machine.c 74.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include <stdlib.h>
7
#include "callchain.h"
8
#include "debug.h"
9
#include "dso.h"
10
#include "env.h"
11
#include "event.h"
12 13
#include "evsel.h"
#include "hist.h"
14 15
#include "machine.h"
#include "map.h"
16 17 18
#include "map_symbol.h"
#include "branch.h"
#include "mem-events.h"
19
#include "srcline.h"
20
#include "symbol.h"
21
#include "sort.h"
22
#include "strlist.h"
23
#include "target.h"
24
#include "thread.h"
25
#include "util.h"
26
#include "vdso.h"
27
#include <stdbool.h>
28 29 30
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
31
#include "unwind.h"
32
#include "linux/hash.h"
33
#include "asm/bug.h"
34
#include "bpf-event.h"
35
#include <internal/lib.h> // page_size
36
#include "cgroup.h"
37

38
#include <linux/ctype.h>
39
#include <symbol/kallsyms.h>
40
#include <linux/mman.h>
41
#include <linux/string.h>
42
#include <linux/zalloc.h>
43

44 45
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

46 47 48 49 50
static struct dso *machine__kernel_dso(struct machine *machine)
{
	return machine->vmlinux_map->dso;
}

51 52 53 54
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
55
	init_rwsem(&dsos->lock);
56 57
}

58 59 60 61 62 63
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
64
		threads->entries = RB_ROOT_CACHED;
65
		init_rwsem(&threads->lock);
66 67 68 69 70 71
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

72 73
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
74 75 76 77 78 79 80
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
81 82 83 84

	return machine->mmap_name ? 0 : -ENOMEM;
}

85 86
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
87 88
	int err = -ENOMEM;

89
	memset(machine, 0, sizeof(*machine));
90
	maps__init(&machine->kmaps, machine);
91
	RB_CLEAR_NODE(&machine->rb_node);
92
	dsos__init(&machine->dsos);
93

94
	machine__threads_init(machine);
95

96
	machine->vdso_info = NULL;
97
	machine->env = NULL;
98

99 100
	machine->pid = pid;

101
	machine->id_hdr_size = 0;
102
	machine->kptr_restrict_warned = false;
103
	machine->comm_exec = false;
104
	machine->kernel_start = 0;
105
	machine->vmlinux_map = NULL;
106

107 108 109 110
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

111 112 113
	if (machine__set_mmap_name(machine))
		goto out;

114
	if (pid != HOST_KERNEL_ID) {
115
		struct thread *thread = machine__findnew_thread(machine, -1,
116
								pid);
117 118 119
		char comm[64];

		if (thread == NULL)
120
			goto out;
121 122

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123
		thread__set_comm(thread, comm, 0);
124
		thread__put(thread);
125 126
	}

127
	machine->current_tid = NULL;
128
	err = 0;
129

130
out:
131
	if (err) {
132
		zfree(&machine->root_dir);
133 134
		zfree(&machine->mmap_name);
	}
135 136 137
	return 0;
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

155 156 157 158 159
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
160
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 162 163
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
164
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 166 167 168 169 170 171
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

172
static void dsos__purge(struct dsos *dsos)
173 174 175
{
	struct dso *pos, *n;

176
	down_write(&dsos->lock);
177

178
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179
		RB_CLEAR_NODE(&pos->rb_node);
180
		pos->root = NULL;
181 182
		list_del_init(&pos->node);
		dso__put(pos);
183
	}
184

185
	up_write(&dsos->lock);
186
}
187

188 189 190
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
191
	exit_rwsem(&dsos->lock);
192 193
}

194 195
void machine__delete_threads(struct machine *machine)
{
196
	struct rb_node *nd;
197
	int i;
198

199 200
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
201
		down_write(&threads->lock);
202
		nd = rb_first_cached(&threads->entries);
203 204
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
205

206 207 208
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
209
		up_write(&threads->lock);
210 211 212
	}
}

213 214
void machine__exit(struct machine *machine)
{
215 216
	int i;

217 218 219
	if (machine == NULL)
		return;

220
	machine__destroy_kernel_maps(machine);
221
	maps__exit(&machine->kmaps);
222
	dsos__exit(&machine->dsos);
223
	machine__exit_vdso(machine);
224
	zfree(&machine->root_dir);
225
	zfree(&machine->mmap_name);
226
	zfree(&machine->current_tid);
227 228 229

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
230 231 232 233 234 235 236 237 238 239 240 241
		struct thread *thread, *n;
		/*
		 * Forget about the dead, at this point whatever threads were
		 * left in the dead lists better have a reference count taken
		 * by who is using them, and then, when they drop those references
		 * and it finally hits zero, thread__put() will check and see that
		 * its not in the dead threads list and will not try to remove it
		 * from there, just calling thread__delete() straight away.
		 */
		list_for_each_entry_safe(thread, n, &threads->dead, node)
			list_del_init(&thread->node);

242
		exit_rwsem(&threads->lock);
243
	}
244 245 246 247
}

void machine__delete(struct machine *machine)
{
248 249 250 251
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
252 253
}

254 255 256
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
257
	machines->guests = RB_ROOT_CACHED;
258 259 260 261 262 263 264 265 266
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
267 268
			      const char *root_dir)
{
269
	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 271
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
272
	bool leftmost = true;
273 274 275 276 277 278 279 280 281 282 283 284 285 286

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
287
		else {
288
			p = &(*p)->rb_right;
289 290
			leftmost = false;
		}
291 292 293
	}

	rb_link_node(&machine->rb_node, parent, p);
294
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 296 297 298

	return machine;
}

299 300 301 302 303 304
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

305
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 307 308 309 310 311
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

312
struct machine *machines__find(struct machines *machines, pid_t pid)
313
{
314
	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 316 317 318
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

319 320 321
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

338
struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
355
				seen = strlist__new(NULL, NULL);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

372 373
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
374 375 376
{
	struct rb_node *nd;

377
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 379 380 381 382
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

383
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 385 386 387
{
	struct rb_node *node;
	struct machine *machine;

388 389
	machines->host.id_hdr_size = id_hdr_size;

390 391
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
392 393 394 395 396 397 398
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

399 400 401 402 403 404 405 406 407 408 409 410 411
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

412
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 414 415
	if (!leader)
		goto out_err;

416 417
	if (!leader->maps)
		leader->maps = maps__new(machine);
418

419
	if (!leader->maps)
420 421
		goto out_err;

422
	if (th->maps == leader->maps)
423 424
		return;

425
	if (th->maps) {
426 427 428 429 430
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
431
		if (!maps__empty(th->maps))
432 433
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
434
		maps__put(th->maps);
435 436
	}

437
	th->maps = maps__get(leader->maps);
438 439
out_put:
	thread__put(leader);
440 441 442
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443
	goto out_put;
444 445
}

446
/*
447 448 449
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
450
 */
451
static struct thread*
452 453
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
454 455 456
{
	struct thread *th;

457
	th = threads->last_match;
458 459 460
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
461
			return thread__get(th);
462 463
		}

464
		threads->last_match = NULL;
465
	}
466

467 468 469
	return NULL;
}

470 471 472 473 474 475 476 477 478 479 480 481
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

482
static void
483
__threads__set_last_match(struct threads *threads, struct thread *th)
484 485 486 487
{
	threads->last_match = th;
}

488 489 490 491 492 493 494
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

495 496 497 498 499 500 501 502 503
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
504
	struct rb_node **p = &threads->entries.rb_root.rb_node;
505 506
	struct rb_node *parent = NULL;
	struct thread *th;
507
	bool leftmost = true;
508 509 510 511 512

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

513 514 515 516
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

517
		if (th->tid == tid) {
518
			threads__set_last_match(threads, th);
519
			machine__update_thread_pid(machine, th, pid);
520
			return thread__get(th);
521 522
		}

523
		if (tid < th->tid)
524
			p = &(*p)->rb_left;
525
		else {
526
			p = &(*p)->rb_right;
527 528
			leftmost = false;
		}
529 530 531 532 533
	}

	if (!create)
		return NULL;

534
	th = thread__new(pid, tid);
535 536
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
537
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538 539

		/*
540
		 * We have to initialize maps separately after rb tree is updated.
541 542
		 *
		 * The reason is that we call machine__findnew_thread
543
		 * within thread__init_maps to find the thread
544 545
		 * leader and that would screwed the rb tree.
		 */
546
		if (thread__init_maps(th, machine)) {
547
			rb_erase_cached(&th->rb_node, &threads->entries);
548
			RB_CLEAR_NODE(&th->rb_node);
549
			thread__put(th);
550
			return NULL;
551
		}
552 553 554 555
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
556
		threads__set_last_match(threads, th);
557
		++threads->nr;
558 559 560 561 562
	}

	return th;
}

563 564
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
565
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 567
}

568 569
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
570
{
571
	struct threads *threads = machine__threads(machine, tid);
572 573
	struct thread *th;

574
	down_write(&threads->lock);
575
	th = __machine__findnew_thread(machine, pid, tid);
576
	up_write(&threads->lock);
577
	return th;
578 579
}

580 581
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
582
{
583
	struct threads *threads = machine__threads(machine, tid);
584
	struct thread *th;
585

586
	down_read(&threads->lock);
587
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588
	up_read(&threads->lock);
589
	return th;
590
}
591

592 593 594 595 596 597 598 599 600
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

601 602
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
603
{
604 605 606
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
607
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608
	int err = 0;
609

610 611 612
	if (exec)
		machine->comm_exec = true;

613 614 615
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

616 617
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619
		err = -1;
620 621
	}

622 623 624
	thread__put(thread);

	return err;
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

658
int machine__process_cgroup_event(struct machine *machine,
659 660 661
				  union perf_event *event,
				  struct perf_sample *sample __maybe_unused)
{
662 663
	struct cgroup *cgrp;

664 665 666
	if (dump_trace)
		perf_event__fprintf_cgroup(event, stdout);

667 668 669 670
	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
	if (cgrp == NULL)
		return -ENOMEM;

671 672 673
	return 0;
}

674
int machine__process_lost_event(struct machine *machine __maybe_unused,
675
				union perf_event *event, struct perf_sample *sample __maybe_unused)
676
{
677
	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 679 680 681
		    event->lost.id, event->lost.lost);
	return 0;
}

682 683 684
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
685
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 687 688 689
		    sample->id, event->lost_samples.lost);
	return 0;
}

690 691 692
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
693 694 695
{
	struct dso *dso;

696
	down_write(&machine->dsos.lock);
697 698

	dso = __dsos__find(&machine->dsos, m->name, true);
699
	if (!dso) {
700
		dso = __dsos__addnew(&machine->dsos, m->name);
701
		if (dso == NULL)
702
			goto out_unlock;
703

704
		dso__set_module_info(dso, m, machine);
705
		dso__set_long_name(dso, strdup(filename), true);
706
		dso->kernel = DSO_TYPE_KERNEL;
707 708
	}

709
	dso__get(dso);
710
out_unlock:
711
	up_write(&machine->dsos.lock);
712 713 714
	return dso;
}

715 716 717 718 719 720 721 722
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

723 724 725 726 727 728 729 730
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

731 732 733 734 735 736 737 738
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

739 740
static int is_bpf_image(const char *name)
{
741 742
	return strncmp(name, "bpf_trampoline_", sizeof("bpf_trampoline_") - 1) == 0 ||
	       strncmp(name, "bpf_dispatcher_", sizeof("bpf_dispatcher_") - 1) == 0;
743 744
}

745 746 747 748 749
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
750
	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
751 752

	if (!map) {
753 754 755 756 757 758 759 760 761
		struct dso *dso = dso__new(event->ksymbol.name);

		if (dso) {
			dso->kernel = DSO_TYPE_KERNEL;
			map = map__new2(0, dso);
		}

		if (!dso || !map) {
			dso__put(dso);
762
			return -ENOMEM;
763
		}
764

765 766 767 768 769 770
		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
			map->dso->data.file_size = event->ksymbol.len;
			dso__set_loaded(map->dso);
		}

771 772
		map->start = event->ksymbol.addr;
		map->end = map->start + event->ksymbol.len;
773
		maps__insert(&machine->kmaps, map);
774
		dso__set_loaded(dso);
775 776 777 778 779

		if (is_bpf_image(event->ksymbol.name)) {
			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
			dso__set_long_name(dso, "", false);
		}
780 781
	}

782
	sym = symbol__new(map->map_ip(map, map->start),
783 784
			  event->ksymbol.len,
			  0, 0, event->ksymbol.name);
785 786 787 788 789 790 791 792 793 794 795 796
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

797
	map = maps__find(&machine->kmaps, event->ksymbol.addr);
798
	if (map)
799
		maps__remove(&machine->kmaps, map);
800 801 802 803 804 805 806 807 808 809 810

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

811
	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
812 813 814 815 816
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

817 818 819 820 821 822 823
int machine__process_text_poke(struct machine *machine, union perf_event *event,
			       struct perf_sample *sample __maybe_unused)
{
	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;

	if (dump_trace)
824
		perf_event__fprintf_text_poke(event, machine, stdout);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

	if (!event->text_poke.new_len)
		return 0;

	if (cpumode != PERF_RECORD_MISC_KERNEL) {
		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
		return 0;
	}

	if (map && map->dso) {
		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
		int ret;

		/*
		 * Kernel maps might be changed when loading symbols so loading
		 * must be done prior to using kernel maps.
		 */
		map__load(map);
		ret = dso__data_write_cache_addr(map->dso, map, machine,
						 event->text_poke.addr,
						 new_bytes,
						 event->text_poke.new_len);
		if (ret != event->text_poke.new_len)
			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
				 event->text_poke.addr);
	} else {
		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
			 event->text_poke.addr);
	}

	return 0;
}

858 859
static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
					      const char *filename)
860
{
861 862
	struct map *map = NULL;
	struct kmod_path m;
863
	struct dso *dso;
864

865
	if (kmod_path__parse_name(&m, filename))
866 867
		return NULL;

868
	dso = machine__findnew_module_dso(machine, &m, filename);
869 870 871
	if (dso == NULL)
		goto out;

872
	map = map__new2(start, dso);
873
	if (map == NULL)
874
		goto out;
875

876
	maps__insert(&machine->kmaps, map);
877

878
	/* Put the map here because maps__insert alread got it */
879
	map__put(map);
880
out:
881 882
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
883
	zfree(&m.name);
884 885 886
	return map;
}

887
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
888 889
{
	struct rb_node *nd;
890
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
891

892
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
893
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
894
		ret += __dsos__fprintf(&pos->dsos.head, fp);
895 896 897 898 899
	}

	return ret;
}

900
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
901 902
				     bool (skip)(struct dso *dso, int parm), int parm)
{
903
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
904 905
}

906
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
907 908 909
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
910
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
911

912
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913 914 915 916 917 918 919 920 921 922
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
923
	struct dso *kdso = machine__kernel_dso(machine);
924 925 926

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
927 928
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
929 930 931 932 933 934 935 936 937 938 939 940 941
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
942 943
	size_t ret;
	int i;
944

945 946
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
947 948

		down_read(&threads->lock);
949

950
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
951

952 953
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
954
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
955

956 957
			ret += thread__fprintf(pos, fp);
		}
958

959
		up_read(&threads->lock);
960
	}
961 962 963 964 965
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
966
	const char *vmlinux_name = machine->mmap_name;
967 968 969
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
970 971 972
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

973 974
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
975
	} else {
J
Jiri Olsa 已提交
976 977 978
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

979 980 981
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
982 983 984 985 986 987 988 989 990 991 992 993
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

994 995
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
996 997 998 999 1000 1001 1002
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

1003 1004 1005 1006 1007 1008
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
1009
static int machine__get_running_kernel_start(struct machine *machine,
1010 1011
					     const char **symbol_name,
					     u64 *start, u64 *end)
1012
{
1013
	char filename[PATH_MAX];
1014
	int i, err = -1;
1015 1016
	const char *name;
	u64 addr = 0;
1017

1018
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1019 1020 1021 1022

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

1023
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1024 1025
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
1026 1027 1028
			break;
	}

1029 1030 1031
	if (err)
		return -1;

1032 1033
	if (symbol_name)
		*symbol_name = name;
1034

1035
	*start = addr;
1036 1037 1038 1039 1040

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

1041
	return 0;
1042 1043
}

1044 1045 1046
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

1060
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1061

1062
	maps__insert(&machine->kmaps, map);
1063

1064 1065
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1107
	struct maps *kmaps = &machine->kmaps;
1108
	int nr_cpus_avail, cpu;
1109 1110 1111 1112 1113 1114 1115 1116
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
1117
	maps__for_each_entry(kmaps, map) {
1118 1119 1120 1121 1122 1123
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

1124
		dest_map = maps__find(kmaps, map->pgoff);
1125 1126 1127 1128 1129 1130
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1131

1132
	pgoff = find_entry_trampoline(kernel);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1149 1150
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1151 1152 1153 1154
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1155 1156 1157 1158 1159 1160 1161 1162
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1163 1164 1165
	return 0;
}

1166 1167
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1168
{
1169 1170 1171
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1172 1173 1174
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1175

1176
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1177
	maps__insert(&machine->kmaps, machine->vmlinux_map);
1178 1179 1180 1181 1182
	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1183 1184
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1185

1186 1187
	if (map == NULL)
		return;
1188

1189
	kmap = map__kmap(map);
1190
	maps__remove(&machine->kmaps, map);
1191 1192 1193
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1194
	}
1195 1196

	map__zput(machine->vmlinux_map);
1197 1198
}

1199
int machines__create_guest_kernel_maps(struct machines *machines)
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1248
void machines__destroy_kernel_maps(struct machines *machines)
1249
{
1250
	struct rb_node *next = rb_first_cached(&machines->guests);
1251 1252

	machine__destroy_kernel_maps(&machines->host);
1253 1254 1255 1256 1257

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1258
		rb_erase_cached(&pos->rb_node, &machines->guests);
1259 1260 1261 1262
		machine__delete(pos);
	}
}

1263
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1264 1265 1266 1267 1268 1269 1270 1271 1272
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1273
int machine__load_kallsyms(struct machine *machine, const char *filename)
1274
{
1275
	struct map *map = machine__kernel_map(machine);
1276
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1277 1278

	if (ret > 0) {
1279
		dso__set_loaded(map->dso);
1280 1281 1282 1283 1284
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1285
		maps__fixup_end(&machine->kmaps);
1286 1287 1288 1289 1290
	}

	return ret;
}

1291
int machine__load_vmlinux_path(struct machine *machine)
1292
{
1293
	struct map *map = machine__kernel_map(machine);
1294
	int ret = dso__load_vmlinux_path(map->dso, map);
1295

1296
	if (ret > 0)
1297
		dso__set_loaded(map->dso);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1316 1317
	if (!tmp)
		return NULL;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1330 1331 1332 1333 1334 1335
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

1336
static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1337 1338
{
	char *long_name;
1339
	struct map *map = maps__find_by_name(maps, m->name);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1355
	if (m->comp && is_kmod_dso(map->dso)) {
1356
		map->dso->symtab_type++;
1357 1358
		map->dso->comp = m->comp;
	}
1359 1360 1361 1362

	return 0;
}

1363
static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1388 1389 1390 1391 1392 1393 1394
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

1395
			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1396 1397 1398
			if (ret < 0)
				goto out;
		} else {
1399
			struct kmod_path m;
1400

1401 1402 1403
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1404

1405
			if (m.kmod)
1406
				ret = maps__set_module_path(maps, path, &m);
1407

1408
			zfree(&m.name);
1409

1410
			if (ret)
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1429
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1430 1431 1432
		 machine->root_dir, version);
	free(version);

1433
	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1434
}
1435
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1436
				u64 *size __maybe_unused,
1437 1438 1439 1440
				const char *name __maybe_unused)
{
	return 0;
}
1441

1442 1443
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1444
{
1445
	struct machine *machine = arg;
1446
	struct map *map;
1447

1448
	if (arch__fix_module_text_start(&start, &size, name) < 0)
1449 1450
		return -1;

1451
	map = machine__addnew_module_map(machine, start, name);
1452 1453
	if (map == NULL)
		return -1;
1454
	map->end = start + size;
1455 1456 1457 1458 1459 1460 1461 1462

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1463 1464 1465
	const char *modules;
	char path[PATH_MAX];

1466
	if (machine__is_default_guest(machine)) {
1467
		modules = symbol_conf.default_guest_modules;
1468 1469
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1470 1471 1472
		modules = path;
	}

1473
	if (symbol__restricted_filename(modules, "/proc/modules"))
1474 1475
		return -1;

1476
	if (modules__parse(modules, machine, machine__create_module))
1477 1478
		return -1;

1479 1480
	if (!machine__set_modules_path(machine))
		return 0;
1481

1482
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1483

1484
	return 0;
1485 1486
}

1487 1488 1489
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1490 1491 1492 1493 1494 1495 1496 1497
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1498 1499
}

1500 1501 1502 1503 1504 1505
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
1506
	maps__remove(&machine->kmaps, map);
1507 1508 1509

	machine__set_kernel_mmap(machine, start, end);

1510
	maps__insert(&machine->kmaps, map);
1511 1512 1513
	map__put(map);
}

1514 1515 1516
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1517
	const char *name = NULL;
1518
	struct map *map;
1519
	u64 start = 0, end = ~0ULL;
1520 1521
	int ret;

1522
	if (kernel == NULL)
1523
		return -1;
1524

1525 1526
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1527
		goto out_put;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1538
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1539
		if (name &&
1540
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1541
			machine__destroy_kernel_maps(machine);
1542 1543
			ret = -1;
			goto out_put;
1544
		}
1545

1546 1547 1548 1549
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1550
		machine__update_kernel_mmap(machine, start, end);
1551 1552
	}

1553 1554 1555
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1556 1557 1558 1559 1560 1561 1562
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1563 1564 1565
out_put:
	dso__put(kernel);
	return ret;
1566 1567
}

1568 1569 1570 1571
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1572
	list_for_each_entry(dso, &machine->dsos.head, node) {
1573 1574 1575 1576 1577 1578 1579
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
1590
	struct dso *kernel = machine__kernel_dso(machine);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1605 1606 1607 1608 1609 1610 1611
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1612 1613 1614 1615
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1616 1617 1618 1619 1620 1621
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1622 1623
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1624 1625
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1626 1627
		map = machine__addnew_module_map(machine, event->mmap.start,
						 event->mmap.filename);
1628 1629 1630 1631 1632 1633
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1634
				strlen(machine->mmap_name));
1635 1636 1637 1638
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1639 1640 1641
		struct dso *kernel = NULL;
		struct dso *dso;

1642
		down_read(&machine->dsos.lock);
1643

1644
		list_for_each_entry(dso, &machine->dsos.head, node) {
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1665 1666
				continue;

1667

1668 1669 1670 1671
			kernel = dso;
			break;
		}

1672
		up_read(&machine->dsos.lock);
1673

1674
		if (kernel == NULL)
1675
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1676 1677 1678 1679
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1680 1681
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1682
			goto out_problem;
1683
		}
1684

1685 1686
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1687

1688
		machine__update_kernel_mmap(machine, event->mmap.start,
1689
					 event->mmap.start + event->mmap.len);
1690 1691 1692 1693 1694 1695 1696

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1697 1698 1699
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1700 1701 1702 1703 1704 1705
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1706
			dso__load(kernel, machine__kernel_map(machine));
1707
		}
1708 1709
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1710 1711 1712 1713 1714 1715
	}
	return 0;
out_problem:
	return -1;
}

1716
int machine__process_mmap2_event(struct machine *machine,
1717
				 union perf_event *event,
1718
				 struct perf_sample *sample)
1719 1720 1721
{
	struct thread *thread;
	struct map *map;
1722 1723 1724 1725 1726 1727
	struct dso_id dso_id = {
		.maj = event->mmap2.maj,
		.min = event->mmap2.min,
		.ino = event->mmap2.ino,
		.ino_generation = event->mmap2.ino_generation,
	};
1728 1729 1730 1731 1732
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1733 1734
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1735 1736 1737 1738 1739 1740 1741
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1742
					event->mmap2.tid);
1743 1744 1745
	if (thread == NULL)
		goto out_problem;

1746
	map = map__new(machine, event->mmap2.start,
1747
			event->mmap2.len, event->mmap2.pgoff,
1748
			&dso_id, event->mmap2.prot,
1749
			event->mmap2.flags,
1750
			event->mmap2.filename, thread);
1751 1752

	if (map == NULL)
1753
		goto out_problem_map;
1754

1755 1756 1757 1758
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1759
	thread__put(thread);
1760
	map__put(map);
1761 1762
	return 0;

1763 1764
out_problem_insert:
	map__put(map);
1765 1766
out_problem_map:
	thread__put(thread);
1767 1768 1769 1770 1771
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1772
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1773
				struct perf_sample *sample)
1774 1775 1776
{
	struct thread *thread;
	struct map *map;
1777
	u32 prot = 0;
1778 1779 1780 1781 1782
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1783 1784
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1785 1786 1787 1788 1789 1790
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1791
	thread = machine__findnew_thread(machine, event->mmap.pid,
1792
					 event->mmap.tid);
1793 1794
	if (thread == NULL)
		goto out_problem;
1795

1796
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1797
		prot = PROT_EXEC;
1798

1799
	map = map__new(machine, event->mmap.start,
1800
			event->mmap.len, event->mmap.pgoff,
1801
			NULL, prot, 0, event->mmap.filename, thread);
1802

1803
	if (map == NULL)
1804
		goto out_problem_map;
1805

1806 1807 1808 1809
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1810
	thread__put(thread);
1811
	map__put(map);
1812 1813
	return 0;

1814 1815
out_problem_insert:
	map__put(map);
1816 1817
out_problem_map:
	thread__put(thread);
1818 1819 1820 1821 1822
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1823
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1824
{
1825 1826 1827
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1828
		threads__set_last_match(threads, NULL);
1829

1830
	if (lock)
1831
		down_write(&threads->lock);
1832 1833 1834

	BUG_ON(refcount_read(&th->refcnt) == 0);

1835
	rb_erase_cached(&th->rb_node, &threads->entries);
1836
	RB_CLEAR_NODE(&th->rb_node);
1837
	--threads->nr;
1838
	/*
1839 1840 1841
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1842
	 */
1843
	list_add_tail(&th->node, &threads->dead);
1844 1845 1846 1847 1848 1849 1850 1851

	/*
	 * We need to do the put here because if this is the last refcount,
	 * then we will be touching the threads->dead head when removing the
	 * thread.
	 */
	thread__put(th);

1852
	if (lock)
1853
		up_write(&threads->lock);
1854 1855
}

1856 1857 1858 1859 1860
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1861 1862
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1863
{
1864 1865 1866
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1867 1868 1869
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1870
	bool do_maps_clone = true;
1871
	int err = 0;
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1891
	/* if a thread currently exists for the thread id remove it */
1892
	if (thread != NULL) {
1893
		machine__remove_thread(machine, thread);
1894 1895
		thread__put(thread);
	}
1896

1897 1898
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1915 1916

	if (thread == NULL || parent == NULL ||
1917
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1918
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1919
		err = -1;
1920
	}
1921 1922
	thread__put(thread);
	thread__put(parent);
1923

1924
	return err;
1925 1926
}

1927 1928
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1929
{
1930 1931 1932
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1933 1934 1935 1936

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1937
	if (thread != NULL) {
1938
		thread__exited(thread);
1939 1940
		thread__put(thread);
	}
1941 1942 1943 1944

	return 0;
}

1945 1946
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1947 1948 1949 1950 1951
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1952
		ret = machine__process_comm_event(machine, event, sample); break;
1953
	case PERF_RECORD_MMAP:
1954
		ret = machine__process_mmap_event(machine, event, sample); break;
1955 1956
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1957 1958
	case PERF_RECORD_CGROUP:
		ret = machine__process_cgroup_event(machine, event, sample); break;
1959
	case PERF_RECORD_MMAP2:
1960
		ret = machine__process_mmap2_event(machine, event, sample); break;
1961
	case PERF_RECORD_FORK:
1962
		ret = machine__process_fork_event(machine, event, sample); break;
1963
	case PERF_RECORD_EXIT:
1964
		ret = machine__process_exit_event(machine, event, sample); break;
1965
	case PERF_RECORD_LOST:
1966
		ret = machine__process_lost_event(machine, event, sample); break;
1967 1968
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1969
	case PERF_RECORD_ITRACE_START:
1970
		ret = machine__process_itrace_start_event(machine, event); break;
1971 1972
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1973 1974 1975
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1976 1977
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1978
	case PERF_RECORD_BPF_EVENT:
1979
		ret = machine__process_bpf(machine, event, sample); break;
1980 1981
	case PERF_RECORD_TEXT_POKE:
		ret = machine__process_text_poke(machine, event, sample); break;
1982 1983 1984 1985 1986 1987 1988
	default:
		ret = -1;
		break;
	}

	return ret;
}
1989

1990
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1991
{
1992
	if (!regexec(regex, sym->name, 0, NULL, 0))
1993 1994 1995 1996
		return 1;
	return 0;
}

1997
static void ip__resolve_ams(struct thread *thread,
1998 1999 2000 2001 2002 2003
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
2004 2005 2006 2007 2008 2009 2010
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
2011
	thread__find_cpumode_addr_location(thread, ip, &al);
2012 2013 2014

	ams->addr = ip;
	ams->al_addr = al.addr;
2015
	ams->ms.maps = al.maps;
2016 2017
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
2018
	ams->phys_addr = 0;
2019 2020
}

2021
static void ip__resolve_data(struct thread *thread,
2022 2023
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
2024 2025 2026 2027 2028
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

2029
	thread__find_symbol(thread, m, addr, &al);
2030

2031 2032
	ams->addr = addr;
	ams->al_addr = al.addr;
2033
	ams->ms.maps = al.maps;
2034 2035
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
2036
	ams->phys_addr = phys_addr;
2037 2038
}

2039 2040
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
2041
{
2042
	struct mem_info *mi = mem_info__new();
2043 2044 2045 2046

	if (!mi)
		return NULL;

2047
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2048 2049
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
2050 2051 2052 2053 2054
	mi->data_src.val = sample->data_src;

	return mi;
}

2055
static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2056
{
2057
	struct map *map = ms->map;
2058 2059
	char *srcline = NULL;

2060
	if (!map || callchain_param.key == CCKEY_FUNCTION)
2061 2062 2063 2064 2065 2066 2067 2068
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2069
				      ms->sym, show_sym, show_addr, ip);
2070 2071
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
2072

2073
	return srcline;
2074 2075
}

2076 2077 2078 2079 2080
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

2081
static int add_callchain_ip(struct thread *thread,
2082
			    struct callchain_cursor *cursor,
2083 2084
			    struct symbol **parent,
			    struct addr_location *root_al,
2085
			    u8 *cpumode,
2086 2087 2088
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2089
			    struct iterations *iter,
2090
			    u64 branch_from)
2091
{
2092
	struct map_symbol ms;
2093
	struct addr_location al;
2094 2095
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2096
	const char *srcline = NULL;
2097 2098 2099

	al.filtered = 0;
	al.sym = NULL;
2100
	if (!cpumode) {
2101
		thread__find_cpumode_addr_location(thread, ip, &al);
2102
	} else {
2103 2104 2105
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2106
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2107 2108
				break;
			case PERF_CONTEXT_KERNEL:
2109
				*cpumode = PERF_RECORD_MISC_KERNEL;
2110 2111
				break;
			case PERF_CONTEXT_USER:
2112
				*cpumode = PERF_RECORD_MISC_USER;
2113 2114 2115 2116 2117 2118 2119 2120
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2121
				callchain_cursor_reset(cursor);
2122 2123 2124 2125
				return 1;
			}
			return 0;
		}
2126
		thread__find_symbol(thread, *cpumode, ip, &al);
2127 2128
	}

2129
	if (al.sym != NULL) {
2130
		if (perf_hpp_list.parent && !*parent &&
2131 2132 2133 2134 2135 2136 2137
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2138
			callchain_cursor_reset(cursor);
2139 2140 2141
		}
	}

2142 2143
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2144 2145 2146 2147 2148 2149

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2150
	ms.maps = al.maps;
2151 2152 2153 2154
	ms.map = al.map;
	ms.sym = al.sym;
	srcline = callchain_srcline(&ms, al.addr);
	return callchain_cursor_append(cursor, ip, &ms,
2155
				       branch, flags, nr_loop_iter,
2156
				       iter_cycles, branch_from, srcline);
2157 2158
}

2159 2160
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2161 2162
{
	unsigned int i;
2163
	const struct branch_stack *bs = sample->branch_stack;
2164
	struct branch_entry *entries = perf_sample__branch_entries(sample);
2165
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2166 2167 2168 2169 2170

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2171 2172 2173
		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
		bi[i].flags = entries[i].flags;
2174 2175 2176 2177
	}
	return bi;
}

2178 2179 2180 2181 2182
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2183
	iter->nr_loop_iter++;
2184 2185 2186 2187 2188 2189
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2190 2191 2192 2193 2194 2195 2196
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2197 2198
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2235 2236 2237 2238 2239 2240 2241
				nr -= off;
			}
		}
	}
	return nr;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static int lbr_callchain_add_kernel_ip(struct thread *thread,
				       struct callchain_cursor *cursor,
				       struct perf_sample *sample,
				       struct symbol **parent,
				       struct addr_location *root_al,
				       u64 branch_from,
				       bool callee, int end)
{
	struct ip_callchain *chain = sample->callchain;
	u8 cpumode = PERF_RECORD_MISC_USER;
	int err, i;

	if (callee) {
		for (i = 0; i < end + 1; i++) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, chain->ips[i],
					       false, NULL, NULL, branch_from);
			if (err)
				return err;
		}
		return 0;
	}

	for (i = end; i >= 0; i--) {
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, chain->ips[i],
				       false, NULL, NULL, branch_from);
		if (err)
			return err;
	}

	return 0;
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
static void save_lbr_cursor_node(struct thread *thread,
				 struct callchain_cursor *cursor,
				 int idx)
{
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;

	if (!lbr_stitch)
		return;

	if (cursor->pos == cursor->nr) {
		lbr_stitch->prev_lbr_cursor[idx].valid = false;
		return;
	}

	if (!cursor->curr)
		cursor->curr = cursor->first;
	else
		cursor->curr = cursor->curr->next;
	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
	       sizeof(struct callchain_cursor_node));

	lbr_stitch->prev_lbr_cursor[idx].valid = true;
	cursor->pos++;
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
static int lbr_callchain_add_lbr_ip(struct thread *thread,
				    struct callchain_cursor *cursor,
				    struct perf_sample *sample,
				    struct symbol **parent,
				    struct addr_location *root_al,
				    u64 *branch_from,
				    bool callee)
{
	struct branch_stack *lbr_stack = sample->branch_stack;
	struct branch_entry *entries = perf_sample__branch_entries(sample);
	u8 cpumode = PERF_RECORD_MISC_USER;
	int lbr_nr = lbr_stack->nr;
	struct branch_flags *flags;
	int err, i;
	u64 ip;

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	/*
	 * The curr and pos are not used in writing session. They are cleared
	 * in callchain_cursor_commit() when the writing session is closed.
	 * Using curr and pos to track the current cursor node.
	 */
	if (thread->lbr_stitch) {
		cursor->curr = NULL;
		cursor->pos = cursor->nr;
		if (cursor->nr) {
			cursor->curr = cursor->first;
			for (i = 0; i < (int)(cursor->nr - 1); i++)
				cursor->curr = cursor->curr->next;
		}
	}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	if (callee) {
		/* Add LBR ip from first entries.to */
		ip = entries[0].to;
		flags = &entries[0].flags;
		*branch_from = entries[0].from;
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
				       true, flags, NULL,
				       *branch_from);
		if (err)
			return err;

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
		/*
		 * The number of cursor node increases.
		 * Move the current cursor node.
		 * But does not need to save current cursor node for entry 0.
		 * It's impossible to stitch the whole LBRs of previous sample.
		 */
		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
			if (!cursor->curr)
				cursor->curr = cursor->first;
			else
				cursor->curr = cursor->curr->next;
			cursor->pos++;
		}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		/* Add LBR ip from entries.from one by one. */
		for (i = 0; i < lbr_nr; i++) {
			ip = entries[i].from;
			flags = &entries[i].flags;
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
					       true, flags, NULL,
					       *branch_from);
			if (err)
				return err;
2368
			save_lbr_cursor_node(thread, cursor, i);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
		}
		return 0;
	}

	/* Add LBR ip from entries.from one by one. */
	for (i = lbr_nr - 1; i >= 0; i--) {
		ip = entries[i].from;
		flags = &entries[i].flags;
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
				       true, flags, NULL,
				       *branch_from);
		if (err)
			return err;
2383
		save_lbr_cursor_node(thread, cursor, i);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	}

	/* Add LBR ip from first entries.to */
	ip = entries[0].to;
	flags = &entries[0].flags;
	*branch_from = entries[0].from;
	err = add_callchain_ip(thread, cursor, parent,
			       root_al, &cpumode, ip,
			       true, flags, NULL,
			       *branch_from);
	if (err)
		return err;

	return 0;
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
					     struct callchain_cursor *cursor)
{
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
	struct callchain_cursor_node *cnode;
	struct stitch_list *stitch_node;
	int err;

	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
		cnode = &stitch_node->cursor;

		err = callchain_cursor_append(cursor, cnode->ip,
					      &cnode->ms,
					      cnode->branch,
					      &cnode->branch_flags,
					      cnode->nr_loop_iter,
					      cnode->iter_cycles,
					      cnode->branch_from,
					      cnode->srcline);
		if (err)
			return err;
	}
	return 0;
}

static struct stitch_list *get_stitch_node(struct thread *thread)
{
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
	struct stitch_list *stitch_node;

	if (!list_empty(&lbr_stitch->free_lists)) {
		stitch_node = list_first_entry(&lbr_stitch->free_lists,
					       struct stitch_list, node);
		list_del(&stitch_node->node);

		return stitch_node;
	}

	return malloc(sizeof(struct stitch_list));
}

static bool has_stitched_lbr(struct thread *thread,
			     struct perf_sample *cur,
			     struct perf_sample *prev,
			     unsigned int max_lbr,
			     bool callee)
{
	struct branch_stack *cur_stack = cur->branch_stack;
	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
	struct branch_stack *prev_stack = prev->branch_stack;
	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
	int i, j, nr_identical_branches = 0;
	struct stitch_list *stitch_node;
	u64 cur_base, distance;

	if (!cur_stack || !prev_stack)
		return false;

	/* Find the physical index of the base-of-stack for current sample. */
	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;

	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
						     (max_lbr + prev_stack->hw_idx - cur_base);
	/* Previous sample has shorter stack. Nothing can be stitched. */
	if (distance + 1 > prev_stack->nr)
		return false;

	/*
	 * Check if there are identical LBRs between two samples.
	 * Identicall LBRs must have same from, to and flags values. Also,
	 * they have to be saved in the same LBR registers (same physical
	 * index).
	 *
	 * Starts from the base-of-stack of current sample.
	 */
	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
		if ((prev_entries[i].from != cur_entries[j].from) ||
		    (prev_entries[i].to != cur_entries[j].to) ||
		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
			break;
		nr_identical_branches++;
	}

	if (!nr_identical_branches)
		return false;

	/*
	 * Save the LBRs between the base-of-stack of previous sample
	 * and the base-of-stack of current sample into lbr_stitch->lists.
	 * These LBRs will be stitched later.
	 */
	for (i = prev_stack->nr - 1; i > (int)distance; i--) {

		if (!lbr_stitch->prev_lbr_cursor[i].valid)
			continue;

		stitch_node = get_stitch_node(thread);
		if (!stitch_node)
			return false;

		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
		       sizeof(struct callchain_cursor_node));

		if (callee)
			list_add(&stitch_node->node, &lbr_stitch->lists);
		else
			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
	}

	return true;
}

2513
static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2514 2515 2516 2517 2518 2519 2520 2521
{
	if (thread->lbr_stitch)
		return true;

	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
	if (!thread->lbr_stitch)
		goto err;

2522 2523 2524 2525
	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
	if (!thread->lbr_stitch->prev_lbr_cursor)
		goto free_lbr_stitch;

2526 2527 2528
	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);

2529 2530 2531 2532
	return true;

free_lbr_stitch:
	zfree(&thread->lbr_stitch);
2533 2534 2535 2536 2537 2538
err:
	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
	thread->lbr_stitch_enable = false;
	return false;
}

K
Kan Liang 已提交
2539 2540 2541 2542 2543 2544 2545 2546
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2547
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2548 2549 2550
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
2551 2552
					int max_stack,
					unsigned int max_lbr)
2553
{
2554
	bool callee = (callchain_param.order == ORDER_CALLEE);
K
Kan Liang 已提交
2555
	struct ip_callchain *chain = sample->callchain;
2556
	int chain_nr = min(max_stack, (int)chain->nr), i;
2557
	struct lbr_stitch *lbr_stitch;
2558
	bool stitched_lbr = false;
2559
	u64 branch_from = 0;
2560
	int err;
K
Kan Liang 已提交
2561 2562 2563 2564 2565 2566 2567

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
2568 2569 2570
	if (i == chain_nr)
		return 0;

2571
	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2572
	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2573 2574
		lbr_stitch = thread->lbr_stitch;

2575 2576 2577 2578 2579 2580 2581 2582
		stitched_lbr = has_stitched_lbr(thread, sample,
						&lbr_stitch->prev_sample,
						max_lbr, callee);

		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
			list_replace_init(&lbr_stitch->lists,
					  &lbr_stitch->free_lists);
		}
2583 2584 2585
		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
	}

2586
	if (callee) {
2587
		/* Add kernel ip */
2588 2589 2590 2591 2592 2593
		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
						  parent, root_al, branch_from,
						  true, i);
		if (err)
			goto error;

2594 2595
		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
					       root_al, &branch_from, true);
2596 2597
		if (err)
			goto error;
K
Kan Liang 已提交
2598

2599 2600 2601 2602 2603 2604
		if (stitched_lbr) {
			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
			if (err)
				goto error;
		}

2605
	} else {
2606 2607 2608 2609 2610
		if (stitched_lbr) {
			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
			if (err)
				goto error;
		}
2611 2612
		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
					       root_al, &branch_from, false);
2613
		if (err)
2614 2615 2616
			goto error;

		/* Add kernel ip */
2617 2618 2619 2620 2621
		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
						  parent, root_al, branch_from,
						  false, i);
		if (err)
			goto error;
2622 2623
	}
	return 1;
2624 2625 2626

error:
	return (err < 0) ? err : 0;
K
Kan Liang 已提交
2627 2628
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2650
static int thread__resolve_callchain_sample(struct thread *thread,
2651
					    struct callchain_cursor *cursor,
2652
					    struct evsel *evsel,
K
Kan Liang 已提交
2653 2654 2655 2656 2657 2658
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
2659
	struct branch_entry *entries = perf_sample__branch_entries(sample);
K
Kan Liang 已提交
2660
	struct ip_callchain *chain = sample->callchain;
2661
	int chain_nr = 0;
2662
	u8 cpumode = PERF_RECORD_MISC_USER;
2663
	int i, j, err, nr_entries;
2664 2665 2666
	int skip_idx = -1;
	int first_call = 0;

2667 2668 2669
	if (chain)
		chain_nr = chain->nr;

2670
	if (evsel__has_branch_callstack(evsel)) {
2671
		struct perf_env *env = evsel__env(evsel);
2672

2673
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2674 2675
						   root_al, max_stack,
						   !env ? 0 : env->max_branches);
K
Kan Liang 已提交
2676 2677 2678 2679
		if (err)
			return (err < 0) ? err : 0;
	}

2680 2681 2682 2683
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2684
	skip_idx = arch_skip_callchain_idx(thread, chain);
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2701
		struct iterations iter[nr];
2702 2703 2704 2705 2706 2707 2708 2709

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
2710
				be[i] = entries[i];
2711 2712 2713 2714

				if (chain == NULL)
					continue;

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
2729
				be[i] = entries[branch->nr - i - 1];
2730 2731
		}

2732 2733
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2734

2735
		for (i = 0; i < nr; i++) {
2736 2737 2738 2739 2740
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2741

2742
			if (!err)
2743
				err = add_callchain_ip(thread, cursor, parent, root_al,
2744 2745
						       NULL, be[i].from,
						       true, &be[i].flags,
2746
						       &iter[i], 0);
2747 2748 2749 2750 2751
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2752 2753 2754 2755

		if (chain_nr == 0)
			return 0;

2756 2757 2758 2759
		chain_nr -= nr;
	}

check_calls:
2760
	if (chain && callchain_param.order != ORDER_CALLEE) {
2761 2762 2763 2764 2765
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2766
	for (i = first_call, nr_entries = 0;
2767
	     i < chain_nr && nr_entries < max_stack; i++) {
2768 2769 2770
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2771
			j = i;
2772
		else
2773 2774 2775 2776 2777 2778 2779
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2780 2781
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2782 2783 2784 2785 2786 2787 2788
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2789

2790 2791
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2792
				       false, NULL, NULL, 0);
2793 2794

		if (err)
2795
			return (err < 0) ? err : 0;
2796 2797 2798 2799 2800
	}

	return 0;
}

2801
static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2802
{
2803 2804
	struct symbol *sym = ms->sym;
	struct map *map = ms->map;
2805 2806 2807
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2808
	int ret = 1;
2809 2810

	if (!symbol_conf.inline_name || !map || !sym)
2811
		return ret;
2812

2813 2814
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2815 2816 2817 2818 2819

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2820
			return ret;
2821 2822 2823 2824
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2825
		struct map_symbol ilist_ms = {
2826
			.maps = ms->maps,
2827 2828 2829 2830
			.map = map,
			.sym = ilist->symbol,
		};
		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2831
					      NULL, 0, 0, 0, ilist->srcline);
2832 2833 2834 2835 2836

		if (ret != 0)
			return ret;
	}

2837
	return ret;
2838 2839
}

2840 2841 2842
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2843
	const char *srcline = NULL;
2844
	u64 addr = entry->ip;
2845

2846
	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2847
		return 0;
2848

2849
	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2850 2851
		return 0;

2852 2853 2854 2855
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2856 2857
	if (entry->ms.map)
		addr = map__map_ip(entry->ms.map, entry->ip);
2858

2859 2860
	srcline = callchain_srcline(&entry->ms, addr);
	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2861
				       false, NULL, 0, 0, 0, srcline);
2862 2863
}

2864 2865
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
2866
					    struct evsel *evsel,
2867 2868
					    struct perf_sample *sample,
					    int max_stack)
2869 2870
{
	/* Can we do dwarf post unwind? */
2871 2872
	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2873 2874 2875 2876 2877 2878 2879
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2880
	return unwind__get_entries(unwind_entry, cursor,
2881
				   thread, sample, max_stack);
2882
}
2883

2884 2885
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
2886
			      struct evsel *evsel,
2887 2888 2889 2890 2891 2892 2893
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2894
	callchain_cursor_reset(cursor);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2919
}
2920 2921 2922 2923 2924

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2925
	struct threads *threads;
2926 2927 2928
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2929
	int i;
2930

2931 2932
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2933 2934
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2935 2936 2937 2938 2939
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2940

2941 2942 2943 2944 2945
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2946 2947 2948
	}
	return rc;
}
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2961
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2962 2963 2964 2965 2966 2967 2968 2969 2970
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2971 2972
pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
2973 2974 2975
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);

	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2976 2977 2978 2979 2980 2981 2982 2983 2984
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;
2985
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2986 2987 2988 2989 2990 2991 2992

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

2993
		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2994 2995
		if (!machine->current_tid)
			return -ENOMEM;
2996
		for (i = 0; i < nr_cpus; i++)
2997 2998 2999
			machine->current_tid[i] = -1;
	}

3000
	if (cpu >= nr_cpus) {
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
3013
	thread__put(thread);
3014 3015 3016

	return 0;
}
3017

3018 3019 3020 3021 3022 3023 3024 3025 3026
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

3027 3028 3029 3030 3031
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

3032 3033
int machine__get_kernel_start(struct machine *machine)
{
3034
	struct map *map = machine__kernel_map(machine);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
3047
		err = map__load(map);
3048 3049 3050 3051 3052 3053
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
3054 3055 3056 3057
			machine->kernel_start = map->start;
	}
	return err;
}
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

3086 3087 3088 3089 3090
struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
{
	return dsos__findnew_id(&machine->dsos, filename, id);
}

3091 3092
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
3093
	return machine__findnew_dso_id(machine, filename, NULL);
3094
}
3095 3096 3097 3098 3099

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
3100
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3101 3102 3103 3104 3105 3106 3107 3108

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}