intel_pm.c 285.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36
#include "i915_drv.h"
37
#include "i915_irq.h"
38
#include "intel_atomic.h"
39
#include "intel_drv.h"
40
#include "intel_fbc.h"
41
#include "intel_pm.h"
42
#include "intel_sprite.h"
43
#include "intel_sideband.h"
44
#include "../../../platform/x86/intel_ips.h"
45

B
Ben Widawsky 已提交
46
/**
47 48
 * DOC: RC6
 *
B
Ben Widawsky 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

66
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
67
{
68 69 70
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
71
		 * Display WA #0390: skl,kbl
72 73 74 75 76 77 78 79 80
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

81
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
82 83 84
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

85
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
86 87
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
88

89 90
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
91 92 93
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
94

95
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
96 97
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
98 99 100 101 102 103

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
104 105
}

106
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
107
{
108
	gen9_init_clock_gating(dev_priv);
109

110 111 112 113
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

114 115
	/*
	 * FIXME:
116
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
117 118
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
119
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
120 121 122 123 124

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
125 126
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
127 128
}

129 130 131 132 133 134 135 136 137 138 139
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
140 141 142 143 144 145 146 147 148 149

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

150 151
}

152
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

190
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
191 192 193
{
	u16 ddrpll, csipll;

194 195
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

217
	dev_priv->ips.r_t = dev_priv->mem_freq;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
249
		dev_priv->ips.c_m = 0;
250
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
251
		dev_priv->ips.c_m = 1;
252
	} else {
253
		dev_priv->ips.c_m = 2;
254 255 256
	}
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

295 296
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

319 320 321 322
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

323
	vlv_punit_get(dev_priv);
324 325 326 327 328 329 330 331 332 333 334 335 336 337

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

338
	vlv_punit_put(dev_priv);
339 340
}

341 342 343 344
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

345
	vlv_punit_get(dev_priv);
346

347
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
348 349 350 351
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
352
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
353

354
	vlv_punit_put(dev_priv);
355 356
}

357 358 359
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

360
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
361
{
362
	bool was_enabled;
363
	u32 val;
364

365
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
366
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
367
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
368
		POSTING_READ(FW_BLC_SELF_VLV);
369
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
370
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
371
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
372
		POSTING_READ(FW_BLC_SELF);
373
	} else if (IS_PINEVIEW(dev_priv)) {
374 375 376 377 378 379
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
380
		I915_WRITE(DSPFW3, val);
381
		POSTING_READ(DSPFW3);
382
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
383
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
384 385 386
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
387
		POSTING_READ(FW_BLC_SELF);
388
	} else if (IS_I915GM(dev_priv)) {
389 390 391 392 393
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
394
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
395 396 397
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
398
		POSTING_READ(INSTPM);
399
	} else {
400
		return false;
401
	}
402

403 404
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

405 406 407 408 409
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
410 411
}

V
Ville Syrjälä 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
449
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
450
{
451 452
	bool ret;

453
	mutex_lock(&dev_priv->wm.wm_mutex);
454
	ret = _intel_set_memory_cxsr(dev_priv, enable);
455 456 457 458
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
459
	mutex_unlock(&dev_priv->wm.wm_mutex);
460 461

	return ret;
462
}
463

464 465 466 467 468 469 470 471 472 473 474 475 476 477
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
478
static const int pessimal_latency_ns = 5000;
479

480 481 482
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

483
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
484
{
485
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
486
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
487
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
488 489
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
490

491
	switch (pipe) {
492
		u32 dsparb, dsparb2, dsparb3;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
512 513
		MISSING_CASE(pipe);
		return;
514 515
	}

516 517 518 519
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
520 521
}

522 523
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
524
{
525
	u32 dsparb = I915_READ(DSPARB);
526 527 528
	int size;

	size = dsparb & 0x7f;
529
	if (i9xx_plane == PLANE_B)
530 531
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

532 533
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
534 535 536 537

	return size;
}

538 539
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
540
{
541
	u32 dsparb = I915_READ(DSPARB);
542 543 544
	int size;

	size = dsparb & 0x1ff;
545
	if (i9xx_plane == PLANE_B)
546 547 548
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

549 550
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
551 552 553 554

	return size;
}

555 556
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
557
{
558
	u32 dsparb = I915_READ(DSPARB);
559 560 561 562 563
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

564 565
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
566 567 568 569 570 571

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
572 573 574 575 576
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
577 578
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
579 580 581 582 583
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 585
};
static const struct intel_watermark_params pineview_cursor_wm = {
586 587 588 589 590
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
591 592
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
593 594 595 596 597
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598 599
};
static const struct intel_watermark_params i965_cursor_wm_info = {
600 601 602 603 604
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
605 606
};
static const struct intel_watermark_params i945_wm_info = {
607 608 609 610 611
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
612 613
};
static const struct intel_watermark_params i915_wm_info = {
614 615 616 617 618
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
619
};
620
static const struct intel_watermark_params i830_a_wm_info = {
621 622 623 624 625
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
626
};
627 628 629 630 631 632 633
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
634
static const struct intel_watermark_params i845_wm_info = {
635 636 637 638 639
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
640 641
};

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
679
	u64 ret;
680

681
	ret = mul_u32_u32(pixel_rate, cpp * latency);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

738 739
/**
 * intel_calculate_wm - calculate watermark level
740
 * @pixel_rate: pixel clock
741
 * @wm: chip FIFO params
742
 * @fifo_size: size of the FIFO buffer
743
 * @cpp: bytes per pixel
744 745 746 747 748 749 750 751 752 753 754 755 756
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
757 758 759 760
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
761
{
762
	int entries, wm_size;
763 764 765 766 767 768 769

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
770 771 772 773 774
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
775

776 777
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
778 779

	/* Don't promote wm_size to unsigned... */
780
	if (wm_size > wm->max_wm)
781 782 783
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
784 785 786 787 788 789 790 791 792 793 794

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

795 796 797
	return wm_size;
}

798 799 800 801 802 803 804 805 806 807
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

808 809 810 811 812
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

836
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
837
{
838
	struct intel_crtc *crtc, *enabled = NULL;
839

840
	for_each_intel_crtc(&dev_priv->drm, crtc) {
841
		if (intel_crtc_active(crtc)) {
842 843 844 845 846 847 848 849 850
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

851
static void pineview_update_wm(struct intel_crtc *unused_crtc)
852
{
853
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
854
	struct intel_crtc *crtc;
855 856
	const struct cxsr_latency *latency;
	u32 reg;
857
	unsigned int wm;
858

859
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
860 861 862
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
863 864
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
865
		intel_set_memory_cxsr(dev_priv, false);
866 867 868
		return;
	}

869
	crtc = single_enabled_crtc(dev_priv);
870
	if (crtc) {
871 872 873 874
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
875
		int cpp = fb->format->cpp[0];
876
		int clock = adjusted_mode->crtc_clock;
877 878 879 880

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
881
					cpp, latency->display_sr);
882 883
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
884
		reg |= FW_WM(wm, SR);
885 886 887 888 889 890
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
891
					4, latency->cursor_sr);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
894
		reg |= FW_WM(wm, CURSOR_SR);
895 896 897 898 899
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
900
					cpp, latency->display_hpll_disable);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
903
		reg |= FW_WM(wm, HPLL_SR);
904 905 906 907 908
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
909
					4, latency->cursor_hpll_disable);
910 911
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
912
		reg |= FW_WM(wm, HPLL_CURSOR);
913 914 915
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

916
		intel_set_memory_cxsr(dev_priv, true);
917
	} else {
918
		intel_set_memory_cxsr(dev_priv, false);
919 920 921
	}
}

922 923 924 925 926 927 928 929 930 931
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
932
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
933 934 935 936 937 938
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

939 940
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
941
{
942 943 944 945 946
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
964

965
	POSTING_READ(DSPFW1);
966 967
}

968 969 970
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

971
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
972 973
				const struct vlv_wm_values *wm)
{
974 975 976
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
977 978
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

979 980 981 982 983 984
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
985

986 987 988 989 990 991 992 993 994 995 996
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

997
	I915_WRITE(DSPFW1,
998
		   FW_WM(wm->sr.plane, SR) |
999 1000 1001
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1002
	I915_WRITE(DSPFW2,
1003 1004 1005
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1006
	I915_WRITE(DSPFW3,
1007
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1008 1009 1010

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1011 1012
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1013
		I915_WRITE(DSPFW8_CHV,
1014 1015
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1016
		I915_WRITE(DSPFW9_CHV,
1017 1018
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1019
		I915_WRITE(DSPHOWM,
1020
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1021 1022 1023 1024 1025 1026 1027 1028 1029
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1030 1031
	} else {
		I915_WRITE(DSPFW7,
1032 1033
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1034
		I915_WRITE(DSPHOWM,
1035
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1036 1037 1038 1039 1040 1041
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1042 1043 1044
	}

	POSTING_READ(DSPFW1);
1045 1046
}

1047 1048
#undef FW_WM_VLV

1049 1050 1051 1052 1053
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1054
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1055

1056
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1101 1102 1103
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1104 1105 1106 1107 1108
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1109 1110
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1149
		unsigned int small, large;
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1162
	return min_t(unsigned int, wm, USHRT_MAX);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1200 1201 1202
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1331 1332
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1333 1334 1335 1336 1337
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1338 1339 1340 1341
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1342 1343 1344
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1345
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1411
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1412
{
1413
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1414 1415 1416 1417 1418 1419 1420
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1421 1422
	enum plane_id plane_id;

1423 1424 1425 1426 1427 1428 1429 1430
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1431
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1432
		!new_crtc_state->disable_cxsr;
1433
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1434
		!new_crtc_state->disable_cxsr;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1476
out:
1477 1478 1479 1480 1481
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1482
		new_crtc_state->wm.need_postvbl_update = true;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1579 1580
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1581 1582
				   unsigned int htotal,
				   unsigned int width,
1583
				   unsigned int cpp,
1584 1585 1586 1587
				   unsigned int latency)
{
	unsigned int ret;

1588 1589
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1590 1591 1592 1593 1594
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1595
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1596 1597 1598 1599
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1600 1601
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1602 1603 1604
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1605 1606

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1607 1608 1609
	}
}

1610 1611 1612
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1613
{
1614
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1615
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1616 1617
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1618
	unsigned int clock, htotal, cpp, width, wm;
1619 1620 1621 1622

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1623
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1624 1625
		return 0;

1626
	cpp = plane_state->base.fb->format->cpp[0];
1627 1628 1629
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1630

1631
	if (plane->id == PLANE_CURSOR) {
1632 1633 1634 1635 1636 1637 1638 1639
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1640
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1641 1642 1643
				    dev_priv->wm.pri_latency[level] * 10);
	}

1644
	return min_t(unsigned int, wm, USHRT_MAX);
1645 1646
}

1647 1648 1649 1650 1651 1652
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1653
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1654
{
1655
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1656
	const struct g4x_pipe_wm *raw =
1657
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1658
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1659 1660 1661
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1662
	int fifo_extra, fifo_left = fifo_size;
1663
	int sprite0_fifo_extra = 0;
1664 1665
	unsigned int total_rate;
	enum plane_id plane_id;
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1678 1679
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1680 1681
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1682

1683 1684
	if (total_rate > fifo_size)
		return -EINVAL;
1685

1686 1687
	if (total_rate == 0)
		total_rate = 1;
1688

1689
	for_each_plane_id_on_crtc(crtc, plane_id) {
1690 1691
		unsigned int rate;

1692 1693
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1694 1695 1696
			continue;
		}

1697 1698 1699
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1700 1701
	}

1702 1703 1704
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1705 1706 1707
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1708 1709

	/* spread the remainder evenly */
1710
	for_each_plane_id_on_crtc(crtc, plane_id) {
1711 1712 1713 1714 1715
		int plane_extra;

		if (fifo_left == 0)
			break;

1716
		if ((active_planes & BIT(plane_id)) == 0)
1717 1718 1719
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1720
		fifo_state->plane[plane_id] += plane_extra;
1721 1722 1723
		fifo_left -= plane_extra;
	}

1724 1725 1726 1727 1728 1729 1730 1731 1732
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1733 1734
}

1735 1736 1737 1738 1739 1740
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1741
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1752 1753 1754 1755 1756 1757 1758 1759
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1760 1761 1762 1763
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1764
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1765
				 int level, enum plane_id plane_id, u16 value)
1766
{
1767
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1768
	int num_levels = intel_wm_num_levels(dev_priv);
1769
	bool dirty = false;
1770

1771
	for (; level < num_levels; level++) {
1772
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1773

1774
		dirty |= raw->plane[plane_id] != value;
1775
		raw->plane[plane_id] = value;
1776
	}
1777 1778

	return dirty;
1779 1780
}

1781 1782
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1783
{
1784 1785
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1786
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1787
	int level;
1788
	bool dirty = false;
1789

1790
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1791 1792
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1793
	}
1794

1795
	for (level = 0; level < num_levels; level++) {
1796
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1797 1798
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1799

1800 1801
		if (wm > max_wm)
			break;
1802

1803
		dirty |= raw->plane[plane_id] != wm;
1804 1805
		raw->plane[plane_id] = wm;
	}
1806

1807
	/* mark all higher levels as invalid */
1808
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1809

1810 1811
out:
	if (dirty)
1812
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1813 1814 1815 1816 1817 1818
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1819
}
1820

1821 1822
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1823
{
1824
	const struct g4x_pipe_wm *raw =
1825 1826 1827
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1828

1829 1830
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1831

1832
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1833
{
1834 1835 1836 1837
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1851
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1852 1853
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1854 1855 1856
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1857
	unsigned int dirty = 0;
1858

1859 1860 1861 1862
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1863 1864
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1865

1866
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1885
			intel_atomic_get_old_crtc_state(state, crtc);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1897
	}
1898

1899
	/* initially allow all levels */
1900
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1901 1902 1903 1904 1905
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1906
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1907

1908
	for (level = 0; level < wm_state->num_levels; level++) {
1909
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1910
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1911

1912
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1913
			break;
1914

1915 1916 1917 1918 1919 1920 1921 1922
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1923
						 raw->plane[PLANE_SPRITE0],
1924 1925
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1926

1927 1928 1929
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1930 1931
	}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1942 1943
}

1944 1945 1946
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1947 1948
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1949
{
1950
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1951
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1952
	struct intel_uncore *uncore = &dev_priv->uncore;
1953 1954
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1955
	int sprite0_start, sprite1_start, fifo_size;
1956

1957 1958 1959
	if (!crtc_state->fifo_changed)
		return;

1960 1961 1962
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1963

1964 1965
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1966

1967 1968
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1969 1970 1971 1972 1973 1974 1975 1976 1977
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1978
	spin_lock(&uncore->lock);
1979

1980
	switch (crtc->pipe) {
1981
		u32 dsparb, dsparb2, dsparb3;
1982
	case PIPE_A:
1983 1984
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1996 1997
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1998 1999
		break;
	case PIPE_B:
2000 2001
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2013 2014
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2015 2016
		break;
	case PIPE_C:
2017 2018
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2030 2031
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2032 2033 2034 2035
		break;
	default:
		break;
	}
2036

2037
	intel_uncore_posting_read_fw(uncore, DSPARB);
2038

2039
	spin_unlock(&uncore->lock);
2040 2041 2042 2043
}

#undef VLV_FIFO

2044
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2045
{
2046
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2047 2048 2049 2050 2051 2052 2053
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2054 2055
	int level;

2056 2057 2058 2059 2060 2061 2062
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2063
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2064
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2065
		!new_crtc_state->disable_cxsr;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2084
out:
2085 2086 2087 2088
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2089
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2090
		new_crtc_state->wm.need_postvbl_update = true;
2091 2092 2093 2094

	return 0;
}

2095
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2096 2097 2098 2099 2100
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2101
	wm->level = dev_priv->wm.max_level;
2102 2103
	wm->cxsr = true;

2104
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2105
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2120 2121 2122
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2123
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2124
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2125 2126 2127
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2128
		if (crtc->active && wm->cxsr)
2129 2130
			wm->sr = wm_state->sr[wm->level];

2131 2132 2133 2134
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2135 2136 2137
	}
}

2138
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2139
{
2140 2141
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2142

2143
	vlv_merge_wm(dev_priv, &new_wm);
2144

2145
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2146 2147
		return;

2148
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2149 2150
		chv_set_memory_dvfs(dev_priv, false);

2151
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2152 2153
		chv_set_memory_pm5(dev_priv, false);

2154
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2155
		_intel_set_memory_cxsr(dev_priv, false);
2156

2157
	vlv_write_wm_values(dev_priv, &new_wm);
2158

2159
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2160
		_intel_set_memory_cxsr(dev_priv, true);
2161

2162
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2163 2164
		chv_set_memory_pm5(dev_priv, true);

2165
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2166 2167
		chv_set_memory_dvfs(dev_priv, true);

2168
	*old_wm = new_wm;
2169 2170
}

2171 2172 2173 2174 2175 2176 2177
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2194 2195 2196 2197
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2198
static void i965_update_wm(struct intel_crtc *unused_crtc)
2199
{
2200
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2201
	struct intel_crtc *crtc;
2202 2203
	int srwm = 1;
	int cursor_sr = 16;
2204
	bool cxsr_enabled;
2205 2206

	/* Calc sr entries for one plane configs */
2207
	crtc = single_enabled_crtc(dev_priv);
2208 2209 2210
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2211 2212 2213 2214
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2215
		int clock = adjusted_mode->crtc_clock;
2216
		int htotal = adjusted_mode->crtc_htotal;
2217
		int hdisplay = crtc->config->pipe_src_w;
2218
		int cpp = fb->format->cpp[0];
2219 2220
		int entries;

2221 2222
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2223 2224 2225 2226 2227 2228 2229 2230
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2231 2232 2233
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2234
		entries = DIV_ROUND_UP(entries,
2235 2236
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2237

2238
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2239 2240 2241 2242 2243 2244
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2245
		cxsr_enabled = true;
2246
	} else {
2247
		cxsr_enabled = false;
2248
		/* Turn off self refresh if both pipes are enabled */
2249
		intel_set_memory_cxsr(dev_priv, false);
2250 2251 2252 2253 2254 2255
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2256 2257 2258 2259 2260 2261
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2262
	/* update cursor SR watermark */
2263
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2264 2265 2266

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2267 2268
}

2269 2270
#undef FW_WM

2271
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2272
{
2273
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2274
	const struct intel_watermark_params *wm_info;
2275 2276
	u32 fwater_lo;
	u32 fwater_hi;
2277 2278 2279
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2280
	struct intel_crtc *crtc, *enabled = NULL;
2281

2282
	if (IS_I945GM(dev_priv))
2283
		wm_info = &i945_wm_info;
2284
	else if (!IS_GEN(dev_priv, 2))
2285 2286
		wm_info = &i915_wm_info;
	else
2287
		wm_info = &i830_a_wm_info;
2288

2289 2290
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2291 2292 2293 2294 2295 2296 2297
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2298
		if (IS_GEN(dev_priv, 2))
2299
			cpp = 4;
2300
		else
2301
			cpp = fb->format->cpp[0];
2302

2303
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2304
					       wm_info, fifo_size, cpp,
2305
					       pessimal_latency_ns);
2306
		enabled = crtc;
2307
	} else {
2308
		planea_wm = fifo_size - wm_info->guard_size;
2309 2310 2311 2312
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2313
	if (IS_GEN(dev_priv, 2))
2314
		wm_info = &i830_bc_wm_info;
2315

2316 2317
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2318 2319 2320 2321 2322 2323 2324
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2325
		if (IS_GEN(dev_priv, 2))
2326
			cpp = 4;
2327
		else
2328
			cpp = fb->format->cpp[0];
2329

2330
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2331
					       wm_info, fifo_size, cpp,
2332
					       pessimal_latency_ns);
2333 2334 2335 2336
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2337
	} else {
2338
		planeb_wm = fifo_size - wm_info->guard_size;
2339 2340 2341
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2342 2343 2344

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2345
	if (IS_I915GM(dev_priv) && enabled) {
2346
		struct drm_i915_gem_object *obj;
2347

2348
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2349 2350

		/* self-refresh seems busted with untiled */
2351
		if (!i915_gem_object_is_tiled(obj))
2352 2353 2354
			enabled = NULL;
	}

2355 2356 2357 2358 2359 2360
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2361
	intel_set_memory_cxsr(dev_priv, false);
2362 2363

	/* Calc sr entries for one plane configs */
2364
	if (HAS_FW_BLC(dev_priv) && enabled) {
2365 2366
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2367 2368 2369 2370
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2371
		int clock = adjusted_mode->crtc_clock;
2372
		int htotal = adjusted_mode->crtc_htotal;
2373 2374
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2375 2376
		int entries;

2377
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2378
			cpp = 4;
2379
		else
2380
			cpp = fb->format->cpp[0];
2381

2382 2383
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2384 2385 2386 2387 2388 2389
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2390
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2391 2392
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2393
		else
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2410 2411
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2412 2413
}

2414
static void i845_update_wm(struct intel_crtc *unused_crtc)
2415
{
2416
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2417
	struct intel_crtc *crtc;
2418
	const struct drm_display_mode *adjusted_mode;
2419
	u32 fwater_lo;
2420 2421
	int planea_wm;

2422
	crtc = single_enabled_crtc(dev_priv);
2423 2424 2425
	if (crtc == NULL)
		return;

2426
	adjusted_mode = &crtc->config->base.adjusted_mode;
2427
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2428
				       &i845_wm_info,
2429
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2430
				       4, pessimal_latency_ns);
2431 2432 2433 2434 2435 2436 2437 2438
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2439
/* latency must be in 0.1us units. */
2440 2441 2442
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2443
{
2444
	unsigned int ret;
2445

2446 2447
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2448 2449 2450 2451

	return ret;
}

2452
/* latency must be in 0.1us units. */
2453 2454 2455 2456 2457
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2458
{
2459
	unsigned int ret;
2460

2461 2462
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2463
	ret = DIV_ROUND_UP(ret, 64) + 2;
2464

2465 2466 2467
	return ret;
}

2468
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2469
{
2470 2471 2472 2473 2474 2475
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2476
	if (WARN_ON(!cpp))
2477 2478 2479 2480
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2481
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2482 2483
}

2484
struct ilk_wm_maximums {
2485 2486 2487 2488
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2489 2490
};

2491 2492 2493 2494
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2495 2496 2497
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value, bool is_lp)
2498
{
2499
	u32 method1, method2;
2500
	int cpp;
2501

2502 2503 2504
	if (mem_value == 0)
		return U32_MAX;

2505
	if (!intel_wm_plane_visible(cstate, pstate))
2506 2507
		return 0;

2508
	cpp = pstate->base.fb->format->cpp[0];
2509

2510
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2511 2512 2513 2514

	if (!is_lp)
		return method1;

2515
	method2 = ilk_wm_method2(cstate->pixel_rate,
2516
				 cstate->base.adjusted_mode.crtc_htotal,
2517
				 drm_rect_width(&pstate->base.dst),
2518
				 cpp, mem_value);
2519 2520

	return min(method1, method2);
2521 2522
}

2523 2524 2525 2526
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2527 2528 2529
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2530
{
2531
	u32 method1, method2;
2532
	int cpp;
2533

2534 2535 2536
	if (mem_value == 0)
		return U32_MAX;

2537
	if (!intel_wm_plane_visible(cstate, pstate))
2538 2539
		return 0;

2540
	cpp = pstate->base.fb->format->cpp[0];
2541

2542 2543
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2544
				 cstate->base.adjusted_mode.crtc_htotal,
2545
				 drm_rect_width(&pstate->base.dst),
2546
				 cpp, mem_value);
2547 2548 2549
	return min(method1, method2);
}

2550 2551 2552 2553
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2554 2555 2556
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2557
{
2558 2559
	int cpp;

2560 2561 2562
	if (mem_value == 0)
		return U32_MAX;

2563
	if (!intel_wm_plane_visible(cstate, pstate))
2564 2565
		return 0;

2566 2567
	cpp = pstate->base.fb->format->cpp[0];

2568
	return ilk_wm_method2(cstate->pixel_rate,
2569
			      cstate->base.adjusted_mode.crtc_htotal,
2570
			      pstate->base.crtc_w, cpp, mem_value);
2571 2572
}

2573
/* Only for WM_LP. */
2574 2575 2576
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val)
2577
{
2578
	int cpp;
2579

2580
	if (!intel_wm_plane_visible(cstate, pstate))
2581 2582
		return 0;

2583
	cpp = pstate->base.fb->format->cpp[0];
2584

2585
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2586 2587
}

2588 2589
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2590
{
2591
	if (INTEL_GEN(dev_priv) >= 8)
2592
		return 3072;
2593
	else if (INTEL_GEN(dev_priv) >= 7)
2594 2595 2596 2597 2598
		return 768;
	else
		return 512;
}

2599 2600 2601
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2602
{
2603
	if (INTEL_GEN(dev_priv) >= 8)
2604 2605
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2606
	else if (INTEL_GEN(dev_priv) >= 7)
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2617 2618
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2619
{
2620
	if (INTEL_GEN(dev_priv) >= 7)
2621 2622 2623 2624 2625
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2626
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2627
{
2628
	if (INTEL_GEN(dev_priv) >= 8)
2629 2630 2631 2632 2633
		return 31;
	else
		return 15;
}

2634
/* Calculate the maximum primary/sprite plane watermark */
2635
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2636
				     int level,
2637
				     const struct intel_wm_config *config,
2638 2639 2640
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2641
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2642 2643

	/* if sprites aren't enabled, sprites get nothing */
2644
	if (is_sprite && !config->sprites_enabled)
2645 2646 2647
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2648
	if (level == 0 || config->num_pipes_active > 1) {
2649
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2650 2651 2652 2653 2654 2655

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2656
		if (INTEL_GEN(dev_priv) <= 6)
2657 2658 2659
			fifo_size /= 2;
	}

2660
	if (config->sprites_enabled) {
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2672
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2673 2674 2675
}

/* Calculate the maximum cursor plane watermark */
2676
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2677 2678
				      int level,
				      const struct intel_wm_config *config)
2679 2680
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2681
	if (level > 0 && config->num_pipes_active > 1)
2682 2683 2684
		return 64;

	/* otherwise just report max that registers can hold */
2685
	return ilk_cursor_wm_reg_max(dev_priv, level);
2686 2687
}

2688
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2689 2690 2691
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2692
				    struct ilk_wm_maximums *max)
2693
{
2694 2695 2696 2697
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2698 2699
}

2700
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2701 2702 2703
					int level,
					struct ilk_wm_maximums *max)
{
2704 2705 2706 2707
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2708 2709
}

2710
static bool ilk_validate_wm_level(int level,
2711
				  const struct ilk_wm_maximums *max,
2712
				  struct intel_wm_level *result)
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2742 2743 2744
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2745 2746 2747 2748 2749 2750
		result->enable = true;
	}

	return ret;
}

2751
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2752
				 const struct intel_crtc *intel_crtc,
2753
				 int level,
2754
				 struct intel_crtc_state *cstate,
2755 2756 2757
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2758
				 struct intel_wm_level *result)
2759
{
2760 2761 2762
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2763 2764 2765 2766 2767 2768 2769 2770

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2783 2784 2785
	result->enable = true;
}

2786
static u32
2787
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2788
{
2789 2790
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2791 2792
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2793
	u32 linetime, ips_linetime;
2794

2795 2796 2797 2798
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2799
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2800
		return 0;
2801

2802 2803 2804
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2805 2806 2807
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2808
					 intel_state->cdclk.logical.cdclk);
2809

2810 2811
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2812 2813
}

2814
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2815
				  u16 wm[8])
2816
{
2817 2818
	struct intel_uncore *uncore = &dev_priv->uncore;

2819
	if (INTEL_GEN(dev_priv) >= 9) {
2820
		u32 val;
2821
		int ret, i;
2822
		int level, max_level = ilk_wm_max_level(dev_priv);
2823 2824 2825 2826 2827

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2828
					     &val, NULL);
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2847
					     &val, NULL);
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2874
		/*
2875
		 * WaWmMemoryReadLatency:skl+,glk
2876
		 *
2877
		 * punit doesn't take into account the read latency so we need
2878 2879
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2880
		 */
2881 2882 2883 2884 2885
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2886
				wm[level] += 2;
2887
			}
2888 2889
		}

2890 2891 2892 2893 2894 2895
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2896
		if (dev_priv->dram_info.is_16gb_dimm)
2897 2898
			wm[0] += 1;

2899
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2900
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2901 2902 2903 2904

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2905 2906 2907 2908
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2909
	} else if (INTEL_GEN(dev_priv) >= 6) {
2910
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2911 2912 2913 2914 2915

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2916
	} else if (INTEL_GEN(dev_priv) >= 5) {
2917
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2918 2919 2920 2921 2922

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2923 2924
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2925 2926 2927
	}
}

2928
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2929
				       u16 wm[5])
2930 2931
{
	/* ILK sprite LP0 latency is 1300 ns */
2932
	if (IS_GEN(dev_priv, 5))
2933 2934 2935
		wm[0] = 13;
}

2936
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2937
				       u16 wm[5])
2938 2939
{
	/* ILK cursor LP0 latency is 1300 ns */
2940
	if (IS_GEN(dev_priv, 5))
2941 2942 2943
		wm[0] = 13;
}

2944
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2945 2946
{
	/* how many WM levels are we expecting */
2947
	if (INTEL_GEN(dev_priv) >= 9)
2948
		return 7;
2949
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2950
		return 4;
2951
	else if (INTEL_GEN(dev_priv) >= 6)
2952
		return 3;
2953
	else
2954 2955
		return 2;
}
2956

2957
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2958
				   const char *name,
2959
				   const u16 wm[8])
2960
{
2961
	int level, max_level = ilk_wm_max_level(dev_priv);
2962 2963 2964 2965 2966

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2967 2968
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2969 2970 2971
			continue;
		}

2972 2973 2974 2975
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2976
		if (INTEL_GEN(dev_priv) >= 9)
2977 2978
			latency *= 10;
		else if (level > 0)
2979 2980 2981 2982 2983 2984 2985 2986
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2987
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2988
				    u16 wm[5], u16 min)
2989
{
2990
	int level, max_level = ilk_wm_max_level(dev_priv);
2991 2992 2993 2994 2995 2996

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2997
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2998 2999 3000 3001

	return true;
}

3002
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3018 3019 3020
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3021 3022
}

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3051
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3052
{
3053
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3054 3055 3056 3057 3058 3059

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3060
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3061
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3062

3063 3064 3065
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3066

3067
	if (IS_GEN(dev_priv, 6)) {
3068
		snb_wm_latency_quirk(dev_priv);
3069 3070
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3071 3072
}

3073
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3074
{
3075
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3076
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3077 3078
}

3079
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3091
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3102
/* Compute new watermarks for the pipe */
3103
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3104
{
3105 3106
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3107
	struct intel_pipe_wm *pipe_wm;
3108
	struct drm_device *dev = state->dev;
3109
	const struct drm_i915_private *dev_priv = to_i915(dev);
3110 3111 3112 3113 3114
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3115
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3116
	struct ilk_wm_maximums max;
3117

3118
	pipe_wm = &cstate->wm.ilk.optimal;
3119

3120 3121
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3122

3123
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3124
			pristate = ps;
3125
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3126
			sprstate = ps;
3127
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3128
			curstate = ps;
3129 3130
	}

3131
	pipe_wm->pipe_enabled = cstate->base.active;
3132
	if (sprstate) {
3133 3134 3135 3136
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3137 3138
	}

3139 3140
	usable_level = max_level;

3141
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3142
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3143
		usable_level = 1;
3144 3145

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3146
	if (pipe_wm->sprites_scaled)
3147
		usable_level = 0;
3148

3149
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3150 3151
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3152

3153
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3154
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3155

3156
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3157
		return -EINVAL;
3158

3159
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3160

3161 3162
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3163

3164
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3165
				     pristate, sprstate, curstate, wm);
3166 3167 3168 3169 3170 3171

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3172 3173 3174 3175
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3176 3177
	}

3178
	return 0;
3179 3180
}

3181 3182 3183 3184 3185
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3186
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3187
{
3188 3189
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3190
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3191 3192 3193 3194 3195
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3196
	int level, max_level = ilk_wm_max_level(dev_priv);
3197 3198 3199 3200 3201 3202

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3203
	*a = newstate->wm.ilk.optimal;
3204 3205
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3206 3207
		return 0;

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3229
	if (!ilk_validate_pipe_wm(dev_priv, a))
3230 3231 3232 3233 3234 3235
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3236 3237
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3238 3239 3240 3241

	return 0;
}

3242 3243 3244
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3245
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3246 3247 3248 3249 3250
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3251 3252
	ret_wm->enable = true;

3253
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3254
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3255 3256 3257 3258
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3259

3260 3261 3262 3263 3264
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3265
		if (!wm->enable)
3266
			ret_wm->enable = false;
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3278
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3279
			 const struct intel_wm_config *config,
3280
			 const struct ilk_wm_maximums *max,
3281 3282
			 struct intel_pipe_wm *merged)
{
3283
	int level, max_level = ilk_wm_max_level(dev_priv);
3284
	int last_enabled_level = max_level;
3285

3286
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3287
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3288
	    config->num_pipes_active > 1)
3289
		last_enabled_level = 0;
3290

3291
	/* ILK: FBC WM must be disabled always */
3292
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3293 3294 3295 3296 3297

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3298
		ilk_merge_wm_level(dev_priv, level, wm);
3299

3300 3301 3302 3303 3304
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3305 3306 3307 3308 3309 3310

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3311 3312
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3313 3314 3315
			wm->fbc_val = 0;
		}
	}
3316 3317 3318 3319 3320 3321 3322

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3323
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3324
	    intel_fbc_is_active(dev_priv)) {
3325 3326 3327 3328 3329 3330
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3331 3332
}

3333 3334 3335 3336 3337 3338
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3339
/* The value we need to program into the WM_LPx latency field */
3340 3341
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3342
{
3343
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3344 3345 3346 3347 3348
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3349
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3350
				   const struct intel_pipe_wm *merged,
3351
				   enum intel_ddb_partitioning partitioning,
3352
				   struct ilk_wm_values *results)
3353
{
3354 3355
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3356

3357
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3358
	results->partitioning = partitioning;
3359

3360
	/* LP1+ register values */
3361
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3362
		const struct intel_wm_level *r;
3363

3364
		level = ilk_wm_lp_to_level(wm_lp, merged);
3365

3366
		r = &merged->wm[level];
3367

3368 3369 3370 3371 3372
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3373
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3374 3375 3376
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3377 3378 3379
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3380
		if (INTEL_GEN(dev_priv) >= 8)
3381 3382 3383 3384 3385 3386
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3387 3388 3389 3390
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3391
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3392 3393 3394 3395
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3396
	}
3397

3398
	/* LP0 register values */
3399
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3400
		enum pipe pipe = intel_crtc->pipe;
3401 3402
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3403 3404 3405 3406

		if (WARN_ON(!r->enable))
			continue;

3407
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3408

3409 3410 3411 3412
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3413 3414 3415
	}
}

3416 3417
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3418 3419 3420 3421
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3422
{
3423
	int level, max_level = ilk_wm_max_level(dev_priv);
3424
	int level1 = 0, level2 = 0;
3425

3426 3427 3428 3429 3430
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3431 3432
	}

3433 3434
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3435 3436 3437
			return r2;
		else
			return r1;
3438
	} else if (level1 > level2) {
3439 3440 3441 3442 3443 3444
		return r1;
	} else {
		return r2;
	}
}

3445 3446 3447 3448 3449 3450 3451 3452
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3453
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3454 3455
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3456 3457 3458 3459 3460
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3461
	for_each_pipe(dev_priv, pipe) {
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3505 3506
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3507
{
3508
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3509
	bool changed = false;
3510

3511 3512 3513
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3514
		changed = true;
3515 3516 3517 3518
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3519
		changed = true;
3520 3521 3522 3523
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3524
		changed = true;
3525
	}
3526

3527 3528 3529 3530
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3531

3532 3533 3534 3535 3536 3537 3538
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3539 3540
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3541
{
3542
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3543
	unsigned int dirty;
3544
	u32 val;
3545

3546
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3547 3548 3549 3550 3551
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3552
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3553
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3554
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3555
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3556
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3557 3558
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3559
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3560
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3561
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3562
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3563
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3564 3565
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3566
	if (dirty & WM_DIRTY_DDB) {
3567
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3582 3583
	}

3584
	if (dirty & WM_DIRTY_FBC) {
3585 3586 3587 3588 3589 3590 3591 3592
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3593 3594 3595 3596
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3597
	if (INTEL_GEN(dev_priv) >= 7) {
3598 3599 3600 3601 3602
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3603

3604
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3605
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3606
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3607
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3608
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3609
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3610 3611

	dev_priv->wm.hw = *results;
3612 3613
}

3614
bool ilk_disable_lp_wm(struct drm_device *dev)
3615
{
3616
	struct drm_i915_private *dev_priv = to_i915(dev);
3617 3618 3619 3620

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3632 3633 3634 3635 3636 3637
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3638 3639 3640 3641 3642
		enabled_slices++;

	return enabled_slices;
}

3643 3644 3645 3646
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3647
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3648
{
3649
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3650 3651
}

3652 3653 3654
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3655 3656
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3657 3658
}

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3671
intel_enable_sagv(struct drm_i915_private *dev_priv)
3672 3673 3674
{
	int ret;

3675 3676 3677 3678
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3679 3680
		return 0;

3681
	DRM_DEBUG_KMS("Enabling SAGV\n");
3682 3683 3684
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3685
	/* We don't need to wait for SAGV when enabling */
3686 3687 3688

	/*
	 * Some skl systems, pre-release machines in particular,
3689
	 * don't actually have SAGV.
3690
	 */
3691
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3692
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3693
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3694 3695
		return 0;
	} else if (ret < 0) {
3696
		DRM_ERROR("Failed to enable SAGV\n");
3697 3698 3699
		return ret;
	}

3700
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3701 3702 3703 3704
	return 0;
}

int
3705
intel_disable_sagv(struct drm_i915_private *dev_priv)
3706
{
3707
	int ret;
3708

3709 3710 3711 3712
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3713 3714
		return 0;

3715
	DRM_DEBUG_KMS("Disabling SAGV\n");
3716
	/* bspec says to keep retrying for at least 1 ms */
3717 3718 3719 3720
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3721 3722
	/*
	 * Some skl systems, pre-release machines in particular,
3723
	 * don't actually have SAGV.
3724
	 */
3725
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3726
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3727
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3728
		return 0;
3729
	} else if (ret < 0) {
3730
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3731
		return ret;
3732 3733
	}

3734
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3735 3736 3737
	return 0;
}

3738
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3739 3740 3741 3742
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3743 3744
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3745
	struct intel_crtc_state *cstate;
3746
	enum pipe pipe;
3747
	int level, latency;
3748
	int sagv_block_time_us;
3749

3750 3751 3752
	if (!intel_has_sagv(dev_priv))
		return false;

3753
	if (IS_GEN(dev_priv, 9))
3754
		sagv_block_time_us = 30;
3755
	else if (IS_GEN(dev_priv, 10))
3756 3757 3758 3759
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3760 3761 3762 3763 3764
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
3765 3766 3767 3768 3769 3770

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
	if (hweight32(intel_state->active_crtcs) > 1)
3771 3772 3773 3774
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3775
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3776
	cstate = to_intel_crtc_state(crtc->base.state);
3777

3778
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3779 3780
		return false;

3781
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3782 3783
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3784

3785
		/* Skip this plane if it's not enabled */
3786
		if (!wm->wm[0].plane_en)
3787 3788 3789
			continue;

		/* Find the highest enabled wm level for this plane */
3790
		for (level = ilk_wm_max_level(dev_priv);
3791
		     !wm->wm[level].plane_en; --level)
3792 3793
		     { }

3794 3795
		latency = dev_priv->wm.skl_latency[level];

3796
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3797
		    plane->base.state->fb->modifier ==
3798 3799 3800
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3801
		/*
3802 3803
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3804
		 * can't enable SAGV.
3805
		 */
3806
		if (latency < sagv_block_time_us)
3807 3808 3809 3810 3811 3812
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3813 3814
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3815
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3816 3817
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3829
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3830 3831 3832

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3833 3834 3835 3836 3837
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3838
	 */
3839
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3840 3841 3842 3843 3844 3845 3846 3847 3848
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3849
static void
3850
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3851
				   const struct intel_crtc_state *cstate,
3852
				   const u64 total_data_rate,
3853
				   struct skl_ddb_allocation *ddb,
3854 3855
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3856
{
3857 3858
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3859
	struct drm_crtc *for_crtc = cstate->base.crtc;
3860 3861 3862 3863 3864 3865
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3866

3867
	if (WARN_ON(!state) || !cstate->base.active) {
3868 3869
		alloc->start = 0;
		alloc->end = 0;
3870
		*num_active = hweight32(dev_priv->active_crtcs);
3871 3872 3873
		return;
	}

3874 3875 3876 3877 3878
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3879 3880
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3881

3882
	/*
3883 3884 3885 3886 3887 3888
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3889
	 */
3890
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3891 3892 3893 3894 3895
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3896
		return;
3897
	}
3898

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3925 3926
}

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3941
{
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3956
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3957 3958 3959 3960 3961
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3962

3963
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3964 3965
}

3966 3967
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3968
{
3969

3970 3971
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3972

3973 3974
	if (entry->end)
		entry->end += 1;
3975 3976
}

3977 3978 3979 3980
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3981 3982
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3983
{
3984 3985
	u32 val, val2;
	u32 fourcc = 0;
3986 3987 3988 3989

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3990
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3991 3992 3993 3994 3995 3996
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3997 3998 3999 4000
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4001

4002 4003 4004 4005 4006
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4007
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4008

4009
		if (is_planar_yuv_format(fourcc))
4010 4011 4012 4013
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4014 4015 4016
	}
}

4017 4018 4019
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4020
{
4021 4022 4023
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4024
	intel_wakeref_t wakeref;
4025
	enum plane_id plane_id;
4026

4027
	power_domain = POWER_DOMAIN_PIPE(pipe);
4028 4029
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4030
		return;
4031

4032 4033 4034 4035 4036
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4037

4038
	intel_display_power_put(dev_priv, power_domain, wakeref);
4039
}
4040

4041 4042 4043 4044
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4045 4046
}

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4063
static uint_fixed_16_16_t
4064 4065
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4066
{
4067
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4068
	u32 src_w, src_h, dst_w, dst_h;
4069 4070
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4071

4072
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4073
		return u32_to_fixed16(0);
4074 4075

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4076
	if (plane->id == PLANE_CURSOR) {
4077 4078 4079 4080
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4081 4082
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4083 4084 4085
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4086 4087 4088 4089 4090
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4091 4092
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4093 4094 4095 4096
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4097 4098 4099 4100
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4101

4102
	return mul_fixed16(downscale_w, downscale_h);
4103 4104
}

4105 4106 4107
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4108
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4109 4110 4111 4112 4113

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4114 4115
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4127 4128 4129 4130
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4141
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4142 4143 4144 4145 4146
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4147
	int crtc_clock, dotclk;
4148
	u32 pipe_max_pixel_rate;
4149
	uint_fixed_16_16_t pipe_downscale;
4150
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4151 4152 4153 4154 4155 4156

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4157
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4175
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4176 4177 4178 4179 4180 4181
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4182 4183
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4184
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4185 4186 4187
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4188 4189

	if (pipe_max_pixel_rate < crtc_clock) {
4190
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4191 4192 4193 4194 4195 4196
		return -EINVAL;
	}

	return 0;
}

4197
static u64
4198
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4199
			     const struct intel_plane_state *intel_pstate,
4200
			     const int plane)
4201
{
4202 4203
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4204 4205
	u32 data_rate;
	u32 width = 0, height = 0;
4206 4207
	struct drm_framebuffer *fb;
	u32 format;
4208
	uint_fixed_16_16_t down_scale_amount;
4209
	u64 rate;
4210

4211
	if (!intel_pstate->base.visible)
4212
		return 0;
4213

4214
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4215
	format = fb->format->format;
4216

4217
	if (intel_plane->id == PLANE_CURSOR)
4218
		return 0;
4219
	if (plane == 1 && !is_planar_yuv_format(format))
4220
		return 0;
4221

4222 4223 4224 4225 4226
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4227 4228
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4229

4230
	/* UV plane does 1/2 pixel sub-sampling */
4231
	if (plane == 1 && is_planar_yuv_format(format)) {
4232 4233
		width /= 2;
		height /= 2;
4234 4235
	}

4236
	data_rate = width * height;
4237

4238
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4239

4240 4241 4242 4243
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4244 4245
}

4246
static u64
4247
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4248 4249
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4250
{
4251 4252
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4253 4254
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4255
	u64 total_data_rate = 0;
4256 4257 4258

	if (WARN_ON(!state))
		return 0;
4259

4260
	/* Calculate and cache data rate for each plane */
4261
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4262
		enum plane_id plane_id = to_intel_plane(plane)->id;
4263
		u64 rate;
4264 4265
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4266

4267
		/* packed/y */
4268
		rate = skl_plane_relative_data_rate(intel_cstate,
4269
						    intel_pstate, 0);
4270
		plane_data_rate[plane_id] = rate;
4271
		total_data_rate += rate;
4272

4273
		/* uv-plane */
4274
		rate = skl_plane_relative_data_rate(intel_cstate,
4275
						    intel_pstate, 1);
4276
		uv_plane_data_rate[plane_id] = rate;
4277
		total_data_rate += rate;
4278 4279 4280 4281 4282
	}

	return total_data_rate;
}

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4338
static int
4339
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4340 4341
		      struct skl_ddb_allocation *ddb /* out */)
{
4342
	struct drm_atomic_state *state = cstate->base.state;
4343
	struct drm_crtc *crtc = cstate->base.crtc;
4344
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4345
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4346
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4347 4348 4349
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4350
	u64 total_data_rate;
4351
	enum plane_id plane_id;
4352
	int num_active;
4353 4354
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4355
	u32 blocks;
4356
	int level;
4357

4358
	/* Clear the partitioning for disabled planes. */
4359 4360
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4361

4362 4363 4364
	if (WARN_ON(!state))
		return 0;

4365
	if (!cstate->base.active) {
4366
		alloc->start = alloc->end = 0;
4367 4368 4369
		return 0;
	}

4370 4371 4372 4373 4374
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);
	else
4375 4376 4377 4378
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
4379

4380 4381 4382

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4383
	alloc_size = skl_ddb_entry_size(alloc);
4384
	if (alloc_size == 0)
4385
		return 0;
4386

4387
	/* Allocate fixed number of blocks for cursor. */
4388
	total[PLANE_CURSOR] = skl_cursor_allocation(cstate, num_active);
4389 4390 4391 4392 4393 4394 4395
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4396

4397
	/*
4398 4399
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4400
	 */
4401
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4402
		blocks = 0;
4403
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4404 4405
			const struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4406 4407 4408 4409 4410 4411 4412

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4413
				continue;
4414
			}
4415

4416 4417
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4418 4419
		}

4420
		if (blocks <= alloc_size) {
4421 4422 4423
			alloc_size -= blocks;
			break;
		}
4424 4425
	}

4426
	if (level < 0) {
4427
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4428 4429
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4430 4431 4432
		return -EINVAL;
	}

4433
	/*
4434 4435 4436
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4437
	 */
4438
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4439 4440
		const struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];
4441 4442
		u64 rate;
		u16 extra;
4443

4444
		if (plane_id == PLANE_CURSOR)
4445 4446
			continue;

4447
		/*
4448 4449
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4450
		 */
4451 4452
		if (total_data_rate == 0)
			break;
4453

4454 4455 4456 4457
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4458
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4459 4460
		alloc_size -= extra;
		total_data_rate -= rate;
4461

4462 4463
		if (total_data_rate == 0)
			break;
4464

4465 4466 4467 4468
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4469
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4470 4471 4472 4473 4474 4475 4476 4477
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4478 4479 4480 4481
		struct skl_ddb_entry *plane_alloc =
			&cstate->wm.skl.plane_ddb_y[plane_id];
		struct skl_ddb_entry *uv_plane_alloc =
			&cstate->wm.skl.plane_ddb_uv[plane_id];
4482 4483 4484 4485

		if (plane_id == PLANE_CURSOR)
			continue;

4486
		/* Gen11+ uses a separate plane for UV watermarks */
4487 4488 4489 4490 4491 4492 4493 4494
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4495

4496 4497 4498 4499
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4500
		}
4501
	}
4502

4503 4504 4505 4506 4507 4508 4509 4510
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4511 4512
			struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4529

4530
			/*
4531
			 * Wa_1408961008:icl, ehl
4532 4533
			 * Underruns with WM1+ disabled
			 */
4534
			if (IS_GEN(dev_priv, 11) &&
4535 4536
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4537 4538
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4539
			}
4540 4541 4542 4543 4544 4545 4546 4547
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4548 4549 4550
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];

4551
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4552
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4553 4554
	}

4555
	return 0;
4556 4557
}

4558 4559
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4560
 * for the read latency) and cpp should always be <= 8, so that
4561 4562 4563
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4564
static uint_fixed_16_16_t
4565 4566
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4567
{
4568
	u32 wm_intermediate_val;
4569
	uint_fixed_16_16_t ret;
4570 4571

	if (latency == 0)
4572
		return FP_16_16_MAX;
4573

4574
	wm_intermediate_val = latency * pixel_rate * cpp;
4575
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4576 4577 4578 4579

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4580 4581 4582
	return ret;
}

4583 4584 4585
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4586
{
4587
	u32 wm_intermediate_val;
4588
	uint_fixed_16_16_t ret;
4589 4590

	if (latency == 0)
4591
		return FP_16_16_MAX;
4592 4593

	wm_intermediate_val = latency * pixel_rate;
4594 4595
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4596
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4597 4598 4599
	return ret;
}

4600
static uint_fixed_16_16_t
4601
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4602
{
4603 4604
	u32 pixel_rate;
	u32 crtc_htotal;
4605 4606 4607
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4608
		return u32_to_fixed16(0);
4609 4610 4611 4612

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4613
		return u32_to_fixed16(0);
4614 4615

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4616
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4617 4618 4619 4620

	return linetime_us;
}

4621
static u32
4622 4623
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4624
{
4625
	u64 adjusted_pixel_rate;
4626
	uint_fixed_16_16_t downscale_amount;
4627 4628

	/* Shouldn't reach here on disabled planes... */
4629
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4630 4631 4632 4633 4634 4635
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4636
	adjusted_pixel_rate = cstate->pixel_rate;
4637
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4638

4639 4640
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4641 4642
}

4643
static int
4644 4645 4646 4647 4648
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4649
{
4650 4651
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4652
	u32 interm_pbpl;
4653

4654
	/* only planar format has two planes */
4655
	if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4656
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4657 4658 4659
		return -EINVAL;
	}

4660 4661 4662 4663 4664 4665 4666 4667
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->is_planar = is_planar_yuv_format(format->format);
4668

4669
	wp->width = width;
4670
	if (color_plane == 1 && wp->is_planar)
4671 4672
		wp->width /= 2;

4673 4674
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4675

4676
	if (INTEL_GEN(dev_priv) >= 11 &&
4677
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4678 4679 4680 4681
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4682
	if (drm_rotation_90_or_270(rotation)) {
4683
		switch (wp->cpp) {
4684
		case 1:
4685
			wp->y_min_scanlines = 16;
4686 4687
			break;
		case 2:
4688
			wp->y_min_scanlines = 8;
4689 4690
			break;
		case 4:
4691
			wp->y_min_scanlines = 4;
4692
			break;
4693
		default:
4694
			MISSING_CASE(wp->cpp);
4695
			return -EINVAL;
4696 4697
		}
	} else {
4698
		wp->y_min_scanlines = 4;
4699 4700
	}

4701
	if (skl_needs_memory_bw_wa(dev_priv))
4702
		wp->y_min_scanlines *= 2;
4703

4704 4705 4706
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4707 4708
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4709 4710 4711 4712

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4713 4714
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4715
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4716 4717
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4718
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4719
	} else {
4720 4721
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4722
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4723 4724
	}

4725 4726
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4727

4728
	wp->linetime_us = fixed16_to_u32_round_up(
4729
					intel_get_linetime_us(crtc_state));
4730 4731 4732 4733

	return 0;
}

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

	if (plane->id == PLANE_CURSOR) {
		width = plane_state->base.crtc_w;
	} else {
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
		width = drm_rect_width(&plane_state->base.src) >> 16;
	}

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4761 4762 4763 4764 4765 4766 4767 4768 4769
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4770 4771 4772 4773 4774
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4775
{
4776
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4777
	u32 latency = dev_priv->wm.skl_latency[level];
4778 4779
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4780
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4781

4782 4783 4784
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4785
		return;
4786
	}
4787

4788 4789 4790 4791
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4792
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4793 4794 4795
	    dev_priv->ipc_enabled)
		latency += 4;

4796
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4797 4798 4799
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4800
				 wp->cpp, latency, wp->dbuf_block_size);
4801
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4802
				 cstate->base.adjusted_mode.crtc_htotal,
4803
				 latency,
4804
				 wp->plane_blocks_per_line);
4805

4806 4807
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4808
	} else {
4809
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4810
		     wp->dbuf_block_size < 1) &&
4811
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4812
			selected_result = method2;
4813
		} else if (latency >= wp->linetime_us) {
4814
			if (IS_GEN(dev_priv, 9) &&
4815 4816 4817 4818 4819
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4820
			selected_result = method1;
4821
		}
4822
	}
4823

4824
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4825
	res_lines = div_round_up_fixed16(selected_result,
4826
					 wp->plane_blocks_per_line);
4827

4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4843

4844 4845 4846 4847 4848 4849 4850 4851 4852
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4853
	}
4854

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4873 4874 4875
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4876 4877 4878
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4879
		return;
4880
	}
4881 4882 4883 4884 4885 4886 4887

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4888 4889
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4890 4891
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4892
	result->plane_en = true;
4893 4894
}

4895
static void
4896
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4897
		      const struct skl_wm_params *wm_params,
4898
		      struct skl_wm_level *levels)
4899
{
4900
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4901
	int level, max_level = ilk_wm_max_level(dev_priv);
4902
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4903

4904
	for (level = 0; level <= max_level; level++) {
4905
		struct skl_wm_level *result = &levels[level];
4906

4907
		skl_compute_plane_wm(cstate, level, wm_params,
4908
				     result_prev, result);
4909 4910

		result_prev = result;
4911
	}
4912 4913
}

4914
static u32
4915
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4916
{
M
Mahesh Kumar 已提交
4917 4918
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4919
	uint_fixed_16_16_t linetime_us;
4920
	u32 linetime_wm;
4921

4922
	linetime_us = intel_get_linetime_us(cstate);
4923
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4924

4925 4926
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4927
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4928 4929

	return linetime_wm;
4930 4931
}

4932
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4933
				      const struct skl_wm_params *wp,
4934
				      struct skl_plane_wm *wm)
4935
{
4936 4937
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
4938 4939 4940
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4941 4942 4943

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4944
		return;
4945 4946 4947

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4948
		return;
4949

4950 4951
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4952 4953 4954 4955
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4966
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4967

4968
	if (wp->y_tiled) {
4969 4970
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4971
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4972 4973
				trans_offset_b;
	} else {
4974
		res_blocks = wm0_sel_res_b + trans_offset_b;
4975 4976 4977 4978 4979 4980 4981

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4982 4983 4984 4985 4986 4987 4988
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4989 4990
}

4991
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4992 4993
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4994
{
4995
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4996 4997 4998
	struct skl_wm_params wm_params;
	int ret;

4999
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5000 5001 5002 5003
					  &wm_params, color_plane);
	if (ret)
		return ret;

5004
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5005
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5006 5007 5008 5009

	return 0;
}

5010
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5011 5012
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5013
{
5014
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5015 5016 5017
	struct skl_wm_params wm_params;
	int ret;

5018
	wm->is_planar = true;
5019 5020

	/* uv plane watermarks must also be validated for NV12/Planar */
5021
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5022 5023 5024
					  &wm_params, 1);
	if (ret)
		return ret;
5025

5026
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5027

5028
	return 0;
5029 5030
}

5031
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5032
			      const struct intel_plane_state *plane_state)
5033
{
5034 5035 5036
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
5037 5038
	int ret;

5039 5040 5041
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5042
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5043
					plane_id, 0);
5044 5045 5046
	if (ret)
		return ret;

5047
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5048
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5049 5050 5051 5052 5053 5054 5055 5056
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5057
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5075
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5076 5077 5078 5079
						y_plane_id, 0);
		if (ret)
			return ret;

5080
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5081 5082 5083 5084
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5085
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5086 5087 5088 5089 5090 5091
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5092 5093
}

5094
static int skl_build_pipe_wm(struct intel_crtc_state *cstate)
5095
{
5096
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5097
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5098 5099 5100
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
5101
	int ret;
5102

L
Lyude 已提交
5103 5104 5105 5106 5107 5108
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5109 5110 5111 5112
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5113
		if (INTEL_GEN(dev_priv) >= 11)
5114
			ret = icl_build_plane_wm(cstate, intel_pstate);
5115
		else
5116
			ret = skl_build_plane_wm(cstate, intel_pstate);
5117 5118
		if (ret)
			return ret;
5119
	}
5120

5121
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5122

5123
	return 0;
5124 5125
}

5126 5127
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5128 5129 5130
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5131
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5132
	else
5133
		I915_WRITE_FW(reg, 0);
5134 5135
}

5136 5137 5138 5139
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5140
	u32 val = 0;
5141

5142
	if (level->plane_en)
5143
		val |= PLANE_WM_EN;
5144 5145 5146 5147
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5148

5149
	I915_WRITE_FW(reg, val);
5150 5151
}

5152 5153
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5154
{
5155
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5156
	int level, max_level = ilk_wm_max_level(dev_priv);
5157 5158 5159 5160 5161 5162 5163 5164
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5165 5166

	for (level = 0; level <= max_level; level++) {
5167
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5168
				   &wm->wm[level]);
5169
	}
5170
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5171
			   &wm->trans_wm);
5172

5173
	if (INTEL_GEN(dev_priv) >= 11) {
5174
		skl_ddb_entry_write(dev_priv,
5175 5176
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5177
	}
5178 5179 5180 5181 5182 5183 5184 5185

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5186 5187
}

5188 5189
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5190
{
5191
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5192
	int level, max_level = ilk_wm_max_level(dev_priv);
5193 5194 5195 5196 5197 5198
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5199 5200

	for (level = 0; level <= max_level; level++) {
5201 5202
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5203
	}
5204
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5205

5206
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5207 5208
}

5209 5210 5211
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5212
	return l1->plane_en == l2->plane_en &&
5213
		l1->ignore_lines == l2->ignore_lines &&
5214 5215 5216
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5217

5218 5219 5220 5221 5222
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5223

5224 5225 5226 5227 5228 5229 5230
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5231 5232
}

5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5250 5251
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5252
{
5253
	return a->start < b->end && b->start < a->end;
5254 5255
}

5256
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5257
				 const struct skl_ddb_entry *entries,
5258
				 int num_entries, int ignore_idx)
5259
{
5260
	int i;
5261

5262 5263 5264
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5265
			return true;
5266
	}
5267

5268
	return false;
5269 5270
}

5271
static u32
5272
pipes_modified(struct intel_atomic_state *state)
5273
{
5274 5275
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5276
	u32 i, ret = 0;
5277

5278 5279
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5280 5281 5282 5283

	return ret;
}

5284
static int
5285 5286
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5287
{
5288 5289 5290 5291
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5292

5293 5294 5295
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5296

5297 5298 5299 5300
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5301 5302
			continue;

5303
		plane_state = intel_atomic_get_plane_state(state, plane);
5304 5305
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5306

5307
		new_crtc_state->update_planes |= BIT(plane_id);
5308 5309 5310 5311 5312 5313
	}

	return 0;
}

static int
5314
skl_compute_ddb(struct intel_atomic_state *state)
5315
{
5316 5317
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5318 5319
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5320 5321
	struct intel_crtc *crtc;
	int ret, i;
5322

5323 5324
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5325
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5326 5327
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5328 5329 5330
		if (ret)
			return ret;

5331 5332
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5333 5334
		if (ret)
			return ret;
5335 5336 5337 5338 5339
	}

	return 0;
}

5340 5341 5342 5343 5344
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5345
static void
5346
skl_print_wm_changes(struct intel_atomic_state *state)
5347
{
5348 5349 5350 5351 5352
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5353
	int i;
5354

5355 5356 5357
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5358 5359
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5360 5361 5362 5363 5364
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5365 5366
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5367 5368
			const struct skl_ddb_entry *old, *new;

5369 5370
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5371 5372 5373 5374

			if (skl_ddb_entry_equal(old, new))
				continue;

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5405 5406
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5407
				      plane->base.base.id, plane->base.name,
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5444
				      plane->base.base.id, plane->base.name,
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5455 5456 5457 5458
		}
	}
}

5459
static int
5460
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5461
{
5462
	struct drm_device *dev = state->base.dev;
5463
	const struct drm_i915_private *dev_priv = to_i915(dev);
5464 5465
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5466
	u32 realloc_pipes = pipes_modified(state);
5467
	int ret, i;
5468

5469 5470 5471 5472
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5473 5474
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5475

5476 5477 5478 5479 5480 5481 5482 5483
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5484
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5485
		(*changed) = true;
5486

5487
	if (!*changed)
5488 5489
		return 0;

5490 5491 5492 5493 5494 5495 5496 5497
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5498
				       state->base.acquire_ctx);
5499 5500 5501
		if (ret)
			return ret;

5502
		state->active_pipe_changes = ~0;
5503 5504

		/*
5505
		 * We usually only initialize state->active_crtcs if we
5506 5507 5508 5509
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5510 5511
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5527
	if (state->active_pipe_changes || state->modeset) {
5528
		realloc_pipes = ~0;
5529
		state->wm_results.dirty_pipes = ~0;
5530 5531 5532 5533 5534 5535
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5536 5537 5538 5539
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5540 5541 5542 5543 5544
	}

	return 0;
}

5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5605
static int
5606
skl_compute_wm(struct intel_atomic_state *state)
5607
{
5608
	struct intel_crtc *crtc;
5609
	struct intel_crtc_state *new_crtc_state;
5610 5611
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5612 5613 5614
	bool changed = false;
	int ret, i;

5615 5616 5617
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5618 5619 5620 5621
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5622 5623
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5624
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5625 5626 5627
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5628
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5629 5630
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5631 5632 5633
		if (ret)
			return ret;

5634
		ret = skl_wm_add_affected_planes(state, crtc);
5635 5636 5637
		if (ret)
			return ret;

5638 5639 5640
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5641
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5642 5643
	}

5644 5645 5646 5647
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5648
	skl_print_wm_changes(state);
5649

5650 5651 5652
	return 0;
}

5653 5654 5655 5656 5657 5658 5659
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5660 5661 5662

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5663 5664 5665 5666

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5667 5668
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5669
{
5670
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5671
	struct drm_device *dev = intel_crtc->base.dev;
5672
	struct drm_i915_private *dev_priv = to_i915(dev);
5673
	struct skl_ddb_values *results = &state->wm_results;
5674

5675
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5676 5677
		return;

5678
	mutex_lock(&dev_priv->wm.wm_mutex);
5679

5680 5681
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5682

5683
	mutex_unlock(&dev_priv->wm.wm_mutex);
5684 5685
}

5686
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5687 5688 5689 5690 5691
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5692
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5704
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5705
{
5706
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5707
	struct ilk_wm_maximums max;
5708
	struct intel_wm_config config = {};
5709
	struct ilk_wm_values results = {};
5710
	enum intel_ddb_partitioning partitioning;
5711

5712
	ilk_compute_wm_config(dev_priv, &config);
5713

5714 5715
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5716 5717

	/* 5/6 split only in single pipe config on IVB+ */
5718
	if (INTEL_GEN(dev_priv) >= 7 &&
5719
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5720 5721
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5722

5723
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5724
	} else {
5725
		best_lp_wm = &lp_wm_1_2;
5726 5727
	}

5728
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5729
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5730

5731
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5732

5733
	ilk_write_wm_values(dev_priv, &results);
5734 5735
}

5736 5737
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5738
{
5739 5740
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5741

5742
	mutex_lock(&dev_priv->wm.wm_mutex);
5743
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5744 5745 5746
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5747

5748 5749
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5750 5751 5752
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5753

5754 5755
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5756
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5757 5758 5759
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5760 5761
}

5762
static inline void skl_wm_level_from_reg_val(u32 val,
5763
					     struct skl_wm_level *level)
5764
{
5765
	level->plane_en = val & PLANE_WM_EN;
5766
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5767 5768 5769
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5770 5771
}

5772
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5773
			      struct skl_pipe_wm *out)
5774
{
5775 5776
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5777 5778
	int level, max_level;
	enum plane_id plane_id;
5779
	u32 val;
5780

5781
	max_level = ilk_wm_max_level(dev_priv);
5782

5783
	for_each_plane_id_on_crtc(crtc, plane_id) {
5784
		struct skl_plane_wm *wm = &out->planes[plane_id];
5785

5786
		for (level = 0; level <= max_level; level++) {
5787 5788
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5789 5790
			else
				val = I915_READ(CUR_WM(pipe, level));
5791

5792
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5793 5794
		}

5795 5796
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5797 5798 5799 5800
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5801 5802
	}

5803
	if (!crtc->active)
5804
		return;
5805

5806
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5807 5808
}

5809
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5810
{
5811
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5812
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5813
	struct intel_crtc *crtc;
5814
	struct intel_crtc_state *cstate;
5815

5816
	skl_ddb_get_hw_state(dev_priv, ddb);
5817 5818
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5819 5820 5821

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5822 5823
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5824
	}
5825

5826 5827 5828 5829
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5830 5831
}

5832
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5833
{
5834
	struct drm_device *dev = crtc->base.dev;
5835
	struct drm_i915_private *dev_priv = to_i915(dev);
5836
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5837
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5838
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5839
	enum pipe pipe = crtc->pipe;
5840
	static const i915_reg_t wm0_pipe_reg[] = {
5841 5842 5843 5844 5845 5846
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5847
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5848
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5849

5850 5851
	memset(active, 0, sizeof(*active));

5852
	active->pipe_enabled = crtc->active;
5853 5854

	if (active->pipe_enabled) {
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5869
		int level, max_level = ilk_wm_max_level(dev_priv);
5870 5871 5872 5873 5874 5875 5876 5877 5878

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5879

5880
	crtc->wm.active.ilk = *active;
5881 5882
}

5883 5884 5885 5886 5887
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5888 5889 5890
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5891
	u32 tmp;
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5914 5915 5916 5917
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5918
	u32 tmp;
5919 5920 5921 5922

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5923
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5924
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5925
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5926
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5927
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5928
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5929
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5930 5931 5932 5933 5934
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5935 5936 5937
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5938 5939

	tmp = I915_READ(DSPFW2);
5940 5941 5942
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5943 5944 5945 5946 5947 5948

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5949 5950
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5951 5952

		tmp = I915_READ(DSPFW8_CHV);
5953 5954
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5955 5956

		tmp = I915_READ(DSPFW9_CHV);
5957 5958
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5959 5960 5961

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5962 5963 5964 5965 5966 5967 5968 5969 5970
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5971 5972
	} else {
		tmp = I915_READ(DSPFW7);
5973 5974
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5975 5976 5977

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5978 5979 5980 5981 5982 5983
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5984 5985 5986 5987 5988 5989
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5990
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5991 5992 5993 5994 5995 5996 5997 5998
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5999
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6130
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6131 6132
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6133
	struct intel_crtc *crtc;
6134 6135 6136 6137 6138 6139 6140 6141
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6142
		vlv_punit_get(dev_priv);
6143

6144
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6145 6146 6147
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6148 6149 6150 6151 6152 6153 6154 6155 6156
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6157
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6171

6172
		vlv_punit_put(dev_priv);
6173 6174
	}

6175
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6191
			struct g4x_pipe_wm *raw =
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6213
		crtc_state->wm.vlv.intermediate = *active;
6214

6215
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6216 6217 6218 6219 6220
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6221
	}
6222 6223 6224 6225 6226

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6251
			struct g4x_pipe_wm *raw =
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6292
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6293
{
6294
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6295
	struct intel_crtc *crtc;
6296

6297 6298
	ilk_init_lp_watermarks(dev_priv);

6299
	for_each_intel_crtc(&dev_priv->drm, crtc)
6300 6301 6302 6303 6304 6305 6306
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6307
	if (INTEL_GEN(dev_priv) >= 7) {
6308 6309 6310
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6311

6312
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6313 6314
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6315
	else if (IS_IVYBRIDGE(dev_priv))
6316 6317
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6318 6319 6320 6321 6322

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6323 6324
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6325
 * @crtc: the #intel_crtc on which to compute the WM
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6356
void intel_update_watermarks(struct intel_crtc *crtc)
6357
{
6358
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6359 6360

	if (dev_priv->display.update_wm)
6361
		dev_priv->display.update_wm(crtc);
6362 6363
}

6364 6365 6366 6367
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6368 6369 6370
	if (!HAS_IPC(dev_priv))
		return;

6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6394 6395 6396 6397 6398
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6399
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6400

6401 6402 6403
	intel_enable_ipc(dev_priv);
}

6404
/*
6405 6406 6407 6408
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

T
Tvrtko Ursulin 已提交
6409
bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6410
{
T
Tvrtko Ursulin 已提交
6411
	struct intel_uncore *uncore = &i915->uncore;
6412 6413
	u16 rgvswctl;

6414
	lockdep_assert_held(&mchdev_lock);
6415

T
Tvrtko Ursulin 已提交
6416
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6417 6418 6419 6420 6421 6422 6423
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
T
Tvrtko Ursulin 已提交
6424 6425
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
	intel_uncore_posting_read16(uncore, MEMSWCTL);
6426 6427

	rgvswctl |= MEMCTL_CMD_STS;
T
Tvrtko Ursulin 已提交
6428
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6429 6430 6431 6432

	return true;
}

6433
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6434
{
6435
	struct intel_uncore *uncore = &dev_priv->uncore;
6436
	u32 rgvmodectl;
6437 6438
	u8 fmax, fmin, fstart, vstart;

6439 6440
	spin_lock_irq(&mchdev_lock);

6441
	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6442

6443
	/* Enable temp reporting */
6444 6445
	intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6446 6447

	/* 100ms RC evaluation intervals */
6448 6449
	intel_uncore_write(uncore, RCUPEI, 100000);
	intel_uncore_write(uncore, RCDNEI, 100000);
6450 6451

	/* Set max/min thresholds to 90ms and 80ms respectively */
6452 6453
	intel_uncore_write(uncore, RCBMAXAVG, 90000);
	intel_uncore_write(uncore, RCBMINAVG, 80000);
6454

6455
	intel_uncore_write(uncore, MEMIHYST, 1);
6456 6457 6458 6459 6460 6461 6462

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6463 6464
	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6465

6466 6467
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6468

6469 6470 6471
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6472 6473 6474 6475

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

6476 6477 6478
	intel_uncore_write(uncore,
			   MEMINTREN,
			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6479 6480 6481 6482 6483

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

6484 6485
	intel_uncore_write(uncore, VIDSTART, vstart);
	intel_uncore_posting_read(uncore, VIDSTART);
6486 6487

	rgvmodectl |= MEMMODE_SWMODE_EN;
6488
	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6489

6490 6491
	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
			     MEMCTL_CMD_STS) == 0, 10))
6492
		DRM_ERROR("stuck trying to change perf mode\n");
6493
	mdelay(1);
6494

6495
	ironlake_set_drps(dev_priv, fstart);
6496

6497 6498 6499 6500
	dev_priv->ips.last_count1 =
		intel_uncore_read(uncore, DMIEC) +
		intel_uncore_read(uncore, DDREC) +
		intel_uncore_read(uncore, CSIEC);
6501
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6502
	dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6503
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6504 6505

	spin_unlock_irq(&mchdev_lock);
6506 6507
}

6508
static void ironlake_disable_drps(struct drm_i915_private *i915)
6509
{
6510
	struct intel_uncore *uncore = &i915->uncore;
6511 6512 6513 6514
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

6515
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6516 6517

	/* Ack interrupts, disable EFC interrupt */
6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
	intel_uncore_write(uncore,
			   MEMINTREN,
			   intel_uncore_read(uncore, MEMINTREN) &
			   ~MEMINT_EVAL_CHG_EN);
	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
	intel_uncore_write(uncore,
			   DEIER,
			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
	intel_uncore_write(uncore,
			   DEIMR,
			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6530 6531

	/* Go back to the starting frequency */
6532
	ironlake_set_drps(i915, i915->ips.fstart);
6533
	mdelay(1);
6534
	rgvswctl |= MEMCTL_CMD_STS;
6535
	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6536
	mdelay(1);
6537

6538
	spin_unlock_irq(&mchdev_lock);
6539 6540
}

6541 6542 6543 6544 6545
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6546
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6547
{
6548
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6549
	u32 limits;
6550

6551 6552 6553 6554 6555 6556
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6557
	if (INTEL_GEN(dev_priv) >= 9) {
6558 6559 6560
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6561
	} else {
6562 6563 6564
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6565
	}
6566 6567 6568 6569

	return limits;
}

C
Chris Wilson 已提交
6570
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6571
{
6572
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6573 6574
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6575

C
Chris Wilson 已提交
6576
	lockdep_assert_held(&rps->power.mutex);
6577

C
Chris Wilson 已提交
6578
	if (new_power == rps->power.mode)
6579 6580 6581 6582 6583 6584
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6585 6586
		ei_up = 16000;
		threshold_up = 95;
6587 6588

		/* Downclock if less than 85% busy over 32ms */
6589 6590
		ei_down = 32000;
		threshold_down = 85;
6591 6592 6593 6594
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6595 6596
		ei_up = 13000;
		threshold_up = 90;
6597 6598

		/* Downclock if less than 75% busy over 32ms */
6599 6600
		ei_down = 32000;
		threshold_down = 75;
6601 6602 6603 6604
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6605 6606
		ei_up = 10000;
		threshold_up = 85;
6607 6608

		/* Downclock if less than 60% busy over 32ms */
6609 6610
		ei_down = 32000;
		threshold_down = 60;
6611 6612 6613
		break;
	}

6614 6615 6616 6617 6618 6619
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6620
	I915_WRITE(GEN6_RP_UP_EI,
6621
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6622
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6623 6624
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6625 6626

	I915_WRITE(GEN6_RP_DOWN_EI,
6627
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6628
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6629 6630 6631 6632
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
6633
		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6634 6635 6636 6637 6638
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6639

6640
skip_hw_write:
C
Chris Wilson 已提交
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6685 6686
}

C
Chris Wilson 已提交
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6705 6706
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6707
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6708 6709
	u32 mask = 0;

6710
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6711
	if (val > rps->min_freq_softlimit)
6712
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6713
	if (val < rps->max_freq_softlimit)
6714
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6715

6716 6717
	mask &= dev_priv->pm_rps_events;

6718
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6719 6720
}

6721 6722 6723
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6724
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6725
{
6726 6727
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6728 6729 6730
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6731
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6732
		gen6_set_rps_thresholds(dev_priv, val);
6733

6734
		if (INTEL_GEN(dev_priv) >= 9)
6735 6736
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6737
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6738 6739 6740 6741 6742 6743 6744
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6745
	}
6746 6747 6748 6749

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6750
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6751
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6752

6753
	rps->cur_freq = val;
6754
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6755 6756

	return 0;
6757 6758
}

6759
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6760
{
6761 6762
	int err;

6763
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6764 6765 6766
		      "Odd GPU freq value\n"))
		val &= ~1;

6767 6768
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6769
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6770
		vlv_punit_get(dev_priv);
6771
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6772
		vlv_punit_put(dev_priv);
6773 6774 6775
		if (err)
			return err;

6776
		gen6_set_rps_thresholds(dev_priv, val);
6777
	}
6778

6779
	dev_priv->gt_pm.rps.cur_freq = val;
6780
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6781 6782

	return 0;
6783 6784
}

6785
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6786 6787
 *
 * * If Gfx is Idle, then
6788 6789 6790
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6791 6792 6793
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6794 6795
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6796
	int err;
6797

6798
	if (rps->cur_freq <= val)
6799 6800
		return;

6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6813
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6814
	err = valleyview_set_rps(dev_priv, val);
6815
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6816 6817 6818

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6819 6820
}

6821 6822
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6823 6824
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6825
	mutex_lock(&rps->lock);
6826
	if (rps->enabled) {
6827 6828
		u8 freq;

6829
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6830 6831
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6832
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6833

6834 6835
		gen6_enable_rps_interrupts(dev_priv);

6836 6837 6838
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6839 6840
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6841

6842
		if (intel_set_rps(dev_priv,
6843
				  clamp(freq,
6844 6845
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6846
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6847
	}
6848
	mutex_unlock(&rps->lock);
6849 6850
}

6851 6852
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6853 6854
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6855 6856 6857 6858 6859 6860 6861
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6862
	mutex_lock(&rps->lock);
6863
	if (rps->enabled) {
6864
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6865
			vlv_set_rps_idle(dev_priv);
6866
		else
6867 6868
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6869 6870
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6871
	}
6872
	mutex_unlock(&rps->lock);
6873 6874
}

6875
void gen6_rps_boost(struct i915_request *rq)
6876
{
6877
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6878
	unsigned long flags;
6879 6880
	bool boost;

6881 6882 6883
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6884
	if (!rps->enabled)
6885
		return;
6886

6887
	if (i915_request_signaled(rq))
6888 6889
		return;

6890
	/* Serializes with i915_request_retire() */
6891
	boost = false;
6892
	spin_lock_irqsave(&rq->lock, flags);
6893 6894
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6895
		rq->waitboost = true;
6896
	}
6897
	spin_unlock_irqrestore(&rq->lock, flags);
6898 6899 6900
	if (!boost)
		return;

6901 6902
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6903

6904
	atomic_inc(&rps->boosts);
6905 6906
}

6907
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6908
{
6909
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6910 6911
	int err;

6912
	lockdep_assert_held(&rps->lock);
6913 6914
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6915

6916 6917
	if (!rps->enabled) {
		rps->cur_freq = val;
6918 6919 6920
		return 0;
	}

6921
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6922
		err = valleyview_set_rps(dev_priv, val);
6923
	else
6924 6925 6926
		err = gen6_set_rps(dev_priv, val);

	return err;
6927 6928
}

6929
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6930 6931
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6932
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6933 6934
}

6935
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6936 6937 6938 6939
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6940
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6941 6942
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6943 6944 6945 6946
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6947
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6948
	I915_WRITE(GEN6_RP_CONTROL, 0);
6949 6950
}

6951
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6952 6953 6954 6955
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6956 6957 6958 6959 6960
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6961
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6962
{
6963
	/* We're doing forcewake before Disabling RC6,
6964
	 * This what the BIOS expects when going into suspend */
6965
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6966

6967
	I915_WRITE(GEN6_RC_CONTROL, 0);
6968

6969
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6970 6971
}

6972 6973 6974 6975 6976
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6977
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6978 6979 6980
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6992 6993

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6994
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6995 6996 6997 6998 6999 7000 7001 7002
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
7003 7004
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
7005
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
7006 7007 7008 7009 7010 7011 7012
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
7013
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
7014 7015 7016
		enable_rc6 = false;
	}

7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7031 7032 7033 7034 7035 7036
		enable_rc6 = false;
	}

	return enable_rc6;
}

7037
static bool sanitize_rc6(struct drm_i915_private *i915)
7038
{
7039
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
7040

7041
	/* Powersaving is controlled by the host when inside a VM */
7042
	if (intel_vgpu_active(i915)) {
7043
		info->has_rc6 = 0;
7044 7045
		info->has_rps = false;
	}
7046

7047 7048
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7049
		DRM_INFO("RC6 disabled by BIOS\n");
7050
		info->has_rc6 = 0;
7051 7052
	}

7053 7054 7055 7056 7057 7058 7059 7060
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
7061

7062
	return info->has_rc6;
7063 7064
}

7065
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7066
{
7067 7068
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7069
	/* All of these values are in units of 50MHz */
7070

7071
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
7072
	if (IS_GEN9_LP(dev_priv)) {
7073
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7074 7075 7076
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
7077
	} else {
7078
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7079 7080 7081
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
7082
	}
7083
	/* hw_max = RP0 until we check for overclocking */
7084
	rps->max_freq = rps->rp0_freq;
7085

7086
	rps->efficient_freq = rps->rp1_freq;
7087
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7088
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7089 7090 7091 7092
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7093
					   &ddcc_status, NULL) == 0)
7094
			rps->efficient_freq =
7095 7096
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
7097 7098
					rps->min_freq,
					rps->max_freq);
7099 7100
	}

7101
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7102
		/* Store the frequency values in 16.66 MHZ units, which is
7103 7104
		 * the natural hardware unit for SKL
		 */
7105 7106 7107 7108 7109
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
7110
	}
7111 7112
}

7113
static void reset_rps(struct drm_i915_private *dev_priv,
7114
		      int (*set)(struct drm_i915_private *, u8))
7115
{
7116 7117
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
7118 7119

	/* force a reset */
C
Chris Wilson 已提交
7120
	rps->power.mode = -1;
7121
	rps->cur_freq = -1;
7122

7123 7124
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
7125 7126
}

J
Jesse Barnes 已提交
7127
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
7128
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
7129
{
7130
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
7131

7132
	/* Program defaults and thresholds for RPS */
7133
	if (IS_GEN(dev_priv, 9))
7134 7135
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7136 7137 7138 7139 7140

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
7141 7142
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

7143 7144 7145
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7146
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
7147

7148
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
7149 7150
}

7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/*
	 * 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.
	 */
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
	I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);

	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);

	if (HAS_GUC(dev_priv))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

	I915_WRITE(GEN6_RC_SLEEP, 0);

7182 7183
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);

	/* 3a: Enable RC6 */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   GEN6_RC_CTL_EI_MODE(1));

	/* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
	I915_WRITE(GEN9_PG_ENABLE,
7216 7217 7218
		   GEN9_RENDER_PG_ENABLE |
		   GEN9_MEDIA_PG_ENABLE |
		   GEN11_MEDIA_SAMPLER_PG_ENABLE);
7219 7220 7221 7222

	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
}

7223
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
7224
{
7225
	struct intel_engine_cs *engine;
7226
	enum intel_engine_id id;
7227
	u32 rc6_mode;
Z
Zhe Wang 已提交
7228 7229 7230 7231 7232 7233

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7234
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7235 7236 7237 7238 7239

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
7240 7241 7242 7243 7244 7245 7246 7247
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
7248
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
7249
	} else {
7250
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
7251 7252
	}

Z
Zhe Wang 已提交
7253 7254
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7255
	for_each_engine(engine, dev_priv, id)
7256
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7257

7258
	if (HAS_GUC(dev_priv))
7259 7260
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
7261 7262
	I915_WRITE(GEN6_RC_SLEEP, 0);

7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7286

Z
Zhe Wang 已提交
7287
	/* 3a: Enable RC6 */
7288
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
7289 7290 7291 7292 7293 7294 7295

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7296
	I915_WRITE(GEN6_RC_CONTROL,
7297 7298 7299
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7300

7301 7302
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7303
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7304
	 */
7305
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7306 7307
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7308 7309
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7310

7311
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7312 7313
}

7314
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7315
{
7316
	struct intel_engine_cs *engine;
7317
	enum intel_engine_id id;
7318 7319 7320 7321

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7322
	/* 1b: Get forcewake during program sequence. Although the driver
7323
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7324
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7325 7326 7327 7328 7329 7330 7331 7332

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7333
	for_each_engine(engine, dev_priv, id)
7334
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7335
	I915_WRITE(GEN6_RC_SLEEP, 0);
7336
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7337 7338

	/* 3: Enable RC6 */
7339

7340 7341 7342 7343
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7344

7345
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7346 7347 7348 7349
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7350 7351
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7352
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7353 7354

	/* 1 Program defaults and thresholds for RPS*/
7355
	I915_WRITE(GEN6_RPNSWREQ,
7356
		   HSW_FREQUENCY(rps->rp1_freq));
7357
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7358
		   HSW_FREQUENCY(rps->rp1_freq));
7359 7360 7361 7362 7363
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7364 7365
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7366 7367 7368 7369 7370 7371 7372

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7373

7374
	/* 2: Enable RPS */
7375 7376 7377 7378 7379 7380 7381 7382
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7383
	reset_rps(dev_priv, gen6_set_rps);
7384

7385
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7386 7387
}

7388
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7389
{
7390
	struct intel_engine_cs *engine;
7391
	enum intel_engine_id id;
7392
	u32 rc6vids, rc6_mask;
7393
	u32 gtfifodbg;
7394
	int ret;
7395 7396 7397 7398

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7399 7400
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7401 7402 7403 7404
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7405
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7416
	for_each_engine(engine, dev_priv, id)
7417
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7418 7419 7420

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7421
	if (IS_IVYBRIDGE(dev_priv))
7422 7423 7424
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7425
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7426 7427
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7428
	/* We don't use those on Haswell */
7429 7430 7431 7432 7433
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7434 7435 7436 7437 7438
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7439
	rc6vids = 0;
7440 7441
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
				     &rc6vids, NULL);
7442
	if (IS_GEN(dev_priv, 6) && ret) {
7443
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7444
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7445 7446 7447 7448 7449 7450 7451 7452 7453
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7454
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7455 7456
}

7457 7458 7459 7460 7461 7462 7463 7464
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
7465
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7466 7467 7468 7469 7470 7471 7472

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

7473
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7474 7475
}

7476
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7477
{
7478
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7479 7480
	const int min_freq = 15;
	const int scaling_factor = 180;
7481 7482
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7483
	unsigned int max_gpu_freq, min_gpu_freq;
7484
	struct cpufreq_policy *policy;
7485

7486
	lockdep_assert_held(&rps->lock);
7487

7488 7489 7490
	if (rps->max_freq <= rps->min_freq)
		return;

7491 7492 7493 7494 7495 7496 7497 7498 7499
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7500
		max_ia_freq = tsc_khz;
7501
	}
7502 7503 7504 7505

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7506
	min_ring_freq = I915_READ(DCLK) & 0xf;
7507 7508
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7509

7510 7511
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7512
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7513
		/* Convert GT frequency to 50 HZ units */
7514 7515
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7516 7517
	}

7518 7519 7520 7521 7522
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7523
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7524
		const int diff = max_gpu_freq - gpu_freq;
7525 7526
		unsigned int ia_freq = 0, ring_freq = 0;

7527
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7528 7529 7530 7531 7532
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7533
		} else if (INTEL_GEN(dev_priv) >= 8) {
7534 7535
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7536
		} else if (IS_HASWELL(dev_priv)) {
7537
			ring_freq = mult_frac(gpu_freq, 5, 4);
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7554

B
Ben Widawsky 已提交
7555 7556
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7557 7558 7559
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7560 7561 7562
	}
}

7563
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7564 7565 7566
{
	u32 val, rp0;

7567
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7568

7569
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7584
	}
7585 7586 7587

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7601 7602 7603 7604
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7605 7606 7607
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7608 7609 7610
	return rp1;
}

7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7633
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7634 7635 7636
{
	u32 val, rp0;

7637
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7650
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7651
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7652
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7653 7654 7655 7656 7657
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7658
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7659
{
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7671 7672
}

7673 7674 7675 7676 7677
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7678
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7679 7680 7681
			     dev_priv->vlv_pctx->stolen->start);
}

7682 7683 7684 7685 7686 7687 7688 7689 7690

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7691
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7692
{
7693 7694
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7695 7696 7697 7698
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7699
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7700 7701
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7702 7703 7704 7705

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7706 7707

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7708 7709
}

7710
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7711 7712
{
	struct drm_i915_gem_object *pctx;
7713 7714
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7715 7716 7717 7718 7719
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7720
		resource_size_t pcbr_offset;
7721

7722
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7723
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7724
								      pcbr_offset,
7725
								      I915_GTT_OFFSET_NONE,
7726 7727 7728 7729
								      pctx_size);
		goto out;
	}

7730 7731
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7732 7733 7734 7735 7736 7737 7738 7739
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7740
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7741 7742
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7743
		goto out;
7744 7745
	}

7746 7747 7748 7749 7750
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7751 7752 7753
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7754
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7755 7756 7757
	dev_priv->vlv_pctx = pctx;
}

7758
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7759
{
7760
	struct drm_i915_gem_object *pctx;
7761

7762 7763 7764
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7765 7766
}

7767 7768
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7769
	dev_priv->gt_pm.rps.gpll_ref_freq =
7770 7771 7772 7773 7774
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7775
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7776 7777
}

7778
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7779
{
7780
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7781
	u32 val;
7782

7783
	valleyview_setup_pctx(dev_priv);
7784

7785 7786 7787 7788 7789
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7790 7791
	vlv_init_gpll_ref_freq(dev_priv);

7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7805
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7806

7807 7808
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7809
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7810 7811
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7812

7813
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7814
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7815 7816
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7817

7818
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7819
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7820 7821
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7822

7823
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7824
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7825 7826
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7827 7828 7829 7830 7831

	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));
7832 7833
}

7834
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7835
{
7836
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7837
	u32 val;
7838

7839
	cherryview_setup_pctx(dev_priv);
7840

7841 7842 7843 7844 7845
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7846 7847
	vlv_init_gpll_ref_freq(dev_priv);

7848 7849
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);

7850 7851 7852 7853
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7854
	default:
7855 7856 7857
		dev_priv->mem_freq = 1600;
		break;
	}
7858
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7859

7860 7861
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7862
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7863 7864
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7865

7866
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7867
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7868 7869
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7870

7871
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7872
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7873 7874
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7875

7876
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7877
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7878 7879
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7880

7881 7882 7883 7884 7885
	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7886 7887
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7888
		  "Odd GPU freq values\n");
7889 7890
}

7891
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7892
{
7893
	valleyview_cleanup_pctx(dev_priv);
7894 7895
}

7896
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7897
{
7898
	struct intel_engine_cs *engine;
7899
	enum intel_engine_id id;
7900
	u32 gtfifodbg, rc6_mode, pcbr;
7901

7902 7903
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7904 7905 7906 7907 7908 7909 7910 7911 7912 7913
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7914
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7915

7916 7917 7918
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7919 7920 7921 7922 7923
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7924
	for_each_engine(engine, dev_priv, id)
7925
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7926 7927
	I915_WRITE(GEN6_RC_SLEEP, 0);

7928 7929
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7930

7931
	/* Allows RC6 residency counter to work */
7932 7933 7934 7935 7936 7937 7938 7939 7940
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7941 7942
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7943
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7944 7945
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7946
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7947 7948 7949 7950 7951 7952
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7953
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7954 7955

	/* 1: Program defaults and thresholds for RPS*/
7956
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7957 7958 7959 7960 7961 7962 7963
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7964
	/* 2: Enable RPS */
7965 7966
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7967
		   GEN6_RP_MEDIA_IS_GFX |
7968 7969 7970 7971
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7972
	/* Setting Fixed Bias */
7973 7974 7975
	vlv_punit_get(dev_priv);

	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
D
Deepak S 已提交
7976 7977
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7978 7979
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7980 7981
	vlv_punit_put(dev_priv);

7982 7983 7984
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7985
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7986 7987
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7988
	reset_rps(dev_priv, valleyview_set_rps);
7989

7990
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7991 7992
}

7993
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7994
{
7995
	struct intel_engine_cs *engine;
7996
	enum intel_engine_id id;
7997
	u32 gtfifodbg;
7998

7999 8000
	valleyview_check_pctx(dev_priv);

8001 8002
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
8003 8004
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
8005 8006 8007
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

8008
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8009

8010 8011 8012
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

8013 8014 8015 8016
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

8017
	for_each_engine(engine, dev_priv, id)
8018
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
8019

8020
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
8021

8022
	/* Allows RC6 residency counter to work */
8023
	I915_WRITE(VLV_COUNTER_CONTROL,
8024 8025
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
8026
				      VLV_RENDER_RC0_COUNT_EN |
8027 8028
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
8029

8030 8031
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
8032

8033
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8034 8035 8036 8037 8038 8039
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

8040
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

8058 8059
	vlv_punit_get(dev_priv);

D
Deepak S 已提交
8060
	/* Setting Fixed Bias */
8061
	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
D
Deepak S 已提交
8062 8063
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

8064
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8065

8066 8067
	vlv_punit_put(dev_priv);

8068 8069 8070
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

8071
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8072 8073
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

8074
	reset_rps(dev_priv, valleyview_set_rps);
8075

8076
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8077 8078
}

8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

8108
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8109 8110 8111 8112 8113 8114
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

8115
	lockdep_assert_held(&mchdev_lock);
8116

8117
	diff1 = now - dev_priv->ips.last_time1;
8118 8119 8120 8121 8122 8123 8124

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
8125
		return dev_priv->ips.chipset_power;
8126 8127 8128 8129 8130 8131 8132 8133

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
8134 8135
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
8136 8137
		diff += total_count;
	} else {
8138
		diff = total_count - dev_priv->ips.last_count1;
8139 8140 8141
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8142 8143
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
8144 8145 8146 8147 8148 8149 8150 8151 8152 8153
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

8154 8155
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
8156

8157
	dev_priv->ips.chipset_power = ret;
8158 8159 8160 8161

	return ret;
}

8162 8163
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
8164 8165
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8166

8167
	if (!IS_GEN(dev_priv, 5))
8168 8169
		return 0;

8170 8171 8172 8173 8174
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8175 8176 8177 8178

	return val;
}

T
Tvrtko Ursulin 已提交
8179
unsigned long i915_mch_val(struct drm_i915_private *i915)
8180 8181 8182 8183
{
	unsigned long m, x, b;
	u32 tsfs;

T
Tvrtko Ursulin 已提交
8184
	tsfs = intel_uncore_read(&i915->uncore, TSFS);
8185 8186

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
T
Tvrtko Ursulin 已提交
8187
	x = intel_uncore_read8(&i915->uncore, TR1);
8188 8189 8190 8191 8192 8193

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8206
{
8207 8208 8209
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

8210
	if (INTEL_INFO(dev_priv)->is_mobile)
8211 8212 8213
		return vm > 0 ? vm : 0;

	return vd;
8214 8215
}

8216
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8217
{
8218
	u64 now, diff, diffms;
8219 8220
	u32 count;

8221
	lockdep_assert_held(&mchdev_lock);
8222

8223 8224 8225
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
8226 8227 8228 8229 8230 8231 8232

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

8233 8234
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
8235 8236
		diff += count;
	} else {
8237
		diff = count - dev_priv->ips.last_count2;
8238 8239
	}

8240 8241
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
8242 8243 8244 8245

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
8246
	dev_priv->ips.gfx_power = diff;
8247 8248
}

8249 8250
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
8251 8252
	intel_wakeref_t wakeref;

8253
	if (!IS_GEN(dev_priv, 5))
8254 8255
		return;

8256 8257 8258 8259 8260
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8261 8262
}

8263
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8264 8265 8266 8267
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

8268
	lockdep_assert_held(&mchdev_lock);
8269

8270
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
8290
	corr2 = (corr * dev_priv->ips.corr);
8291 8292 8293 8294

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

8295
	__i915_update_gfx_val(dev_priv);
8296

8297
	return dev_priv->ips.gfx_power + state2;
8298 8299
}

8300 8301
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
8302 8303
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8304

8305
	if (!IS_GEN(dev_priv, 5))
8306 8307
		return 0;

8308 8309 8310 8311 8312
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8313

8314 8315
	return val;
}
8316

8317
static struct drm_i915_private __rcu *i915_mch_dev;
8318

8319 8320 8321 8322 8323
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
8324
	i915 = rcu_dereference(i915_mch_dev);
8325 8326 8327 8328 8329
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
8330 8331
}

8332 8333 8334 8335 8336 8337 8338 8339
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
8340 8341 8342 8343
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
8344

8345 8346 8347
	i915 = mchdev_get();
	if (!i915)
		return 0;
8348

8349 8350 8351 8352 8353 8354
	with_intel_runtime_pm(i915, wakeref) {
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
8355

8356 8357
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
8358 8359 8360 8361 8362 8363 8364 8365 8366 8367
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
8368
	struct drm_i915_private *i915;
8369

8370 8371 8372
	i915 = mchdev_get();
	if (!i915)
		return false;
8373

8374 8375 8376
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
8377
	spin_unlock_irq(&mchdev_lock);
8378

8379 8380
	drm_dev_put(&i915->drm);
	return true;
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
8392
	struct drm_i915_private *i915;
8393

8394 8395 8396
	i915 = mchdev_get();
	if (!i915)
		return false;
8397

8398 8399 8400
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
8401
	spin_unlock_irq(&mchdev_lock);
8402

8403 8404
	drm_dev_put(&i915->drm);
	return true;
8405 8406 8407 8408 8409 8410 8411 8412 8413 8414
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
8415 8416
	struct drm_i915_private *i915;
	bool ret;
8417

8418 8419 8420
	i915 = mchdev_get();
	if (!i915)
		return false;
8421

8422 8423 8424
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
8437 8438
	struct drm_i915_private *i915;
	bool ret;
8439

8440 8441 8442
	i915 = mchdev_get();
	if (!i915)
		return false;
8443

8444 8445 8446
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
8447
	spin_unlock_irq(&mchdev_lock);
8448

8449
	drm_dev_put(&i915->drm);
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8476 8477
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8478
	rcu_assign_pointer(i915_mch_dev, dev_priv);
8479 8480 8481 8482 8483 8484

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8485
	rcu_assign_pointer(i915_mch_dev, NULL);
8486
}
8487

8488
static void intel_init_emon(struct drm_i915_private *dev_priv)
8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8505
		I915_WRITE(PEW(i), 0);
8506
	for (i = 0; i < 3; i++)
8507
		I915_WRITE(DEW(i), 0);
8508 8509 8510

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8511
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8532
		I915_WRITE(PXW(i), val);
8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8548
		I915_WRITE(PXWL(i), 0);
8549 8550 8551 8552 8553 8554

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8555
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8556 8557
}

8558
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8559
{
8560 8561
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8562 8563 8564 8565
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8566
	if (!sanitize_rc6(dev_priv)) {
8567
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8568
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8569
	}
I
Imre Deak 已提交
8570

8571
	/* Initialize RPS limits (for userspace) */
8572 8573 8574 8575
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8576
	else if (INTEL_GEN(dev_priv) >= 6)
8577 8578 8579
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8580 8581
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8582

8583
	/* After setting max-softlimit, find the overclock max freq */
8584
	if (IS_GEN(dev_priv, 6) ||
8585 8586 8587
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

8588 8589
		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
				       &params, NULL);
8590 8591
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8592
					 (rps->max_freq & 0xff) * 50,
8593
					 (params & 0xff) * 50);
8594
			rps->max_freq = params & 0xff;
8595 8596 8597
		}
	}

8598
	/* Finally allow us to boost to max by default */
8599
	rps->boost_freq = rps->max_freq;
8600 8601
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8602 8603
}

8604
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8605
{
8606
	if (IS_VALLEYVIEW(dev_priv))
8607
		valleyview_cleanup_gt_powersave(dev_priv);
8608

8609
	if (!HAS_RC6(dev_priv))
8610
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8611 8612
}

8613 8614
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8615 8616
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8617
	intel_disable_gt_powersave(dev_priv);
8618

8619 8620
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8621
	else if (INTEL_GEN(dev_priv) >= 6)
8622
		gen6_reset_rps_interrupts(dev_priv);
8623 8624
}

8625 8626
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
8627
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8628

8629 8630 8631
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8632
	/* Currently there is no HW configuration to be done to disable. */
8633 8634

	i915->gt_pm.llc_pstate.enabled = false;
8635 8636
}

8637
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8638
{
8639
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8640

8641 8642 8643
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8644 8645 8646 8647 8648 8649 8650 8651
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8652 8653

	dev_priv->gt_pm.rc6.enabled = false;
8654
}
8655

8656 8657
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
8658
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8659

8660 8661 8662
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8663
	if (INTEL_GEN(dev_priv) >= 9)
8664
		gen9_disable_rps(dev_priv);
8665
	else if (IS_CHERRYVIEW(dev_priv))
8666
		cherryview_disable_rps(dev_priv);
8667
	else if (IS_VALLEYVIEW(dev_priv))
8668
		valleyview_disable_rps(dev_priv);
8669
	else if (INTEL_GEN(dev_priv) >= 6)
8670
		gen6_disable_rps(dev_priv);
8671
	else if (IS_IRONLAKE_M(dev_priv))
8672
		ironlake_disable_drps(dev_priv);
8673 8674

	dev_priv->gt_pm.rps.enabled = false;
8675 8676 8677 8678
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
8679
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8680

8681 8682
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8683 8684 8685
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8686
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8687 8688
}

8689 8690
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
8691
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8692

8693 8694 8695
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8696
	gen6_update_ring_freq(i915);
8697 8698

	i915->gt_pm.llc_pstate.enabled = true;
8699 8700
}

8701
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8702
{
8703
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8704

8705 8706 8707
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8708 8709 8710 8711
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
8712 8713
	else if (INTEL_GEN(dev_priv) >= 11)
		gen11_enable_rc6(dev_priv);
8714 8715 8716 8717 8718 8719
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8720 8721

	dev_priv->gt_pm.rc6.enabled = true;
8722
}
8723

8724 8725 8726
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8727

8728
	lockdep_assert_held(&rps->lock);
8729

8730 8731 8732
	if (rps->enabled)
		return;

8733 8734 8735 8736
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8737
	} else if (INTEL_GEN(dev_priv) >= 9) {
8738 8739 8740
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8741
	} else if (INTEL_GEN(dev_priv) >= 6) {
8742
		gen6_enable_rps(dev_priv);
8743 8744 8745
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8746
	}
8747

8748 8749
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8750

8751 8752
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8753 8754

	rps->enabled = true;
8755 8756 8757 8758 8759 8760 8761 8762
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

8763
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8764

8765 8766
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8767 8768
	if (HAS_RPS(dev_priv))
		intel_enable_rps(dev_priv);
8769 8770
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8771

8772
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8773
}
I
Imre Deak 已提交
8774

8775
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8776 8777 8778 8779 8780 8781 8782 8783 8784
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8785
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8786
{
8787
	enum pipe pipe;
8788

8789
	for_each_pipe(dev_priv, pipe) {
8790 8791 8792
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8793 8794 8795

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8796 8797 8798
	}
}

8799
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8800
{
8801
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8802

8803 8804 8805 8806
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8807 8808 8809
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8827
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8828 8829 8830
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8831

8832 8833 8834 8835 8836 8837 8838
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8839
	if (IS_IRONLAKE_M(dev_priv)) {
8840
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8841 8842 8843 8844 8845 8846 8847 8848
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8849 8850
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8851 8852 8853 8854 8855 8856
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8857

8858
	/* WaDisableRenderCachePipelinedFlush:ilk */
8859 8860
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8861

8862 8863 8864
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8865
	g4x_disable_trickle_feed(dev_priv);
8866

8867
	ibx_init_clock_gating(dev_priv);
8868 8869
}

8870
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8871 8872
{
	int pipe;
8873
	u32 val;
8874 8875 8876 8877 8878 8879

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8880 8881 8882
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8883 8884
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8885 8886 8887
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8888
	for_each_pipe(dev_priv, pipe) {
8889 8890 8891
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8892
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8893
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8894 8895 8896
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8897 8898
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8899
	/* WADP0ClockGatingDisable */
8900
	for_each_pipe(dev_priv, pipe) {
8901 8902 8903
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8904 8905
}

8906
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8907
{
8908
	u32 tmp;
8909 8910

	tmp = I915_READ(MCH_SSKPD);
8911 8912 8913
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8914 8915
}

8916
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8917
{
8918
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8919

8920
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8921 8922 8923 8924 8925

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8926
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8927 8928 8929
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8930 8931 8932
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8933 8934 8935
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8936 8937 8938 8939
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8940 8941
	 */
	I915_WRITE(GEN6_GT_MODE,
8942
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8943

8944
	I915_WRITE(CACHE_MODE_0,
8945
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8961
	 *
8962 8963
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8964 8965 8966 8967 8968
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8969
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8970 8971
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8972

8973 8974 8975 8976 8977 8978 8979 8980
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8981 8982 8983 8984 8985 8986 8987 8988
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8989 8990
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8991 8992 8993 8994 8995 8996 8997
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8998 8999 9000 9001
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
9002

9003
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
9004

9005
	cpt_init_clock_gating(dev_priv);
9006

9007
	gen6_check_mch_setup(dev_priv);
9008 9009 9010 9011
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
9012
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
9013

9014
	/*
9015
	 * WaVSThreadDispatchOverride:ivb,vlv
9016 9017 9018 9019
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
9020 9021 9022 9023 9024 9025 9026 9027
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

9028
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
9029 9030 9031 9032 9033
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
9034
	if (HAS_PCH_LPT_LP(dev_priv))
9035 9036 9037
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
9038 9039

	/* WADPOClockGatingDisable:hsw */
9040 9041
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9042
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9043 9044
}

9045
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9046
{
9047
	if (HAS_PCH_LPT_LP(dev_priv)) {
9048
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9049 9050 9051 9052 9053 9054

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

9055 9056 9057 9058 9059
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
9060
	u32 val;
9061 9062 9063 9064 9065

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

9066 9067 9068 9069 9070
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
9071 9072 9073 9074 9075 9076 9077 9078 9079 9080

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
9081 9082 9083 9084 9085
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9086 9087 9088 9089

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
9090 9091
}

9092 9093 9094 9095 9096
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

9097
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9098 9099
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
9100 9101
}

9102
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9103
{
9104
	u32 val;
9105 9106
	cnp_init_clock_gating(dev_priv);

9107 9108 9109 9110
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

9111 9112 9113 9114 9115 9116 9117 9118
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

9119 9120 9121
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
9122 9123
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9124 9125
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9126

R
Rodrigo Vivi 已提交
9127 9128 9129 9130 9131
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

9132
	/* WaDisableVFclkgate:cnl */
9133
	/* WaVFUnitClockGatingDisable:cnl */
9134 9135 9136
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9137 9138
}

9139 9140 9141 9142 9143 9144 9145 9146 9147 9148
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

9149
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9150
{
9151
	gen9_init_clock_gating(dev_priv);
9152 9153 9154 9155 9156

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9157 9158 9159 9160 9161

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9162

9163
	/* WaFbcNukeOnHostModify:kbl */
9164 9165
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9166 9167
}

9168
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9169
{
9170
	gen9_init_clock_gating(dev_priv);
9171 9172 9173 9174

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
9175 9176 9177 9178

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9179 9180
}

9181
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
9182
{
9183 9184 9185
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
9186
	enum pipe pipe;
B
Ben Widawsky 已提交
9187

9188
	/* WaSwitchSolVfFArbitrationPriority:bdw */
9189
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9190

9191
	/* WaPsrDPAMaskVBlankInSRD:bdw */
9192 9193 9194
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

9195
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9196
	for_each_pipe(dev_priv, pipe) {
9197
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
9198
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
9199
			   BDW_DPRS_MASK_VBLANK_SRD);
9200
	}
9201

9202 9203 9204 9205 9206
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9207

9208 9209
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9210 9211 9212 9213

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9214

9215 9216
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
9217

9218 9219
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9220

9221 9222 9223 9224
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

9225
	lpt_init_clock_gating(dev_priv);
9226 9227 9228 9229 9230 9231 9232 9233

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
9234 9235
}

9236
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9237
{
9238 9239 9240 9241 9242
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

9243
	/* This is required by WaCatErrorRejectionIssue:hsw */
9244 9245 9246 9247
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9248 9249 9250
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9251

9252 9253 9254
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9255 9256 9257 9258
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

9259
	/* WaDisable4x2SubspanOptimization:hsw */
9260 9261
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9262

9263 9264 9265
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9266 9267 9268 9269
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9270 9271
	 */
	I915_WRITE(GEN7_GT_MODE,
9272
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9273

9274 9275 9276 9277
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

9278
	/* WaSwitchSolVfFArbitrationPriority:hsw */
9279 9280
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

9281
	lpt_init_clock_gating(dev_priv);
9282 9283
}

9284
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9285
{
9286
	u32 snpcr;
9287

9288
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9289

9290
	/* WaDisableEarlyCull:ivb */
9291 9292 9293
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9294
	/* WaDisableBackToBackFlipFix:ivb */
9295 9296 9297 9298
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9299
	/* WaDisablePSDDualDispatchEnable:ivb */
9300
	if (IS_IVB_GT1(dev_priv))
9301 9302 9303
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9304 9305 9306
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9307
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9308 9309 9310
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9311
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9312 9313 9314
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9315
		   GEN7_WA_L3_CHICKEN_MODE);
9316
	if (IS_IVB_GT1(dev_priv))
9317 9318
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9319 9320 9321 9322
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9323 9324
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9325
	}
9326

9327
	/* WaForceL3Serialization:ivb */
9328 9329 9330
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9331
	/*
9332
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9333
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9334 9335
	 */
	I915_WRITE(GEN6_UCGCTL2,
9336
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9337

9338
	/* This is required by WaCatErrorRejectionIssue:ivb */
9339 9340 9341 9342
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9343
	g4x_disable_trickle_feed(dev_priv);
9344 9345

	gen7_setup_fixed_func_scheduler(dev_priv);
9346

9347 9348 9349 9350 9351
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9352

9353
	/* WaDisable4x2SubspanOptimization:ivb */
9354 9355
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9356

9357 9358 9359
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9360 9361 9362 9363
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9364 9365
	 */
	I915_WRITE(GEN7_GT_MODE,
9366
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9367

9368 9369 9370 9371
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9372

9373
	if (!HAS_PCH_NOP(dev_priv))
9374
		cpt_init_clock_gating(dev_priv);
9375

9376
	gen6_check_mch_setup(dev_priv);
9377 9378
}

9379
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9380
{
9381
	/* WaDisableEarlyCull:vlv */
9382 9383 9384
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9385
	/* WaDisableBackToBackFlipFix:vlv */
9386 9387 9388 9389
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9390
	/* WaPsdDispatchEnable:vlv */
9391
	/* WaDisablePSDDualDispatchEnable:vlv */
9392
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9393 9394
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9395

9396 9397 9398
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9399
	/* WaForceL3Serialization:vlv */
9400 9401 9402
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9403
	/* WaDisableDopClockGating:vlv */
9404 9405 9406
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9407
	/* This is required by WaCatErrorRejectionIssue:vlv */
9408 9409 9410 9411
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9412 9413
	gen7_setup_fixed_func_scheduler(dev_priv);

9414
	/*
9415
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9416
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9417 9418
	 */
	I915_WRITE(GEN6_UCGCTL2,
9419
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9420

9421 9422 9423 9424 9425
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9426

9427 9428 9429 9430
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9431 9432
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9433

9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9445 9446 9447 9448 9449 9450
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9451
	/*
9452
	 * WaDisableVLVClockGating_VBIIssue:vlv
9453 9454 9455
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9456
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9457 9458
}

9459
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9460
{
9461 9462 9463 9464 9465
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9466 9467 9468 9469

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9470 9471 9472 9473

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9474 9475 9476 9477

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9478

9479 9480 9481 9482 9483 9484 9485
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9486 9487 9488 9489 9490
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9491 9492
}

9493
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9494
{
9495
	u32 dspclk_gate;
9496 9497 9498 9499 9500 9501 9502 9503 9504

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9505
	if (IS_GM45(dev_priv))
9506 9507
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9508 9509 9510 9511

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9512

9513 9514 9515
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9516
	g4x_disable_trickle_feed(dev_priv);
9517 9518
}

9519
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9520
{
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9531 9532

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
9533 9534 9535
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9536 9537
}

9538
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9539 9540 9541 9542 9543 9544 9545
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9546 9547
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9548 9549 9550

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9551 9552
}

9553
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9554 9555 9556 9557 9558 9559
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9560

9561
	if (IS_PINEVIEW(dev_priv))
9562
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9563 9564 9565

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9566 9567

	/* interrupts should cause a wake up from C3 */
9568
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9569 9570 9571

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9572 9573 9574

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9575 9576
}

9577
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9578 9579
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9580 9581 9582 9583

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9584 9585 9586

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9587 9588
}

9589
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9590
{
9591 9592 9593
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9594 9595
}

9596
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9597
{
9598
	dev_priv->display.init_clock_gating(dev_priv);
9599 9600
}

9601
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9602
{
9603 9604
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9605 9606
}

9607
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9623
	if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
9624
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9625
	else if (IS_CANNONLAKE(dev_priv))
9626
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9627 9628
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9629
	else if (IS_SKYLAKE(dev_priv))
9630
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9631
	else if (IS_KABYLAKE(dev_priv))
9632
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9633
	else if (IS_BROXTON(dev_priv))
9634
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9635 9636
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9637
	else if (IS_BROADWELL(dev_priv))
9638
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9639
	else if (IS_CHERRYVIEW(dev_priv))
9640
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9641
	else if (IS_HASWELL(dev_priv))
9642
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9643
	else if (IS_IVYBRIDGE(dev_priv))
9644
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9645
	else if (IS_VALLEYVIEW(dev_priv))
9646
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9647
	else if (IS_GEN(dev_priv, 6))
9648
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9649
	else if (IS_GEN(dev_priv, 5))
9650
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9651 9652
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9653
	else if (IS_I965GM(dev_priv))
9654
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9655
	else if (IS_I965G(dev_priv))
9656
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9657
	else if (IS_GEN(dev_priv, 3))
9658 9659 9660
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9661
	else if (IS_GEN(dev_priv, 2))
9662 9663 9664 9665 9666 9667 9668
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9669
/* Set up chip specific power management-related functions */
9670
void intel_init_pm(struct drm_i915_private *dev_priv)
9671
{
9672
	/* For cxsr */
9673
	if (IS_PINEVIEW(dev_priv))
9674
		i915_pineview_get_mem_freq(dev_priv);
9675
	else if (IS_GEN(dev_priv, 5))
9676
		i915_ironlake_get_mem_freq(dev_priv);
9677

9678
	/* For FIFO watermark updates */
9679
	if (INTEL_GEN(dev_priv) >= 9) {
9680
		skl_setup_wm_latency(dev_priv);
9681
		dev_priv->display.initial_watermarks = skl_initial_wm;
9682
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9683
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9684
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9685
		ilk_setup_wm_latency(dev_priv);
9686

9687
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9688
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9689
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9690
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9691
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9692 9693 9694 9695 9696 9697
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9698 9699 9700 9701
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9702
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9703
		vlv_setup_wm_latency(dev_priv);
9704
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9705
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9706
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9707
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9708
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9709 9710 9711 9712 9713 9714
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9715
	} else if (IS_PINEVIEW(dev_priv)) {
9716
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9717 9718 9719 9720 9721 9722 9723 9724 9725
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9726
			intel_set_memory_cxsr(dev_priv, false);
9727 9728 9729
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9730
	} else if (IS_GEN(dev_priv, 4)) {
9731
		dev_priv->display.update_wm = i965_update_wm;
9732
	} else if (IS_GEN(dev_priv, 3)) {
9733 9734
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9735
	} else if (IS_GEN(dev_priv, 2)) {
9736
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9737
			dev_priv->display.update_wm = i845_update_wm;
9738
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9739 9740
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9741
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9742 9743 9744
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9745 9746 9747
	}
}

9748 9749
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9750 9751
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9752 9753 9754 9755
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9756
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9757 9758
}

9759
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9760
{
9761 9762 9763
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9764 9765
}

9766
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9767
{
9768 9769
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9770 9771 9772 9773
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9774
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9775 9776
}

9777
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9778
{
9779 9780
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9781
	/* CHV needs even values */
9782
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9783 9784
}

9785
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9786
{
9787
	if (INTEL_GEN(dev_priv) >= 9)
9788 9789
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9790
	else if (IS_CHERRYVIEW(dev_priv))
9791
		return chv_gpu_freq(dev_priv, val);
9792
	else if (IS_VALLEYVIEW(dev_priv))
9793 9794 9795
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9796 9797
}

9798 9799
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9800
	if (INTEL_GEN(dev_priv) >= 9)
9801 9802
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9803
	else if (IS_CHERRYVIEW(dev_priv))
9804
		return chv_freq_opcode(dev_priv, val);
9805
	else if (IS_VALLEYVIEW(dev_priv))
9806 9807
		return byt_freq_opcode(dev_priv, val);
	else
9808
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9809
}
9810

9811
void intel_pm_setup(struct drm_i915_private *dev_priv)
9812
{
9813
	mutex_init(&dev_priv->gt_pm.rps.lock);
C
Chris Wilson 已提交
9814
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9815

9816
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9817

9818 9819
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9820
}
9821

9822 9823 9824
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9825
	u32 lower, upper, tmp;
9826
	int loop = 2;
9827

9828 9829
	/*
	 * The register accessed do not need forcewake. We borrow
9830 9831
	 * uncore lock to prevent concurrent access to range reg.
	 */
9832
	lockdep_assert_held(&dev_priv->uncore.lock);
9833

9834 9835
	/*
	 * vlv and chv residency counters are 40 bits in width.
9836 9837
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9838 9839 9840 9841 9842
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9843
	 */
9844 9845
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9857
	} while (upper != tmp && --loop);
9858

9859 9860
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9861 9862 9863 9864
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9865 9866 9867
	return lower | (u64)upper << 8;
}

9868
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9869
			   const i915_reg_t reg)
9870
{
9871
	struct intel_uncore *uncore = &dev_priv->uncore;
9872 9873 9874 9875
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9876
	u32 mul, div;
9877

9878
	if (!HAS_RC6(dev_priv))
9879 9880
		return 0;

9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

9893
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
9894

9895 9896
	spin_lock_irqsave(&uncore->lock, flags);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
9897

9898 9899
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9900
		mul = 1000000;
9901
		div = dev_priv->czclk_freq;
9902
		overflow_hw = BIT_ULL(40);
9903 9904
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9905 9906 9907 9908 9909 9910 9911 9912
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9913

9914
		overflow_hw = BIT_ULL(32);
9915
		time_hw = intel_uncore_read_fw(uncore, reg);
9916
	}
9917

9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

9937 9938
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irqrestore(&uncore->lock, flags);
9939 9940

	return mul_u64_u32_div(time_hw, mul, div);
9941
}
T
Tvrtko Ursulin 已提交
9942

9943 9944 9945 9946 9947 9948
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   i915_reg_t reg)
{
	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
}

T
Tvrtko Ursulin 已提交
9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961
u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}