 3295 3296 3297 3298
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3299 3300 3301 3302 3303 3304

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3305 3306
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3307 3308 3309
			wm->fbc_val = 0;
		}
	}
3310 3311 3312 3313 3314 3315 3316

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3317
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3318
	    intel_fbc_is_active(dev_priv)) {
3319 3320 3321 3322 3323 3324
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3325 3326
}

3327 3328 3329 3330 3331 3332
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3333
/* The value we need to program into the WM_LPx latency field */
3334 3335
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3336
{
3337
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3338 3339 3340 3341 3342
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3343
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3344
				   const struct intel_pipe_wm *merged,
3345
				   enum intel_ddb_partitioning partitioning,
3346
				   struct ilk_wm_values *results)
3347
{
3348 3349
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3350

3351
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3352
	results->partitioning = partitioning;
3353

3354
	/* LP1+ register values */
3355
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3356
		const struct intel_wm_level *r;
3357

3358
		level = ilk_wm_lp_to_level(wm_lp, merged);
3359

3360
		r = &merged->wm[level];
3361

3362 3363 3364 3365 3366
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3367
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3368 3369 3370
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3371 3372 3373
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3374
		if (INTEL_GEN(dev_priv) >= 8)
3375 3376 3377 3378 3379 3380
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3381 3382 3383 3384
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3385
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3386 3387 3388 3389
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3390
	}
3391

3392
	/* LP0 register values */
3393
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3394
		enum pipe pipe = intel_crtc->pipe;
3395 3396
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3397 3398 3399 3400

		if (WARN_ON(!r->enable))
			continue;

3401
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3402

3403 3404 3405 3406
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3407 3408 3409
	}
}

3410 3411
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3412 3413 3414 3415
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3416
{
3417
	int level, max_level = ilk_wm_max_level(dev_priv);
3418
	int level1 = 0, level2 = 0;
3419

3420 3421 3422 3423 3424
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3425 3426
	}

3427 3428
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3429 3430 3431
			return r2;
		else
			return r1;
3432
	} else if (level1 > level2) {
3433 3434 3435 3436 3437 3438
		return r1;
	} else {
		return r2;
	}
}

3439 3440 3441 3442 3443 3444 3445 3446
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3447
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3448 3449
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3450 3451 3452 3453 3454
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3455
	for_each_pipe(dev_priv, pipe) {
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3499 3500
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3501
{
3502
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3503
	bool changed = false;
3504

3505 3506 3507
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3508
		changed = true;
3509 3510 3511 3512
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3513
		changed = true;
3514 3515 3516 3517
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3518
		changed = true;
3519
	}
3520

3521 3522 3523 3524
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3525

3526 3527 3528 3529 3530 3531 3532
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3533 3534
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3535
{
3536
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3537 3538 3539
	unsigned int dirty;
	uint32_t val;

3540
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3541 3542 3543 3544 3545
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3546
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3547
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3548
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3549
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3550
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3551 3552
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3553
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3554
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3555
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3556
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3557
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3558 3559
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3560
	if (dirty & WM_DIRTY_DDB) {
3561
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3576 3577
	}

3578
	if (dirty & WM_DIRTY_FBC) {
3579 3580 3581 3582 3583 3584 3585 3586
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3587 3588 3589 3590
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3591
	if (INTEL_GEN(dev_priv) >= 7) {
3592 3593 3594 3595 3596
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3597

3598
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3599
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3600
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3601
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3602
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3603
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3604 3605

	dev_priv->wm.hw = *results;
3606 3607
}

3608
bool ilk_disable_lp_wm(struct drm_device *dev)
3609
{
3610
	struct drm_i915_private *dev_priv = to_i915(dev);
3611 3612 3613 3614

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
		enabled_slices++;

	return enabled_slices;
}

3632 3633 3634 3635 3636 3637 3638 3639
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3640
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3641 3642 3643 3644 3645
		return true;

	return false;
}

3646 3647 3648
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3649 3650
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3651 3652
}

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3665
intel_enable_sagv(struct drm_i915_private *dev_priv)
3666 3667 3668
{
	int ret;

3669 3670 3671 3672
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3673 3674 3675
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3676
	mutex_lock(&dev_priv->pcu_lock);
3677 3678 3679 3680 3681

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3682
	mutex_unlock(&dev_priv->pcu_lock);
3683 3684 3685 3686 3687

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3688
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3691 3692 3693 3694 3695 3696
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3697
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3698 3699 3700 3701
	return 0;
}

int
3702
intel_disable_sagv(struct drm_i915_private *dev_priv)
3703
{
3704
	int ret;
3705

3706 3707 3708 3709
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3710 3711 3712
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3713
	mutex_lock(&dev_priv->pcu_lock);
3714 3715

	/* bspec says to keep retrying for at least 1 ms */
3716 3717 3718 3719
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3720
	mutex_unlock(&dev_priv->pcu_lock);
3721 3722 3723 3724 3725

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3726
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3727
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3728
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3729
		return 0;
3730 3731 3732
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3733 3734
	}

3735
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3736 3737 3738
	return 0;
}

3739
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3740 3741 3742 3743
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3744 3745
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3746
	struct intel_crtc_state *cstate;
3747
	enum pipe pipe;
3748
	int level, latency;
3749
	int sagv_block_time_us;
3750

3751 3752 3753
	if (!intel_has_sagv(dev_priv))
		return false;

3754
	if (IS_GEN(dev_priv, 9))
3755
		sagv_block_time_us = 30;
3756
	else if (IS_GEN(dev_priv, 10))
3757 3758 3759 3760
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3761
	/*
3762
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3774
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3775
	cstate = to_intel_crtc_state(crtc->base.state);
3776

3777
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3778 3779
		return false;

3780
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3781 3782
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3783

3784
		/* Skip this plane if it's not enabled */
3785
		if (!wm->wm[0].plane_en)
3786 3787 3788
			continue;

		/* Find the highest enabled wm level for this plane */
3789
		for (level = ilk_wm_max_level(dev_priv);
3790
		     !wm->wm[level].plane_en; --level)
3791 3792
		     { }

3793 3794 3795
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3796
		    plane->base.state->fb->modifier ==
3797 3798 3799
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3800
		/*
3801 3802 3803
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3804
		 */
3805
		if (latency < sagv_block_time_us)
3806 3807 3808 3809 3810 3811
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3812 3813
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3814
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3815 3816
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3828
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3829 3830 3831 3832

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
	 */
3833
	if (num_active > 1 || total_data_bw >= GBps(12)) {
3834 3835 3836 3837 3838 3839 3840 3841 3842
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3843
static void
3844
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3845
				   const struct intel_crtc_state *cstate,
3846
				   const u64 total_data_rate,
3847
				   struct skl_ddb_allocation *ddb,
3848 3849
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3850
{
3851 3852
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3853
	struct drm_crtc *for_crtc = cstate->base.crtc;
3854 3855 3856 3857 3858 3859
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3860

3861
	if (WARN_ON(!state) || !cstate->base.active) {
3862 3863
		alloc->start = 0;
		alloc->end = 0;
3864
		*num_active = hweight32(dev_priv->active_crtcs);
3865 3866 3867
		return;
	}

3868 3869 3870 3871 3872
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3873 3874
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3875

3876
	/*
3877 3878 3879 3880 3881 3882
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3883
	 */
3884
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3885 3886 3887 3888 3889
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3890
		return;
3891
	}
3892

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3919 3920
}

3921
static unsigned int skl_cursor_allocation(int num_active)
3922
{
3923
	if (num_active == 1)
3924 3925 3926 3927 3928
		return 32;

	return 8;
}

3929 3930
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3931
{
3932 3933 3934 3935 3936 3937 3938 3939 3940
	u16 mask;

	if (INTEL_GEN(dev_priv) >= 11)
		mask = ICL_DDB_ENTRY_MASK;
	else
		mask = SKL_DDB_ENTRY_MASK;
	entry->start = reg & mask;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;

3941 3942
	if (entry->end)
		entry->end += 1;
3943 3944
}

3945 3946 3947 3948
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3949 3950
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3951
{
3952 3953
	u32 val, val2;
	u32 fourcc = 0;
3954 3955 3956 3957

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3958
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3959 3960 3961 3962 3963 3964
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3965 3966 3967 3968
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3969

3970 3971 3972 3973 3974
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3975
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3976

3977 3978 3979 3980 3981
		if (fourcc == DRM_FORMAT_NV12)
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
3982 3983 3984
	}
}

3985 3986 3987
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
3988
{
3989 3990 3991 3992
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
	enum plane_id plane_id;
3993

3994 3995 3996
	power_domain = POWER_DOMAIN_PIPE(pipe);
	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
		return;
3997

3998 3999 4000 4001 4002
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4003

4004 4005
	intel_display_power_put(dev_priv, power_domain);
}
4006

4007 4008 4009 4010
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4011 4012
}

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4029
static uint_fixed_16_16_t
4030 4031
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4032
{
4033
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4034
	uint32_t src_w, src_h, dst_w, dst_h;
4035 4036
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4037

4038
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4039
		return u32_to_fixed16(0);
4040 4041

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4042
	if (plane->id == PLANE_CURSOR) {
4043 4044 4045 4046
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4047 4048
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4049 4050 4051
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4052 4053 4054 4055 4056
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4057 4058
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4059 4060 4061 4062
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4063 4064 4065 4066
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4067

4068
	return mul_fixed16(downscale_w, downscale_h);
4069 4070
}

4071 4072 4073
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4074
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4093 4094 4095 4096
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4107
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4108 4109 4110 4111 4112
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4113
	int crtc_clock, dotclk;
4114 4115
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
4116
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4117 4118 4119 4120 4121 4122

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4123
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4141
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4142 4143 4144 4145 4146 4147
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4148 4149
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4150
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4151 4152 4153
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4154 4155

	if (pipe_max_pixel_rate < crtc_clock) {
4156
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4157 4158 4159 4160 4161 4162
		return -EINVAL;
	}

	return 0;
}

4163
static u64
4164
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4165
			     const struct intel_plane_state *intel_pstate,
4166
			     const int plane)
4167
{
4168 4169
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4170
	uint32_t data_rate;
4171
	uint32_t width = 0, height = 0;
4172 4173
	struct drm_framebuffer *fb;
	u32 format;
4174
	uint_fixed_16_16_t down_scale_amount;
4175
	u64 rate;
4176

4177
	if (!intel_pstate->base.visible)
4178
		return 0;
4179

4180
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4181
	format = fb->format->format;
4182

4183
	if (intel_plane->id == PLANE_CURSOR)
4184
		return 0;
4185
	if (plane == 1 && format != DRM_FORMAT_NV12)
4186
		return 0;
4187

4188 4189 4190 4191 4192
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4193 4194
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4195

4196 4197 4198 4199
	/* UV plane does 1/2 pixel sub-sampling */
	if (plane == 1 && format == DRM_FORMAT_NV12) {
		width /= 2;
		height /= 2;
4200 4201
	}

4202
	data_rate = width * height;
4203

4204
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4205

4206 4207 4208 4209
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4210 4211
}

4212
static u64
4213
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4214 4215
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4216
{
4217 4218
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4219 4220
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4221
	u64 total_data_rate = 0;
4222 4223 4224

	if (WARN_ON(!state))
		return 0;
4225

4226
	/* Calculate and cache data rate for each plane */
4227
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4228
		enum plane_id plane_id = to_intel_plane(plane)->id;
4229
		u64 rate;
4230 4231
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4232

4233
		/* packed/y */
4234
		rate = skl_plane_relative_data_rate(intel_cstate,
4235
						    intel_pstate, 0);
4236
		plane_data_rate[plane_id] = rate;
4237
		total_data_rate += rate;
4238

4239
		/* uv-plane */
4240
		rate = skl_plane_relative_data_rate(intel_cstate,
4241
						    intel_pstate, 1);
4242
		uv_plane_data_rate[plane_id] = rate;
4243
		total_data_rate += rate;
4244 4245 4246 4247 4248
	}

	return total_data_rate;
}

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4304
static int
4305
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4306 4307
		      struct skl_ddb_allocation *ddb /* out */)
{
4308
	struct drm_atomic_state *state = cstate->base.state;
4309
	struct drm_crtc *crtc = cstate->base.crtc;
4310
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4311
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4312
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4313 4314 4315 4316
	struct skl_plane_wm *wm;
	uint16_t alloc_size, start = 0;
	uint16_t total[I915_MAX_PLANES] = {};
	uint16_t uv_total[I915_MAX_PLANES] = {};
4317
	u64 total_data_rate;
4318
	enum plane_id plane_id;
4319
	int num_active;
4320 4321
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4322 4323
	uint16_t blocks = 0;
	int level;
4324

4325
	/* Clear the partitioning for disabled planes. */
4326 4327
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4328

4329 4330 4331
	if (WARN_ON(!state))
		return 0;

4332
	if (!cstate->base.active) {
4333
		alloc->start = alloc->end = 0;
4334 4335 4336
		return 0;
	}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	if (INTEL_GEN(dev_priv) < 11)
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
	else
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4349
	alloc_size = skl_ddb_entry_size(alloc);
4350
	if (alloc_size == 0)
4351
		return 0;
4352

4353 4354 4355 4356 4357 4358 4359 4360 4361
	/* Allocate fixed number of blocks for cursor. */
	total[PLANE_CURSOR] = skl_cursor_allocation(num_active);
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4362

4363
	/*
4364 4365
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4366
	 */
4367
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4368
		blocks = 0;
4369 4370 4371
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			if (plane_id == PLANE_CURSOR)
				continue;
4372

4373 4374 4375 4376 4377 4378 4379 4380 4381
			wm = &cstate->wm.skl.optimal.planes[plane_id];
			blocks += wm->wm[level].plane_res_b;
			blocks += wm->uv_wm[level].plane_res_b;
		}

		if (blocks < alloc_size) {
			alloc_size -= blocks;
			break;
		}
4382 4383
	}

4384
	if (level < 0) {
4385
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4386 4387
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4388 4389 4390
		return -EINVAL;
	}

4391
	/*
4392 4393 4394
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4395
	 */
4396
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4397 4398
		u64 rate;
		u16 extra;
4399

4400
		if (plane_id == PLANE_CURSOR)
4401 4402
			continue;

4403
		/*
4404 4405
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4406
		 */
4407 4408
		if (total_data_rate == 0)
			break;
4409

4410
		wm = &cstate->wm.skl.optimal.planes[plane_id];
4411

4412 4413 4414 4415 4416 4417 4418
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
		total[plane_id] = wm->wm[level].plane_res_b + extra;
		alloc_size -= extra;
		total_data_rate -= rate;
4419

4420 4421
		if (total_data_rate == 0)
			break;
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
		uv_total[plane_id] = wm->uv_wm[level].plane_res_b + extra;
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_ddb_entry *plane_alloc, *uv_plane_alloc;

		if (plane_id == PLANE_CURSOR)
			continue;

		plane_alloc = &cstate->wm.skl.plane_ddb_y[plane_id];
		uv_plane_alloc = &cstate->wm.skl.plane_ddb_uv[plane_id];
4443

4444
		/* Gen11+ uses a separate plane for UV watermarks */
4445 4446 4447 4448 4449 4450 4451 4452
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4453

4454 4455 4456 4457
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4458
		}
4459
	}
4460

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
			wm = &cstate->wm.skl.optimal.planes[plane_id];
			memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		wm = &cstate->wm.skl.optimal.planes[plane_id];
		if (wm->trans_wm.plane_res_b > total[plane_id])
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4482 4483
	}

4484
	return 0;
4485 4486
}

4487 4488
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4489
 * for the read latency) and cpp should always be <= 8, so that
4490 4491 4492
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4493 4494
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4495
	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4496
{
4497 4498
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4499 4500

	if (latency == 0)
4501
		return FP_16_16_MAX;
4502

4503
	wm_intermediate_val = latency * pixel_rate * cpp;
4504
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4505 4506 4507 4508

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4509 4510 4511
	return ret;
}

4512 4513 4514 4515
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4516
{
4517
	uint32_t wm_intermediate_val;
4518
	uint_fixed_16_16_t ret;
4519 4520

	if (latency == 0)
4521
		return FP_16_16_MAX;
4522 4523

	wm_intermediate_val = latency * pixel_rate;
4524 4525
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4526
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4527 4528 4529
	return ret;
}

4530
static uint_fixed_16_16_t
4531
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4532 4533 4534 4535 4536 4537
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4538
		return u32_to_fixed16(0);
4539 4540 4541 4542

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4543
		return u32_to_fixed16(0);
4544 4545

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4546
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4547 4548 4549 4550

	return linetime_us;
}

4551 4552 4553
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4554 4555
{
	uint64_t adjusted_pixel_rate;
4556
	uint_fixed_16_16_t downscale_amount;
4557 4558

	/* Shouldn't reach here on disabled planes... */
4559
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4560 4561 4562 4563 4564 4565
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4566
	adjusted_pixel_rate = cstate->pixel_rate;
4567
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4568

4569 4570
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4571 4572
}

4573
static int
4574
skl_compute_plane_wm_params(const struct intel_crtc_state *cstate,
4575
			    const struct intel_plane_state *intel_pstate,
4576
			    struct skl_wm_params *wp, int color_plane)
4577
{
4578
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4579
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4580 4581
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4582
	uint32_t interm_pbpl;
4583 4584 4585
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4586

4587
	/* only NV12 format has two planes */
4588
	if (color_plane == 1 && fb->format->format != DRM_FORMAT_NV12) {
4589 4590 4591 4592
		DRM_DEBUG_KMS("Non NV12 format have single plane\n");
		return -EINVAL;
	}

4593 4594 4595 4596 4597 4598 4599
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4600
	wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4601

4602
	if (plane->id == PLANE_CURSOR) {
4603
		wp->width = intel_pstate->base.crtc_w;
4604
	} else {
4605 4606 4607 4608 4609
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4610
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4611
	}
4612

4613
	if (color_plane == 1 && wp->is_planar)
4614 4615
		wp->width /= 2;

4616
	wp->cpp = fb->format->cpp[color_plane];
4617 4618
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4619

4620 4621 4622 4623 4624 4625
	if (INTEL_GEN(dev_priv) >= 11 &&
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4626
	if (drm_rotation_90_or_270(pstate->rotation)) {
4627

4628
		switch (wp->cpp) {
4629
		case 1:
4630
			wp->y_min_scanlines = 16;
4631 4632
			break;
		case 2:
4633
			wp->y_min_scanlines = 8;
4634 4635
			break;
		case 4:
4636
			wp->y_min_scanlines = 4;
4637
			break;
4638
		default:
4639
			MISSING_CASE(wp->cpp);
4640
			return -EINVAL;
4641 4642
		}
	} else {
4643
		wp->y_min_scanlines = 4;
4644 4645
	}

4646
	if (apply_memory_bw_wa)
4647
		wp->y_min_scanlines *= 2;
4648

4649 4650 4651
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4652 4653
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4654 4655 4656 4657

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4658 4659
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4660
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4661 4662
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4663
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4664
	} else {
4665 4666
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4667
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4668 4669
	}

4670 4671 4672 4673 4674 4675 4676 4677
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

4678 4679 4680 4681 4682 4683
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 const struct intel_plane_state *intel_pstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4684
{
4685 4686
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4687 4688 4689 4690 4691 4692 4693
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4694

4695
	/* Display WA #1141: kbl,cfl */
4696 4697
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4698 4699 4700 4701 4702 4703 4704
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4705
				 wp->cpp, latency, wp->dbuf_block_size);
4706
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4707
				 cstate->base.adjusted_mode.crtc_htotal,
4708
				 latency,
4709
				 wp->plane_blocks_per_line);
4710

4711 4712
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4713
	} else {
4714
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4715
		     wp->dbuf_block_size < 1) &&
4716
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4717
			selected_result = method2;
4718
		} else if (latency >= wp->linetime_us) {
4719
			if (IS_GEN(dev_priv, 9) &&
4720 4721 4722 4723 4724
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4725
			selected_result = method1;
4726
		}
4727
	}
4728

4729
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4730
	res_lines = div_round_up_fixed16(selected_result,
4731
					 wp->plane_blocks_per_line);
4732

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4748

4749 4750 4751 4752 4753 4754 4755 4756 4757
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4758
	}
4759

4760
	/* The number of lines are ignored for the level 0 watermark. */
4761 4762 4763 4764 4765 4766 4767 4768 4769
	if (level > 0 && res_lines > 31)
		return;

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4770 4771 4772
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
	result->plane_en = true;
4773 4774
}

4775
static void
4776
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4777
		      const struct intel_plane_state *intel_pstate,
4778
		      const struct skl_wm_params *wm_params,
4779
		      struct skl_wm_level *levels)
4780
{
4781 4782
	struct drm_i915_private *dev_priv =
		to_i915(intel_pstate->base.plane->dev);
4783
	int level, max_level = ilk_wm_max_level(dev_priv);
4784
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4785

4786
	for (level = 0; level <= max_level; level++) {
4787
		struct skl_wm_level *result = &levels[level];
4788

4789 4790
		skl_compute_plane_wm(cstate, intel_pstate, level, wm_params,
				     result_prev, result);
4791 4792

		result_prev = result;
4793
	}
4794 4795
}

4796
static uint32_t
4797
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4798
{
M
Mahesh Kumar 已提交
4799 4800
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4801
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4802
	uint32_t linetime_wm;
4803

4804
	linetime_us = intel_get_linetime_us(cstate);
4805

4806
	if (is_fixed16_zero(linetime_us))
4807
		return 0;
4808

4809
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4810

4811 4812 4813 4814
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4815 4816

	return linetime_wm;
4817 4818
}

4819
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4820
				      const struct skl_wm_params *wp,
4821
				      struct skl_plane_wm *wm)
4822
{
4823 4824 4825 4826
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
4827
	uint16_t wm0_sel_res_b, trans_offset_b, res_blocks;
4828 4829 4830

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4831
		return;
4832 4833 4834

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4835
		return;
4836

4837 4838
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4839 4840 4841 4842
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4853
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4854

4855 4856 4857
	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
4858
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4859 4860
				trans_offset_b;
	} else {
4861
		res_blocks = wm0_sel_res_b + trans_offset_b;
4862 4863 4864 4865 4866 4867 4868

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4869 4870 4871 4872 4873 4874 4875
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4876 4877
}

4878
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4879 4880
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4881
{
4882
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4883 4884 4885
	struct skl_wm_params wm_params;
	int ret;

4886
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4887 4888 4889 4890
					  &wm_params, color_plane);
	if (ret)
		return ret;

4891 4892
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->wm);
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4893 4894 4895 4896

	return 0;
}

4897
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4898 4899
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4900
{
4901
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4902 4903 4904
	struct skl_wm_params wm_params;
	int ret;

4905
	wm->is_planar = true;
4906 4907

	/* uv plane watermarks must also be validated for NV12/Planar */
4908
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4909 4910 4911
					  &wm_params, 1);
	if (ret)
		return ret;
4912

4913
	skl_compute_wm_levels(crtc_state, plane_state, &wm_params, wm->uv_wm);
4914

4915
	return 0;
4916 4917
}

4918
static int skl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4919 4920
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4921
{
4922 4923 4924
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
4925 4926
	int ret;

4927 4928 4929
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4930
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4931
					plane_id, 0);
4932 4933 4934
	if (ret)
		return ret;

4935
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4936
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4937 4938 4939 4940 4941 4942 4943 4944
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4945
static int icl_build_plane_wm(struct skl_pipe_wm *pipe_wm,
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
			      struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

4964
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4965 4966 4967 4968
						y_plane_id, 0);
		if (ret)
			return ret;

4969
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4970 4971 4972 4973
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4974
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4975 4976 4977 4978 4979 4980
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
4981 4982
}

4983 4984
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_pipe_wm *pipe_wm)
4985
{
4986
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4987 4988 4989
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4990
	int ret;
4991

L
Lyude 已提交
4992 4993 4994 4995 4996 4997
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4998 4999 5000 5001
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5002
		if (INTEL_GEN(dev_priv) >= 11)
5003
			ret = icl_build_plane_wm(pipe_wm,
5004
						 cstate, intel_pstate);
5005
		else
5006
			ret = skl_build_plane_wm(pipe_wm,
5007
						 cstate, intel_pstate);
5008 5009
		if (ret)
			return ret;
5010
	}
5011

5012
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5013

5014
	return 0;
5015 5016
}

5017 5018
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5019 5020 5021
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5022
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5023
	else
5024
		I915_WRITE_FW(reg, 0);
5025 5026
}

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

5039
	I915_WRITE_FW(reg, val);
5040 5041
}

5042 5043
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5044
{
5045
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5046
	int level, max_level = ilk_wm_max_level(dev_priv);
5047 5048 5049 5050 5051 5052 5053 5054
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5055 5056

	for (level = 0; level <= max_level; level++) {
5057
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5058
				   &wm->wm[level]);
5059
	}
5060
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5061
			   &wm->trans_wm);
5062

5063
	if (INTEL_GEN(dev_priv) >= 11) {
5064
		skl_ddb_entry_write(dev_priv,
5065 5066
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5067
	}
5068 5069 5070 5071 5072 5073 5074 5075

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5076 5077
}

5078 5079
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5080
{
5081
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5082
	int level, max_level = ilk_wm_max_level(dev_priv);
5083 5084 5085 5086 5087 5088
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5089 5090

	for (level = 0; level <= max_level; level++) {
5091 5092
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5093
	}
5094
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5095

5096
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5097 5098
}

5099 5100 5101
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5102 5103 5104 5105
	return l1->plane_en == l2->plane_en &&
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5106

5107 5108 5109 5110 5111
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5112

5113 5114 5115 5116 5117 5118 5119
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5120 5121
}

5122 5123
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5124
{
5125
	return a->start < b->end && b->start < a->end;
5126 5127
}

5128 5129 5130
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
				 const struct skl_ddb_entry entries[],
				 int num_entries, int ignore_idx)
5131
{
5132
	int i;
5133

5134 5135 5136
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5137
			return true;
5138
	}
5139

5140
	return false;
5141 5142
}

5143
static int skl_update_pipe_wm(struct intel_crtc_state *cstate,
5144
			      const struct skl_pipe_wm *old_pipe_wm,
5145 5146
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
5147
{
5148
	int ret;
5149

5150
	ret = skl_build_pipe_wm(cstate, pipe_wm);
5151 5152
	if (ret)
		return ret;
5153

5154
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5155 5156 5157
		*changed = false;
	else
		*changed = true;
5158

5159
	return 0;
5160 5161
}

5162
static uint32_t
5163
pipes_modified(struct intel_atomic_state *state)
5164
{
5165 5166
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5167 5168
	uint32_t i, ret = 0;

5169 5170
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5171 5172 5173 5174

	return ret;
}

5175
static int
5176 5177
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5178
{
5179 5180 5181 5182
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5183

5184 5185 5186
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5187

5188 5189 5190 5191
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5192 5193
			continue;

5194
		plane_state = intel_atomic_get_plane_state(state, plane);
5195 5196
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5197

5198
		new_crtc_state->update_planes |= BIT(plane_id);
5199 5200 5201 5202 5203 5204
	}

	return 0;
}

static int
5205
skl_compute_ddb(struct intel_atomic_state *state)
5206
{
5207 5208
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5209 5210
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5211 5212
	struct intel_crtc *crtc;
	int ret, i;
5213

5214 5215
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5216
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5217 5218
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5219 5220 5221
		if (ret)
			return ret;

5222 5223
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5224 5225
		if (ret)
			return ret;
5226 5227 5228 5229 5230
	}

	return 0;
}

5231
static void
5232
skl_print_wm_changes(struct intel_atomic_state *state)
5233
{
5234 5235 5236 5237 5238
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5239
	int i;
5240

5241 5242 5243 5244
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5245 5246
			const struct skl_ddb_entry *old, *new;

5247 5248
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5249 5250 5251 5252

			if (skl_ddb_entry_equal(old, new))
				continue;

5253
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5254
				      plane->base.base.id, plane->base.name,
5255 5256
				      old->start, old->end,
				      new->start, new->end);
5257 5258 5259 5260
		}
	}
}

5261
static int
5262
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5263
{
5264
	struct drm_device *dev = state->base.dev;
5265
	const struct drm_i915_private *dev_priv = to_i915(dev);
5266 5267
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5268
	uint32_t realloc_pipes = pipes_modified(state);
5269
	int ret, i;
5270

5271 5272 5273 5274
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5275 5276
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5277

5278 5279 5280 5281 5282 5283 5284 5285
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5286
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5287
		(*changed) = true;
5288

5289
	if (!*changed)
5290 5291
		return 0;

5292 5293 5294 5295 5296 5297 5298 5299
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5300
				       state->base.acquire_ctx);
5301 5302 5303
		if (ret)
			return ret;

5304
		state->active_pipe_changes = ~0;
5305 5306

		/*
5307
		 * We usually only initialize state->active_crtcs if we
5308 5309 5310 5311
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5312 5313
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5329
	if (state->active_pipe_changes || state->modeset) {
5330
		realloc_pipes = ~0;
5331
		state->wm_results.dirty_pipes = ~0;
5332 5333 5334 5335 5336 5337
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5338 5339 5340 5341
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5342 5343 5344 5345 5346
	}

	return 0;
}

5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5407
static int
5408
skl_compute_wm(struct intel_atomic_state *state)
5409
{
5410 5411 5412 5413
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5414 5415 5416 5417
	struct skl_pipe_wm *pipe_wm;
	bool changed = false;
	int ret, i;

5418 5419 5420
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5421 5422 5423 5424
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5425 5426
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5427
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5428 5429 5430
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5431 5432
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    cstate, i) {
5433
		const struct skl_pipe_wm *old_pipe_wm =
5434
			&old_crtc_state->wm.skl.optimal;
5435

5436
		pipe_wm = &cstate->wm.skl.optimal;
5437 5438 5439 5440
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm, &changed);
		if (ret)
			return ret;

5441
		ret = skl_wm_add_affected_planes(state, crtc);
5442 5443 5444 5445
		if (ret)
			return ret;

		if (changed)
5446
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5447 5448
	}

5449 5450 5451 5452
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5453
	skl_print_wm_changes(state);
5454

5455 5456 5457
	return 0;
}

5458 5459 5460 5461 5462 5463 5464
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5465 5466 5467

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5468 5469 5470 5471

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5472 5473
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5474
{
5475
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5476
	struct drm_device *dev = intel_crtc->base.dev;
5477
	struct drm_i915_private *dev_priv = to_i915(dev);
5478
	struct skl_ddb_values *results = &state->wm_results;
5479

5480
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5481 5482
		return;

5483
	mutex_lock(&dev_priv->wm.wm_mutex);
5484

5485 5486
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5487

5488
	mutex_unlock(&dev_priv->wm.wm_mutex);
5489 5490
}

5491
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5492 5493 5494 5495 5496
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5497
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5509
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5510
{
5511
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5512
	struct ilk_wm_maximums max;
5513
	struct intel_wm_config config = {};
5514
	struct ilk_wm_values results = {};
5515
	enum intel_ddb_partitioning partitioning;
5516

5517
	ilk_compute_wm_config(dev_priv, &config);
5518

5519 5520
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5521 5522

	/* 5/6 split only in single pipe config on IVB+ */
5523
	if (INTEL_GEN(dev_priv) >= 7 &&
5524
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5525 5526
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5527

5528
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5529
	} else {
5530
		best_lp_wm = &lp_wm_1_2;
5531 5532
	}

5533
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5534
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5535

5536
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5537

5538
	ilk_write_wm_values(dev_priv, &results);
5539 5540
}

5541 5542
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5543
{
5544 5545
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5546

5547
	mutex_lock(&dev_priv->wm.wm_mutex);
5548
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5549 5550 5551
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5552

5553 5554
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5555 5556 5557
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5558

5559 5560
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5561
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5562 5563 5564
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5565 5566
}

5567 5568
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5569
{
5570 5571 5572 5573
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5574 5575
}

5576
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5577
			      struct skl_pipe_wm *out)
5578
{
5579 5580
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5581 5582
	int level, max_level;
	enum plane_id plane_id;
5583
	uint32_t val;
5584

5585
	max_level = ilk_wm_max_level(dev_priv);
5586

5587
	for_each_plane_id_on_crtc(crtc, plane_id) {
5588
		struct skl_plane_wm *wm = &out->planes[plane_id];
5589

5590
		for (level = 0; level <= max_level; level++) {
5591 5592
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5593 5594
			else
				val = I915_READ(CUR_WM(pipe, level));
5595

5596
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5597 5598
		}

5599 5600
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5601 5602 5603 5604
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5605 5606
	}

5607
	if (!crtc->active)
5608
		return;
5609

5610
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5611 5612
}

5613
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5614
{
5615
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5616
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5617
	struct intel_crtc *crtc;
5618
	struct intel_crtc_state *cstate;
5619

5620
	skl_ddb_get_hw_state(dev_priv, ddb);
5621 5622
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5623 5624 5625

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5626 5627
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5628
	}
5629

5630 5631 5632 5633
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5634 5635
}

5636
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5637
{
5638
	struct drm_device *dev = crtc->base.dev;
5639
	struct drm_i915_private *dev_priv = to_i915(dev);
5640
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5641
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5642
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5643
	enum pipe pipe = crtc->pipe;
5644
	static const i915_reg_t wm0_pipe_reg[] = {
5645 5646 5647 5648 5649 5650
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5651
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5652
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5653

5654 5655
	memset(active, 0, sizeof(*active));

5656
	active->pipe_enabled = crtc->active;
5657 5658

	if (active->pipe_enabled) {
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5673
		int level, max_level = ilk_wm_max_level(dev_priv);
5674 5675 5676 5677 5678 5679 5680 5681 5682

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5683

5684
	crtc->wm.active.ilk = *active;
5685 5686
}

5687 5688 5689 5690 5691
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5718 5719 5720 5721 5722 5723 5724 5725 5726
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5727
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5728
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5729
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5730
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5731
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5732
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5733
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5734 5735 5736 5737 5738
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5739 5740 5741
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5742 5743

	tmp = I915_READ(DSPFW2);
5744 5745 5746
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5747 5748 5749 5750 5751 5752

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5753 5754
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5755 5756

		tmp = I915_READ(DSPFW8_CHV);
5757 5758
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5759 5760

		tmp = I915_READ(DSPFW9_CHV);
5761 5762
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5763 5764 5765

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5766 5767 5768 5769 5770 5771 5772 5773 5774
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5775 5776
	} else {
		tmp = I915_READ(DSPFW7);
5777 5778
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5779 5780 5781

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5782 5783 5784 5785 5786 5787
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5788 5789 5790 5791 5792 5793
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5794
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5795 5796 5797 5798 5799 5800 5801 5802
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5803
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5934
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
5935 5936
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5937
	struct intel_crtc *crtc;
5938 5939 5940 5941 5942 5943 5944 5945
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5946
		mutex_lock(&dev_priv->pcu_lock);
5947 5948 5949 5950 5951

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5952 5953 5954 5955 5956 5957 5958 5959 5960
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5961
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5975

5976
		mutex_unlock(&dev_priv->pcu_lock);
5977 5978
	}

5979
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5995
			struct g4x_pipe_wm *raw =
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6017
		crtc_state->wm.vlv.intermediate = *active;
6018

6019
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6020 6021 6022 6023 6024
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6025
	}
6026 6027 6028 6029 6030

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6055
			struct g4x_pipe_wm *raw =
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6096
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6097
{
6098
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6099
	struct intel_crtc *crtc;
6100

6101 6102
	ilk_init_lp_watermarks(dev_priv);

6103
	for_each_intel_crtc(&dev_priv->drm, crtc)
6104 6105 6106 6107 6108 6109 6110
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6111
	if (INTEL_GEN(dev_priv) >= 7) {
6112 6113 6114
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6115

6116
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6117 6118
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6119
	else if (IS_IVYBRIDGE(dev_priv))
6120 6121
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6122 6123 6124 6125 6126

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6127 6128
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6129
 * @crtc: the #intel_crtc on which to compute the WM
6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6160
void intel_update_watermarks(struct intel_crtc *crtc)
6161
{
6162
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6163 6164

	if (dev_priv->display.update_wm)
6165
		dev_priv->display.update_wm(crtc);
6166 6167
}

6168 6169 6170 6171
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6172 6173 6174
	if (!HAS_IPC(dev_priv))
		return;

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6190 6191 6192 6193 6194 6195
	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
	else
		dev_priv->ipc_enabled = true;

6196 6197 6198
	intel_enable_ipc(dev_priv);
}

6199
/*
6200 6201 6202 6203 6204 6205 6206 6207
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

6208
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6209 6210 6211
{
	u16 rgvswctl;

6212
	lockdep_assert_held(&mchdev_lock);
6213

6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6231
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6232
{
6233
	u32 rgvmodectl;
6234 6235
	u8 fmax, fmin, fstart, vstart;

6236 6237
	spin_lock_irq(&mchdev_lock);

6238 6239
	rgvmodectl = I915_READ(MEMMODECTL);

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6260
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6261 6262
		PXVFREQ_PX_SHIFT;

6263 6264
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6265

6266 6267 6268
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6285
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6286
		DRM_ERROR("stuck trying to change perf mode\n");
6287
	mdelay(1);
6288

6289
	ironlake_set_drps(dev_priv, fstart);
6290

6291 6292
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6293
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6294
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6295
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6296 6297

	spin_unlock_irq(&mchdev_lock);
6298 6299
}

6300
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6301
{
6302 6303 6304 6305 6306
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6307 6308 6309 6310 6311 6312 6313 6314 6315

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6316
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6317
	mdelay(1);
6318 6319
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6320
	mdelay(1);
6321

6322
	spin_unlock_irq(&mchdev_lock);
6323 6324
}

6325 6326 6327 6328 6329
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6330
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6331
{
6332
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6333
	u32 limits;
6334

6335 6336 6337 6338 6339 6340
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6341
	if (INTEL_GEN(dev_priv) >= 9) {
6342 6343 6344
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6345
	} else {
6346 6347 6348
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6349
	}
6350 6351 6352 6353

	return limits;
}

C
Chris Wilson 已提交
6354
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6355
{
6356
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6357 6358
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6359

C
Chris Wilson 已提交
6360
	lockdep_assert_held(&rps->power.mutex);
6361

C
Chris Wilson 已提交
6362
	if (new_power == rps->power.mode)
6363 6364 6365 6366 6367 6368
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6369 6370
		ei_up = 16000;
		threshold_up = 95;
6371 6372

		/* Downclock if less than 85% busy over 32ms */
6373 6374
		ei_down = 32000;
		threshold_down = 85;
6375 6376 6377 6378
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6379 6380
		ei_up = 13000;
		threshold_up = 90;
6381 6382

		/* Downclock if less than 75% busy over 32ms */
6383 6384
		ei_down = 32000;
		threshold_down = 75;
6385 6386 6387 6388
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6389 6390
		ei_up = 10000;
		threshold_up = 85;
6391 6392

		/* Downclock if less than 60% busy over 32ms */
6393 6394
		ei_down = 32000;
		threshold_down = 60;
6395 6396 6397
		break;
	}

6398 6399 6400 6401 6402 6403
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6404
	I915_WRITE(GEN6_RP_UP_EI,
6405
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6406
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6407 6408
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6409 6410

	I915_WRITE(GEN6_RP_DOWN_EI,
6411
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6412
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6423

6424
skip_hw_write:
C
Chris Wilson 已提交
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6469 6470
}

C
Chris Wilson 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6489 6490
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6491
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6492 6493
	u32 mask = 0;

6494
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6495
	if (val > rps->min_freq_softlimit)
6496
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6497
	if (val < rps->max_freq_softlimit)
6498
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6499

6500 6501
	mask &= dev_priv->pm_rps_events;

6502
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6503 6504
}

6505 6506 6507
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6508
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6509
{
6510 6511
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6512 6513 6514
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6515
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6516
		gen6_set_rps_thresholds(dev_priv, val);
6517

6518
		if (INTEL_GEN(dev_priv) >= 9)
6519 6520
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6521
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6522 6523 6524 6525 6526 6527 6528
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6529
	}
6530 6531 6532 6533

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6534
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6535
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6536

6537
	rps->cur_freq = val;
6538
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6539 6540

	return 0;
6541 6542
}

6543
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6544
{
6545 6546
	int err;

6547
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6548 6549 6550
		      "Odd GPU freq value\n"))
		val &= ~1;

6551 6552
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6553
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6554 6555 6556 6557
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6558
		gen6_set_rps_thresholds(dev_priv, val);
6559
	}
6560

6561
	dev_priv->gt_pm.rps.cur_freq = val;
6562
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6563 6564

	return 0;
6565 6566
}

6567
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6568 6569
 *
 * * If Gfx is Idle, then
6570 6571 6572
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6573 6574 6575
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6576 6577
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6578
	int err;
6579

6580
	if (rps->cur_freq <= val)
6581 6582
		return;

6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6595
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6596
	err = valleyview_set_rps(dev_priv, val);
6597
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6598 6599 6600

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6601 6602
}

6603 6604
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6605 6606
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6607
	mutex_lock(&dev_priv->pcu_lock);
6608
	if (rps->enabled) {
6609 6610
		u8 freq;

6611
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6612 6613
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6614
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6615

6616 6617
		gen6_enable_rps_interrupts(dev_priv);

6618 6619 6620
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6621 6622
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6623

6624
		if (intel_set_rps(dev_priv,
6625
				  clamp(freq,
6626 6627
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6628
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6629
	}
6630
	mutex_unlock(&dev_priv->pcu_lock);
6631 6632
}

6633 6634
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6635 6636
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6637 6638 6639 6640 6641 6642 6643
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6644
	mutex_lock(&dev_priv->pcu_lock);
6645
	if (rps->enabled) {
6646
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6647
			vlv_set_rps_idle(dev_priv);
6648
		else
6649 6650
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6651 6652
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6653
	}
6654
	mutex_unlock(&dev_priv->pcu_lock);
6655 6656
}

6657
void gen6_rps_boost(struct i915_request *rq,
6658
		    struct intel_rps_client *rps_client)
6659
{
6660
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6661
	unsigned long flags;
6662 6663
	bool boost;

6664 6665 6666
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6667
	if (!rps->enabled)
6668
		return;
6669

6670 6671 6672
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return;

6673
	/* Serializes with i915_request_retire() */
6674
	boost = false;
6675
	spin_lock_irqsave(&rq->lock, flags);
6676 6677
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6678
		rq->waitboost = true;
6679
	}
6680
	spin_unlock_irqrestore(&rq->lock, flags);
6681 6682 6683
	if (!boost)
		return;

6684 6685
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6686

6687
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6688 6689
}

6690
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6691
{
6692
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6693 6694
	int err;

6695
	lockdep_assert_held(&dev_priv->pcu_lock);
6696 6697
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6698

6699 6700
	if (!rps->enabled) {
		rps->cur_freq = val;
6701 6702 6703
		return 0;
	}

6704
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6705
		err = valleyview_set_rps(dev_priv, val);
6706
	else
6707 6708 6709
		err = gen6_set_rps(dev_priv, val);

	return err;
6710 6711
}

6712
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6713 6714
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6715
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6716 6717
}

6718
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6719 6720 6721 6722
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6723
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6724 6725
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6726 6727 6728 6729
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6730
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6731
	I915_WRITE(GEN6_RP_CONTROL, 0);
6732 6733
}

6734
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6735 6736 6737 6738
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6739 6740 6741 6742 6743
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6744
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6745
{
6746
	/* We're doing forcewake before Disabling RC6,
6747
	 * This what the BIOS expects when going into suspend */
6748
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6749

6750
	I915_WRITE(GEN6_RC_CONTROL, 0);
6751

6752
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6753 6754
}

6755 6756 6757 6758 6759
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6760
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6761 6762 6763
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6775 6776

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6777
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6778 6779 6780 6781 6782 6783 6784 6785
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6786 6787
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6788
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6789 6790 6791 6792 6793 6794 6795
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6796
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6797 6798 6799
		enable_rc6 = false;
	}

6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6814 6815 6816 6817 6818 6819
		enable_rc6 = false;
	}

	return enable_rc6;
}

6820
static bool sanitize_rc6(struct drm_i915_private *i915)
6821
{
6822
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6823

6824 6825 6826
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6827

6828 6829
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6830
		DRM_INFO("RC6 disabled by BIOS\n");
6831
		info->has_rc6 = 0;
6832 6833
	}

6834 6835 6836 6837 6838 6839 6840 6841
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6842

6843
	return info->has_rc6;
6844 6845
}

6846
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6847
{
6848 6849
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6850
	/* All of these values are in units of 50MHz */
6851

6852
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6853
	if (IS_GEN9_LP(dev_priv)) {
6854
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6855 6856 6857
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6858
	} else {
6859
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6860 6861 6862
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6863
	}
6864
	/* hw_max = RP0 until we check for overclocking */
6865
	rps->max_freq = rps->rp0_freq;
6866

6867
	rps->efficient_freq = rps->rp1_freq;
6868
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6869
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6870 6871 6872 6873 6874
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6875
			rps->efficient_freq =
6876 6877
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6878 6879
					rps->min_freq,
					rps->max_freq);
6880 6881
	}

6882
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6883
		/* Store the frequency values in 16.66 MHZ units, which is
6884 6885
		 * the natural hardware unit for SKL
		 */
6886 6887 6888 6889 6890
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6891
	}
6892 6893
}

6894
static void reset_rps(struct drm_i915_private *dev_priv,
6895
		      int (*set)(struct drm_i915_private *, u8))
6896
{
6897 6898
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6899 6900

	/* force a reset */
C
Chris Wilson 已提交
6901
	rps->power.mode = -1;
6902
	rps->cur_freq = -1;
6903

6904 6905
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6906 6907
}

J
Jesse Barnes 已提交
6908
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6909
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6910 6911 6912
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6913
	/* Program defaults and thresholds for RPS */
6914
	if (IS_GEN(dev_priv, 9))
6915 6916
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6917 6918 6919 6920 6921

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6922 6923
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6924 6925 6926
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6927
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6928 6929 6930 6931

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6932
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6933
{
6934
	struct intel_engine_cs *engine;
6935
	enum intel_engine_id id;
6936
	u32 rc6_mode;
Z
Zhe Wang 已提交
6937 6938 6939 6940 6941 6942

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6943
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6944 6945 6946 6947 6948

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6949 6950 6951 6952 6953 6954 6955 6956
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6957
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6958
	} else {
6959
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6960 6961
	}

Z
Zhe Wang 已提交
6962 6963
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6964
	for_each_engine(engine, dev_priv, id)
6965
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6966

6967
	if (HAS_GUC(dev_priv))
6968 6969
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6970 6971
	I915_WRITE(GEN6_RC_SLEEP, 0);

6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6995

Z
Zhe Wang 已提交
6996
	/* 3a: Enable RC6 */
6997
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6998 6999 7000 7001 7002 7003 7004

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7005
	I915_WRITE(GEN6_RC_CONTROL,
7006 7007 7008
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7009

7010 7011
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7012
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7013
	 */
7014
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7015 7016
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7017 7018
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7019

7020
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7021 7022
}

7023
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7024
{
7025
	struct intel_engine_cs *engine;
7026
	enum intel_engine_id id;
7027 7028 7029 7030

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7031
	/* 1b: Get forcewake during program sequence. Although the driver
7032
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7033
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7034 7035 7036 7037 7038 7039 7040 7041

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7042
	for_each_engine(engine, dev_priv, id)
7043
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7044
	I915_WRITE(GEN6_RC_SLEEP, 0);
7045
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7046 7047

	/* 3: Enable RC6 */
7048

7049 7050 7051 7052
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7053

7054 7055 7056 7057 7058
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7059 7060
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7061 7062 7063
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
7064
	I915_WRITE(GEN6_RPNSWREQ,
7065
		   HSW_FREQUENCY(rps->rp1_freq));
7066
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7067
		   HSW_FREQUENCY(rps->rp1_freq));
7068 7069 7070 7071 7072
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7073 7074
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7075 7076 7077 7078 7079 7080 7081

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7082

7083
	/* 2: Enable RPS */
7084 7085 7086 7087 7088 7089 7090 7091
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7092
	reset_rps(dev_priv, gen6_set_rps);
7093

7094
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7095 7096
}

7097
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7098
{
7099
	struct intel_engine_cs *engine;
7100
	enum intel_engine_id id;
7101
	u32 rc6vids, rc6_mask;
7102
	u32 gtfifodbg;
7103
	int ret;
7104 7105 7106 7107

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7108 7109
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7110 7111 7112 7113
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7114
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7125
	for_each_engine(engine, dev_priv, id)
7126
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7127 7128 7129

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7130
	if (IS_IVYBRIDGE(dev_priv))
7131 7132 7133
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7134
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7135 7136
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7137
	/* We don't use those on Haswell */
7138 7139 7140 7141 7142
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7143 7144 7145 7146 7147
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7148 7149
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7150
	if (IS_GEN(dev_priv, 6) && ret) {
7151
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7152
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7153 7154 7155 7156 7157 7158 7159 7160 7161
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7162
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7163 7164
}

7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

7184
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7185
{
7186
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7187 7188
	const int min_freq = 15;
	const int scaling_factor = 180;
7189 7190
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7191
	unsigned int max_gpu_freq, min_gpu_freq;
7192
	struct cpufreq_policy *policy;
7193

7194
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7195

7196 7197 7198
	if (rps->max_freq <= rps->min_freq)
		return;

7199 7200 7201 7202 7203 7204 7205 7206 7207
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7208
		max_ia_freq = tsc_khz;
7209
	}
7210 7211 7212 7213

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7214
	min_ring_freq = I915_READ(DCLK) & 0xf;
7215 7216
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7217

7218 7219
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7220
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7221
		/* Convert GT frequency to 50 HZ units */
7222 7223
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7224 7225
	}

7226 7227 7228 7229 7230
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7231
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7232
		const int diff = max_gpu_freq - gpu_freq;
7233 7234
		unsigned int ia_freq = 0, ring_freq = 0;

7235
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7236 7237 7238 7239 7240
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7241
		} else if (INTEL_GEN(dev_priv) >= 8) {
7242 7243
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7244
		} else if (IS_HASWELL(dev_priv)) {
7245
			ring_freq = mult_frac(gpu_freq, 5, 4);
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7262

B
Ben Widawsky 已提交
7263 7264
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7265 7266 7267
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7268 7269 7270
	}
}

7271
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7272 7273 7274
{
	u32 val, rp0;

7275
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7276

7277
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7292
	}
7293 7294 7295

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7309 7310 7311 7312
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7313 7314 7315
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7316 7317 7318
	return rp1;
}

7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7341
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7342 7343 7344
{
	u32 val, rp0;

7345
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7358
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7359
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7360
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7361 7362 7363 7364 7365
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7366
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7367
{
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7379 7380
}

7381 7382 7383 7384 7385
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7386
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7387 7388 7389
			     dev_priv->vlv_pctx->stolen->start);
}

7390 7391 7392 7393 7394 7395 7396 7397 7398

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7399
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7400
{
7401 7402
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7403 7404 7405 7406
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7407
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7408 7409
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7410 7411 7412 7413

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7414 7415

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7416 7417
}

7418
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7419 7420
{
	struct drm_i915_gem_object *pctx;
7421 7422
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7423 7424 7425 7426 7427
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7428
		resource_size_t pcbr_offset;
7429

7430
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7431
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7432
								      pcbr_offset,
7433
								      I915_GTT_OFFSET_NONE,
7434 7435 7436 7437
								      pctx_size);
		goto out;
	}

7438 7439
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7440 7441 7442 7443 7444 7445 7446 7447
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7448
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7449 7450
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7451
		goto out;
7452 7453
	}

7454 7455 7456 7457 7458
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7459 7460 7461
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7462
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7463 7464 7465
	dev_priv->vlv_pctx = pctx;
}

7466
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7467
{
7468
	struct drm_i915_gem_object *pctx;
7469

7470 7471 7472
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7473 7474
}

7475 7476
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7477
	dev_priv->gt_pm.rps.gpll_ref_freq =
7478 7479 7480 7481 7482
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7483
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7484 7485
}

7486
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7487
{
7488
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7489
	u32 val;
7490

7491
	valleyview_setup_pctx(dev_priv);
7492

7493 7494
	vlv_init_gpll_ref_freq(dev_priv);

7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7508
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7509

7510 7511
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7512
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7513 7514
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7515

7516
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7517
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7518 7519
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7520

7521
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7522
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7523 7524
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7525

7526
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7527
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7528 7529
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7530 7531
}

7532
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7533
{
7534
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7535
	u32 val;
7536

7537
	cherryview_setup_pctx(dev_priv);
7538

7539 7540
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7541
	mutex_lock(&dev_priv->sb_lock);
7542
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7543
	mutex_unlock(&dev_priv->sb_lock);
7544

7545 7546 7547 7548
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7549
	default:
7550 7551 7552
		dev_priv->mem_freq = 1600;
		break;
	}
7553
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7554

7555 7556
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7557
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7558 7559
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7560

7561
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7562
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7563 7564
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7565

7566
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7567
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7568 7569
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7570

7571
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7572
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7573 7574
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7575

7576 7577
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7578
		  "Odd GPU freq values\n");
7579 7580
}

7581
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7582
{
7583
	valleyview_cleanup_pctx(dev_priv);
7584 7585
}

7586
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7587
{
7588
	struct intel_engine_cs *engine;
7589
	enum intel_engine_id id;
7590
	u32 gtfifodbg, rc6_mode, pcbr;
7591

7592 7593
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7604
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7605

7606 7607 7608
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7609 7610 7611 7612 7613
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7614
	for_each_engine(engine, dev_priv, id)
7615
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7616 7617
	I915_WRITE(GEN6_RC_SLEEP, 0);

7618 7619
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7620

7621
	/* Allows RC6 residency counter to work */
7622 7623 7624 7625 7626 7627 7628 7629 7630
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7631 7632
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7633
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7634 7635
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7646
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7647 7648 7649 7650 7651 7652 7653
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7654
	/* 2: Enable RPS */
7655 7656
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7657
		   GEN6_RP_MEDIA_IS_GFX |
7658 7659 7660 7661
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7662 7663 7664 7665 7666 7667
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7668 7669
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7670 7671 7672
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7673
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7674 7675
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7676
	reset_rps(dev_priv, valleyview_set_rps);
7677

7678
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7679 7680
}

7681
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7682
{
7683
	struct intel_engine_cs *engine;
7684
	enum intel_engine_id id;
7685
	u32 gtfifodbg;
7686

7687 7688
	valleyview_check_pctx(dev_priv);

7689 7690
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7691 7692
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7693 7694 7695
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7696
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7697

7698 7699 7700
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7701 7702 7703 7704
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7705
	for_each_engine(engine, dev_priv, id)
7706
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7707

7708
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7709

7710
	/* Allows RC6 residency counter to work */
7711
	I915_WRITE(VLV_COUNTER_CONTROL,
7712 7713
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7714
				      VLV_RENDER_RC0_COUNT_EN |
7715 7716
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7717

7718 7719
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7720

7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7746 7747 7748 7749 7750 7751
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7752
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7753

7754 7755 7756
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7757
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7758 7759
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7760
	reset_rps(dev_priv, valleyview_set_rps);
7761

7762
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7763 7764
}

7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7794
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7795 7796 7797 7798 7799 7800
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7801
	lockdep_assert_held(&mchdev_lock);
7802

7803
	diff1 = now - dev_priv->ips.last_time1;
7804 7805 7806 7807 7808 7809 7810

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7811
		return dev_priv->ips.chipset_power;
7812 7813 7814 7815 7816 7817 7818 7819

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7820 7821
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7822 7823
		diff += total_count;
	} else {
7824
		diff = total_count - dev_priv->ips.last_count1;
7825 7826 7827
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7828 7829
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7830 7831 7832 7833 7834 7835 7836 7837 7838 7839
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7840 7841
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7842

7843
	dev_priv->ips.chipset_power = ret;
7844 7845 7846 7847

	return ret;
}

7848 7849 7850 7851
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7852
	if (!IS_GEN(dev_priv, 5))
7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7891
{
7892 7893 7894
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7895
	if (INTEL_INFO(dev_priv)->is_mobile)
7896 7897 7898
		return vm > 0 ? vm : 0;

	return vd;
7899 7900
}

7901
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7902
{
7903
	u64 now, diff, diffms;
7904 7905
	u32 count;

7906
	lockdep_assert_held(&mchdev_lock);
7907

7908 7909 7910
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7911 7912 7913 7914 7915 7916 7917

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7918 7919
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7920 7921
		diff += count;
	} else {
7922
		diff = count - dev_priv->ips.last_count2;
7923 7924
	}

7925 7926
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7927 7928 7929 7930

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7931
	dev_priv->ips.gfx_power = diff;
7932 7933
}

7934 7935
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7936
	if (!IS_GEN(dev_priv, 5))
7937 7938
		return;

7939
	spin_lock_irq(&mchdev_lock);
7940 7941 7942

	__i915_update_gfx_val(dev_priv);

7943
	spin_unlock_irq(&mchdev_lock);
7944 7945
}

7946
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7947 7948 7949 7950
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7951
	lockdep_assert_held(&mchdev_lock);
7952

7953
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7973
	corr2 = (corr * dev_priv->ips.corr);
7974 7975 7976 7977

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7978
	__i915_update_gfx_val(dev_priv);
7979

7980
	return dev_priv->ips.gfx_power + state2;
7981 7982
}

7983 7984 7985 7986
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7987
	if (!IS_GEN(dev_priv, 5))
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

8010
	spin_lock_irq(&mchdev_lock);
8011 8012 8013 8014
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

8015 8016
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
8017 8018 8019 8020

	ret = chipset_val + graphics_val;

out_unlock:
8021
	spin_unlock_irq(&mchdev_lock);
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

8037
	spin_lock_irq(&mchdev_lock);
8038 8039 8040 8041 8042 8043
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8044 8045
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
8046 8047

out_unlock:
8048
	spin_unlock_irq(&mchdev_lock);
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

8065
	spin_lock_irq(&mchdev_lock);
8066 8067 8068 8069 8070 8071
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8072 8073
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
8074 8075

out_unlock:
8076
	spin_unlock_irq(&mchdev_lock);
8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

8091
	spin_lock_irq(&mchdev_lock);
8092 8093
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
8094
	spin_unlock_irq(&mchdev_lock);
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

8111
	spin_lock_irq(&mchdev_lock);
8112 8113 8114 8115 8116 8117
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

8118
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
8119

8120
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8121 8122 8123
		ret = false;

out_unlock:
8124
	spin_unlock_irq(&mchdev_lock);
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8152 8153
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8154
	spin_lock_irq(&mchdev_lock);
8155
	i915_mch_dev = dev_priv;
8156
	spin_unlock_irq(&mchdev_lock);
8157 8158 8159 8160 8161 8162

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8163
	spin_lock_irq(&mchdev_lock);
8164
	i915_mch_dev = NULL;
8165
	spin_unlock_irq(&mchdev_lock);
8166
}
8167

8168
static void intel_init_emon(struct drm_i915_private *dev_priv)
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8185
		I915_WRITE(PEW(i), 0);
8186
	for (i = 0; i < 3; i++)
8187
		I915_WRITE(DEW(i), 0);
8188 8189 8190

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8191
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8212
		I915_WRITE(PXW(i), val);
8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8228
		I915_WRITE(PXWL(i), 0);
8229 8230 8231 8232 8233 8234

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8235
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8236 8237
}

8238
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8239
{
8240 8241
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8242 8243 8244 8245
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8246
	if (!sanitize_rc6(dev_priv)) {
8247
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8248
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8249
	}
I
Imre Deak 已提交
8250

8251
	mutex_lock(&dev_priv->pcu_lock);
8252 8253

	/* Initialize RPS limits (for userspace) */
8254 8255 8256 8257
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8258
	else if (INTEL_GEN(dev_priv) >= 6)
8259 8260 8261
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8262 8263
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8264

8265 8266
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8267 8268

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8269
		rps->min_freq_softlimit =
8270
			max_t(int,
8271
			      rps->efficient_freq,
8272 8273
			      intel_freq_opcode(dev_priv, 450));

8274
	/* After setting max-softlimit, find the overclock max freq */
8275
	if (IS_GEN(dev_priv, 6) ||
8276 8277 8278 8279 8280 8281
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8282
					 (rps->max_freq & 0xff) * 50,
8283
					 (params & 0xff) * 50);
8284
			rps->max_freq = params & 0xff;
8285 8286 8287
		}
	}

8288
	/* Finally allow us to boost to max by default */
8289
	rps->boost_freq = rps->max_freq;
8290

8291
	mutex_unlock(&dev_priv->pcu_lock);
8292 8293
}

8294
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8295
{
8296
	if (IS_VALLEYVIEW(dev_priv))
8297
		valleyview_cleanup_gt_powersave(dev_priv);
8298

8299
	if (!HAS_RC6(dev_priv))
8300
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8301 8302
}

8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8319 8320
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8321 8322
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8323
	intel_disable_gt_powersave(dev_priv);
8324

8325 8326
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8327
	else if (INTEL_GEN(dev_priv) >= 6)
8328
		gen6_reset_rps_interrupts(dev_priv);
8329 8330
}

8331 8332 8333 8334
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8335 8336 8337
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8338
	/* Currently there is no HW configuration to be done to disable. */
8339 8340

	i915->gt_pm.llc_pstate.enabled = false;
8341 8342
}

8343
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8344
{
8345
	lockdep_assert_held(&dev_priv->pcu_lock);
8346

8347 8348 8349
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8350 8351 8352 8353 8354 8355 8356 8357
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8358 8359

	dev_priv->gt_pm.rc6.enabled = false;
8360
}
8361

8362 8363 8364
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8365

8366 8367 8368
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8369
	if (INTEL_GEN(dev_priv) >= 9)
8370
		gen9_disable_rps(dev_priv);
8371
	else if (IS_CHERRYVIEW(dev_priv))
8372
		cherryview_disable_rps(dev_priv);
8373
	else if (IS_VALLEYVIEW(dev_priv))
8374
		valleyview_disable_rps(dev_priv);
8375
	else if (INTEL_GEN(dev_priv) >= 6)
8376
		gen6_disable_rps(dev_priv);
8377
	else if (IS_IRONLAKE_M(dev_priv))
8378
		ironlake_disable_drps(dev_priv);
8379 8380

	dev_priv->gt_pm.rps.enabled = false;
8381 8382 8383 8384 8385
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8386

8387 8388
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8389 8390 8391
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8392
	mutex_unlock(&dev_priv->pcu_lock);
8393 8394
}

8395 8396 8397 8398
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8399 8400 8401
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8402
	gen6_update_ring_freq(i915);
8403 8404

	i915->gt_pm.llc_pstate.enabled = true;
8405 8406
}

8407
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8408
{
8409
	lockdep_assert_held(&dev_priv->pcu_lock);
8410

8411 8412 8413
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8414 8415 8416 8417 8418 8419 8420 8421 8422 8423
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8424 8425

	dev_priv->gt_pm.rc6.enabled = true;
8426
}
8427

8428 8429 8430
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8431

8432
	lockdep_assert_held(&dev_priv->pcu_lock);
8433

8434 8435 8436
	if (rps->enabled)
		return;

8437 8438 8439 8440
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8441
	} else if (INTEL_GEN(dev_priv) >= 9) {
8442 8443 8444
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8445
	} else if (INTEL_GEN(dev_priv) >= 6) {
8446
		gen6_enable_rps(dev_priv);
8447 8448 8449
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8450
	}
8451

8452 8453
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8454

8455 8456
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8457 8458

	rps->enabled = true;
8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8469 8470
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8471 8472 8473
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8474

8475
	mutex_unlock(&dev_priv->pcu_lock);
8476
}
I
Imre Deak 已提交
8477

8478
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8479 8480 8481 8482 8483 8484 8485 8486 8487
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8488
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8489
{
8490
	enum pipe pipe;
8491

8492
	for_each_pipe(dev_priv, pipe) {
8493 8494 8495
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8496 8497 8498

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8499 8500 8501
	}
}

8502
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8503
{
8504
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8505

8506 8507 8508 8509
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8510 8511 8512
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8530
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8531 8532 8533
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8534

8535 8536 8537 8538 8539 8540 8541
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8542
	if (IS_IRONLAKE_M(dev_priv)) {
8543
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8544 8545 8546 8547 8548 8549 8550 8551
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8552 8553
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8554 8555 8556 8557 8558 8559
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8560

8561
	/* WaDisableRenderCachePipelinedFlush:ilk */
8562 8563
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8564

8565 8566 8567
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8568
	g4x_disable_trickle_feed(dev_priv);
8569

8570
	ibx_init_clock_gating(dev_priv);
8571 8572
}

8573
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8574 8575
{
	int pipe;
8576
	uint32_t val;
8577 8578 8579 8580 8581 8582

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8583 8584 8585
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8586 8587
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8588 8589 8590
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8591
	for_each_pipe(dev_priv, pipe) {
8592 8593 8594
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8595
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8596
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8597 8598 8599
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8600 8601
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8602
	/* WADP0ClockGatingDisable */
8603
	for_each_pipe(dev_priv, pipe) {
8604 8605 8606
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8607 8608
}

8609
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8610 8611 8612 8613
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8614 8615 8616
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8617 8618
}

8619
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8620
{
8621
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8622

8623
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8624 8625 8626 8627 8628

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8629
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8630 8631 8632
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8633 8634 8635
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8636 8637 8638
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8639 8640 8641 8642
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8643 8644
	 */
	I915_WRITE(GEN6_GT_MODE,
8645
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8646

8647
	I915_WRITE(CACHE_MODE_0,
8648
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8664
	 *
8665 8666
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8667 8668 8669 8670 8671
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8672
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8673 8674
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8675

8676 8677 8678 8679 8680 8681 8682 8683
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8684 8685 8686 8687 8688 8689 8690 8691
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8692 8693
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8694 8695 8696 8697 8698 8699 8700
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8701 8702 8703 8704
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8705

8706
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8707

8708
	cpt_init_clock_gating(dev_priv);
8709

8710
	gen6_check_mch_setup(dev_priv);
8711 8712 8713 8714 8715 8716
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8717
	/*
8718
	 * WaVSThreadDispatchOverride:ivb,vlv
8719 8720 8721 8722
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8723 8724 8725 8726 8727 8728 8729 8730
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8731
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8732 8733 8734 8735 8736
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8737
	if (HAS_PCH_LPT_LP(dev_priv))
8738 8739 8740
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8741 8742

	/* WADPOClockGatingDisable:hsw */
8743 8744
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8745
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8746 8747
}

8748
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8749
{
8750
	if (HAS_PCH_LPT_LP(dev_priv)) {
8751 8752 8753 8754 8755 8756 8757
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8758 8759 8760 8761 8762
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8763
	u32 val;
8764 8765 8766 8767 8768

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8769 8770 8771 8772 8773
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8774 8775 8776 8777 8778 8779 8780 8781 8782 8783

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8784 8785 8786 8787 8788
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8789 8790 8791 8792

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8793 8794
}

8795 8796 8797 8798 8799
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8800
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8801 8802
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8803 8804
}

8805
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8806
{
8807
	u32 val;
8808 8809
	cnp_init_clock_gating(dev_priv);

8810 8811 8812 8813
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8814 8815 8816 8817 8818 8819 8820 8821
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8822 8823 8824
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8825 8826
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8827 8828
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8829

R
Rodrigo Vivi 已提交
8830 8831 8832 8833 8834
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8835
	/* WaDisableVFclkgate:cnl */
8836
	/* WaVFUnitClockGatingDisable:cnl */
8837 8838 8839
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8840 8841
}

8842 8843 8844 8845 8846 8847 8848 8849 8850 8851
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8852
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8853
{
8854
	gen9_init_clock_gating(dev_priv);
8855 8856 8857 8858 8859

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8860 8861 8862 8863 8864

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8865

8866
	/* WaFbcNukeOnHostModify:kbl */
8867 8868
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8869 8870
}

8871
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8872
{
8873
	gen9_init_clock_gating(dev_priv);
8874 8875 8876 8877

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8878 8879 8880 8881

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8882 8883
}

8884
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8885
{
8886 8887 8888
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8889
	enum pipe pipe;
B
Ben Widawsky 已提交
8890

8891
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8892
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8893

8894
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8895 8896 8897
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8898
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8899
	for_each_pipe(dev_priv, pipe) {
8900
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8901
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8902
			   BDW_DPRS_MASK_VBLANK_SRD);
8903
	}
8904

8905 8906 8907 8908 8909
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8910

8911 8912
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8913 8914 8915 8916

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8917

8918 8919
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8920

8921 8922
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8923

8924 8925 8926 8927
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8928
	lpt_init_clock_gating(dev_priv);
8929 8930 8931 8932 8933 8934 8935 8936

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8937 8938
}

8939
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8940
{
8941 8942 8943 8944 8945
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8946
	/* This is required by WaCatErrorRejectionIssue:hsw */
8947 8948 8949 8950
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8951 8952 8953
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8954

8955 8956 8957
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8958 8959 8960 8961
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8962
	/* WaDisable4x2SubspanOptimization:hsw */
8963 8964
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8965

8966 8967 8968
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8969 8970 8971 8972
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8973 8974
	 */
	I915_WRITE(GEN7_GT_MODE,
8975
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8976

8977 8978 8979 8980
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8981
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8982 8983
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8984
	lpt_init_clock_gating(dev_priv);
8985 8986
}

8987
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8988
{
8989
	uint32_t snpcr;
8990

8991
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8992

8993
	/* WaDisableEarlyCull:ivb */
8994 8995 8996
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8997
	/* WaDisableBackToBackFlipFix:ivb */
8998 8999 9000 9001
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9002
	/* WaDisablePSDDualDispatchEnable:ivb */
9003
	if (IS_IVB_GT1(dev_priv))
9004 9005 9006
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9007 9008 9009
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9010
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9011 9012 9013
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9014
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9015 9016 9017
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9018
		   GEN7_WA_L3_CHICKEN_MODE);
9019
	if (IS_IVB_GT1(dev_priv))
9020 9021
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9022 9023 9024 9025
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9026 9027
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9028
	}
9029

9030
	/* WaForceL3Serialization:ivb */
9031 9032 9033
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9034
	/*
9035
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9036
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9037 9038
	 */
	I915_WRITE(GEN6_UCGCTL2,
9039
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9040

9041
	/* This is required by WaCatErrorRejectionIssue:ivb */
9042 9043 9044 9045
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9046
	g4x_disable_trickle_feed(dev_priv);
9047 9048

	gen7_setup_fixed_func_scheduler(dev_priv);
9049

9050 9051 9052 9053 9054
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9055

9056
	/* WaDisable4x2SubspanOptimization:ivb */
9057 9058
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9059

9060 9061 9062
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9063 9064 9065 9066
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9067 9068
	 */
	I915_WRITE(GEN7_GT_MODE,
9069
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9070

9071 9072 9073 9074
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9075

9076
	if (!HAS_PCH_NOP(dev_priv))
9077
		cpt_init_clock_gating(dev_priv);
9078

9079
	gen6_check_mch_setup(dev_priv);
9080 9081
}

9082
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9083
{
9084
	/* WaDisableEarlyCull:vlv */
9085 9086 9087
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9088
	/* WaDisableBackToBackFlipFix:vlv */
9089 9090 9091 9092
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9093
	/* WaPsdDispatchEnable:vlv */
9094
	/* WaDisablePSDDualDispatchEnable:vlv */
9095
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9096 9097
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9098

9099 9100 9101
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9102
	/* WaForceL3Serialization:vlv */
9103 9104 9105
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9106
	/* WaDisableDopClockGating:vlv */
9107 9108 9109
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9110
	/* This is required by WaCatErrorRejectionIssue:vlv */
9111 9112 9113 9114
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9115 9116
	gen7_setup_fixed_func_scheduler(dev_priv);

9117
	/*
9118
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9119
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9120 9121
	 */
	I915_WRITE(GEN6_UCGCTL2,
9122
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9123

9124 9125 9126 9127 9128
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9129

9130 9131 9132 9133
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9134 9135
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9136

9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9148 9149 9150 9151 9152 9153
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9154
	/*
9155
	 * WaDisableVLVClockGating_VBIIssue:vlv
9156 9157 9158
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9159
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9160 9161
}

9162
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9163
{
9164 9165 9166 9167 9168
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9169 9170 9171 9172

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9173 9174 9175 9176

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9177 9178 9179 9180

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9181

9182 9183 9184 9185 9186 9187 9188
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9189 9190 9191 9192 9193
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9194 9195
}

9196
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9208
	if (IS_GM45(dev_priv))
9209 9210
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9211 9212 9213 9214

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9215

9216 9217 9218
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9219
	g4x_disable_trickle_feed(dev_priv);
9220 9221
}

9222
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9223 9224 9225 9226 9227 9228
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9229 9230
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9231 9232 9233

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9234 9235
}

9236
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9237 9238 9239 9240 9241 9242 9243
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9244 9245
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9246 9247 9248

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9249 9250
}

9251
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9252 9253 9254 9255 9256 9257
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9258

9259
	if (IS_PINEVIEW(dev_priv))
9260
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9261 9262 9263

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9264 9265

	/* interrupts should cause a wake up from C3 */
9266
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9267 9268 9269

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9270 9271 9272

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9273 9274
}

9275
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9276 9277
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9278 9279 9280 9281

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9282 9283 9284

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9285 9286
}

9287
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9288
{
9289 9290 9291
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9292 9293
}

9294
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9295
{
9296
	dev_priv->display.init_clock_gating(dev_priv);
9297 9298
}

9299
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9300
{
9301 9302
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9303 9304
}

9305
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9321
	if (IS_ICELAKE(dev_priv))
O
Oscar Mateo 已提交
9322
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9323
	else if (IS_CANNONLAKE(dev_priv))
9324
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9325 9326
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9327
	else if (IS_SKYLAKE(dev_priv))
9328
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9329
	else if (IS_KABYLAKE(dev_priv))
9330
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9331
	else if (IS_BROXTON(dev_priv))
9332
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9333 9334
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9335
	else if (IS_BROADWELL(dev_priv))
9336
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9337
	else if (IS_CHERRYVIEW(dev_priv))
9338
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9339
	else if (IS_HASWELL(dev_priv))
9340
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9341
	else if (IS_IVYBRIDGE(dev_priv))
9342
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9343
	else if (IS_VALLEYVIEW(dev_priv))
9344
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9345
	else if (IS_GEN(dev_priv, 6))
9346
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9347
	else if (IS_GEN(dev_priv, 5))
9348
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9349 9350
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9351
	else if (IS_I965GM(dev_priv))
9352
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9353
	else if (IS_I965G(dev_priv))
9354
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9355
	else if (IS_GEN(dev_priv, 3))
9356 9357 9358
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9359
	else if (IS_GEN(dev_priv, 2))
9360 9361 9362 9363 9364 9365 9366
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9367
/* Set up chip specific power management-related functions */
9368
void intel_init_pm(struct drm_i915_private *dev_priv)
9369
{
9370
	/* For cxsr */
9371
	if (IS_PINEVIEW(dev_priv))
9372
		i915_pineview_get_mem_freq(dev_priv);
9373
	else if (IS_GEN(dev_priv, 5))
9374
		i915_ironlake_get_mem_freq(dev_priv);
9375

9376
	/* For FIFO watermark updates */
9377
	if (INTEL_GEN(dev_priv) >= 9) {
9378
		skl_setup_wm_latency(dev_priv);
9379
		dev_priv->display.initial_watermarks = skl_initial_wm;
9380
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9381
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9382
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9383
		ilk_setup_wm_latency(dev_priv);
9384

9385
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9386
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9387
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9388
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9389
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9390 9391 9392 9393 9394 9395
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9396 9397 9398 9399
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9400
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9401
		vlv_setup_wm_latency(dev_priv);
9402
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9403
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9404
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9405
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9406
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9407 9408 9409 9410 9411 9412
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9413
	} else if (IS_PINEVIEW(dev_priv)) {
9414
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9415 9416 9417 9418 9419 9420 9421 9422 9423
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9424
			intel_set_memory_cxsr(dev_priv, false);
9425 9426 9427
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9428
	} else if (IS_GEN(dev_priv, 4)) {
9429
		dev_priv->display.update_wm = i965_update_wm;
9430
	} else if (IS_GEN(dev_priv, 3)) {
9431 9432
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9433
	} else if (IS_GEN(dev_priv, 2)) {
9434
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9435
			dev_priv->display.update_wm = i845_update_wm;
9436
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9437 9438
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9439
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9440 9441 9442
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9443 9444 9445
	}
}

9446 9447 9448 9449 9450 9451 9452 9453 9454
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9455
		return -ENODEV;
9456 9457 9458
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9459
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9460 9461 9462 9463
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9464
		MISSING_CASE(flags);
9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9491
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9492
{
9493 9494
	int status;

9495
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9496

9497 9498 9499 9500 9501 9502
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9503 9504
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9505 9506 9507
		return -EAGAIN;
	}

9508 9509 9510
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9511

9512 9513 9514
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9515 9516
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9517 9518 9519
		return -ETIMEDOUT;
	}

9520 9521
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9522

9523 9524 9525 9526 9527 9528
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9529 9530
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9531 9532 9533
		return status;
	}

B
Ben Widawsky 已提交
9534 9535 9536
	return 0;
}

9537
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9538 9539
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9540
{
9541 9542
	int status;

9543
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9544

9545 9546 9547 9548 9549 9550
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9551 9552
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9553 9554 9555
		return -EAGAIN;
	}

9556
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9557
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9558
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9559

9560 9561
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9562 9563
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9564 9565
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9566 9567 9568
		return -ETIMEDOUT;
	}

9569
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9570

9571 9572 9573 9574 9575 9576
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9577 9578
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9579 9580 9581
		return status;
	}

B
Ben Widawsky 已提交
9582 9583
	return 0;
}
9584

9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9606
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9607 9608
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9609
 * for @timeout_base_ms and if this times out for another 50 ms with
9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9621
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9636
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9637 9638 9639 9640 9641 9642 9643 9644
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9645
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9646
	 * account for interrupts that could reduce the number of these
9647 9648
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9649 9650 9651 9652
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9653
	ret = wait_for_atomic(COND, 50);
9654 9655 9656 9657 9658 9659 9660
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9661 9662
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9663 9664
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9665 9666 9667 9668
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9669
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9670 9671
}

9672
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9673
{
9674 9675 9676
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9677 9678
}

9679
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9680
{
9681 9682
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9683 9684 9685 9686
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9687
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9688 9689
}

9690
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9691
{
9692 9693
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9694
	/* CHV needs even values */
9695
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9696 9697
}

9698
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9699
{
9700
	if (INTEL_GEN(dev_priv) >= 9)
9701 9702
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9703
	else if (IS_CHERRYVIEW(dev_priv))
9704
		return chv_gpu_freq(dev_priv, val);
9705
	else if (IS_VALLEYVIEW(dev_priv))
9706 9707 9708
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9709 9710
}

9711 9712
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9713
	if (INTEL_GEN(dev_priv) >= 9)
9714 9715
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9716
	else if (IS_CHERRYVIEW(dev_priv))
9717
		return chv_freq_opcode(dev_priv, val);
9718
	else if (IS_VALLEYVIEW(dev_priv))
9719 9720
		return byt_freq_opcode(dev_priv, val);
	else
9721
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9722
}
9723

9724
void intel_pm_setup(struct drm_i915_private *dev_priv)
9725
{
9726
	mutex_init(&dev_priv->pcu_lock);
C
Chris Wilson 已提交
9727
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9728

9729
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9730

9731 9732
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9733
}
9734

9735 9736 9737
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9738
	u32 lower, upper, tmp;
9739
	int loop = 2;
9740

9741 9742
	/*
	 * The register accessed do not need forcewake. We borrow
9743 9744
	 * uncore lock to prevent concurrent access to range reg.
	 */
9745
	lockdep_assert_held(&dev_priv->uncore.lock);
9746

9747 9748
	/*
	 * vlv and chv residency counters are 40 bits in width.
9749 9750
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9751 9752 9753 9754 9755
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9756
	 */
9757 9758
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9770
	} while (upper != tmp && --loop);
9771

9772 9773
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9774 9775 9776 9777
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9778 9779 9780
	return lower | (u64)upper << 8;
}

9781
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9782
			   const i915_reg_t reg)
9783
{
9784 9785 9786 9787
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9788
	u32 mul, div;
9789

9790
	if (!HAS_RC6(dev_priv))
9791 9792
		return 0;

9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9810 9811
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9812
		mul = 1000000;
9813
		div = dev_priv->czclk_freq;
9814
		overflow_hw = BIT_ULL(40);
9815 9816
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9817 9818 9819 9820 9821 9822 9823 9824
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9825

9826 9827
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9828
	}
9829

9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9853
}
T
Tvrtko Ursulin 已提交
9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}