machine.c 52.3 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	memset(machine, 0, sizeof(*machine));
29
	map_groups__init(&machine->kmaps, machine);
30
	RB_CLEAR_NODE(&machine->rb_node);
31
	dsos__init(&machine->dsos);
32 33

	machine->threads = RB_ROOT;
34
	pthread_rwlock_init(&machine->threads_lock, NULL);
35
	machine->nr_threads = 0;
36 37 38
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

39
	machine->vdso_info = NULL;
40
	machine->env = NULL;
41

42 43
	machine->pid = pid;

44
	machine->id_hdr_size = 0;
45
	machine->kptr_restrict_warned = false;
46
	machine->comm_exec = false;
47
	machine->kernel_start = 0;
48

49 50
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

51 52 53 54 55
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
56
		struct thread *thread = machine__findnew_thread(machine, -1,
57
								pid);
58 59 60 61 62 63
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64
		thread__set_comm(thread, comm, 0);
65
		thread__put(thread);
66 67
	}

68 69
	machine->current_tid = NULL;

70 71 72
	return 0;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

109
static void dsos__purge(struct dsos *dsos)
110 111 112
{
	struct dso *pos, *n;

113 114
	pthread_rwlock_wrlock(&dsos->lock);

115
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
116
		RB_CLEAR_NODE(&pos->rb_node);
117
		pos->root = NULL;
118 119
		list_del_init(&pos->node);
		dso__put(pos);
120
	}
121 122

	pthread_rwlock_unlock(&dsos->lock);
123
}
124

125 126 127
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
128
	pthread_rwlock_destroy(&dsos->lock);
129 130
}

131 132
void machine__delete_threads(struct machine *machine)
{
133
	struct rb_node *nd;
134

135 136
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
137 138 139 140
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
141
		__machine__remove_thread(machine, t, false);
142
	}
143
	pthread_rwlock_unlock(&machine->threads_lock);
144 145
}

146 147
void machine__exit(struct machine *machine)
{
148
	machine__destroy_kernel_maps(machine);
149
	map_groups__exit(&machine->kmaps);
150
	dsos__exit(&machine->dsos);
151
	machine__exit_vdso(machine);
152
	zfree(&machine->root_dir);
153
	zfree(&machine->current_tid);
154
	pthread_rwlock_destroy(&machine->threads_lock);
155 156 157 158
}

void machine__delete(struct machine *machine)
{
159 160 161 162
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
178 179
			      const char *root_dir)
{
180
	struct rb_node **p = &machines->guests.rb_node;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
202
	rb_insert_color(&machine->rb_node, &machines->guests);
203 204 205 206

	return machine;
}

207 208 209 210 211 212 213 214 215 216 217 218 219
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

220
struct machine *machines__find(struct machines *machines, pid_t pid)
221
{
222
	struct rb_node **p = &machines->guests.rb_node;
223 224 225 226
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

227 228 229
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

246
struct machine *machines__findnew(struct machines *machines, pid_t pid)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
263
				seen = strlist__new(NULL, NULL);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

280 281
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
282 283 284
{
	struct rb_node *nd;

285
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

305
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
306 307 308 309
{
	struct rb_node *node;
	struct machine *machine;

310 311 312
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
313 314 315 316 317 318 319
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

320 321 322 323 324 325 326 327 328 329 330 331 332
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

333
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
334 335 336 337
	if (!leader)
		goto out_err;

	if (!leader->mg)
338
		leader->mg = map_groups__new(machine);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
355
		map_groups__put(th->mg);
356 357 358
	}

	th->mg = map_groups__get(leader->mg);
359 360
out_put:
	thread__put(leader);
361 362 363
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
364
	goto out_put;
365 366
}

367
/*
368
 * Caller must eventually drop thread->refcnt returned with a successful
369 370
 * lookup/new thread inserted.
 */
371 372 373
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
374 375 376 377 378 379
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
380
	 * Front-end cache - TID lookups come in blocks,
381 382 383
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
384
	th = machine->last_match;
385 386 387
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
388
			return thread__get(th);
389 390
		}

391
		machine->last_match = NULL;
392
	}
393 394 395 396 397

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

398
		if (th->tid == tid) {
399
			machine->last_match = th;
400
			machine__update_thread_pid(machine, th, pid);
401
			return thread__get(th);
402 403
		}

404
		if (tid < th->tid)
405 406 407 408 409 410 411 412
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

413
	th = thread__new(pid, tid);
414 415 416
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
417 418 419 420 421 422 423 424 425

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
426
		if (thread__init_map_groups(th, machine)) {
427
			rb_erase_init(&th->rb_node, &machine->threads);
428
			RB_CLEAR_NODE(&th->rb_node);
429
			thread__put(th);
430
			return NULL;
431
		}
432 433 434 435
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
436
		machine->last_match = th;
437
		++machine->nr_threads;
438 439 440 441 442
	}

	return th;
}

443 444 445 446 447
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

448 449
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
450
{
451 452 453
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
454
	th = __machine__findnew_thread(machine, pid, tid);
455 456
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
457 458
}

459 460
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
461
{
462 463
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
464
	th =  ____machine__findnew_thread(machine, pid, tid, false);
465 466
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
467
}
468

469 470 471 472 473 474 475 476 477
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

478 479
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
480
{
481 482 483
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
484
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
485
	int err = 0;
486

487 488 489
	if (exec)
		machine->comm_exec = true;

490 491 492
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

493 494
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
495
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
496
		err = -1;
497 498
	}

499 500 501
	thread__put(thread);

	return err;
502 503 504
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
505
				union perf_event *event, struct perf_sample *sample __maybe_unused)
506 507 508 509 510 511
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

512 513 514 515 516 517 518 519
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

520 521 522
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
523 524 525
{
	struct dso *dso;

526 527 528
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
529
	if (!dso) {
530
		dso = __dsos__addnew(&machine->dsos, m->name);
531
		if (dso == NULL)
532
			goto out_unlock;
533 534 535 536 537 538 539

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
540
		if (m->kmod && m->comp)
541
			dso->symtab_type++;
542 543 544

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
545 546
	}

547
	dso__get(dso);
548 549
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
550 551 552
	return dso;
}

553 554 555 556 557 558 559 560
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

561 562 563 564 565 566 567 568
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

569 570 571 572 573 574 575 576
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

592
	dso__set_long_name(dso, dup_filename, true);
593 594
}

595 596
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
597
{
598
	struct map *map = NULL;
599
	struct dso *dso = NULL;
600
	struct kmod_path m;
601

602
	if (kmod_path__parse_name(&m, filename))
603 604
		return NULL;

605 606
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
607 608 609 610 611 612 613
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
614
		goto out;
615
	}
616

617
	dso = machine__findnew_module_dso(machine, &m, filename);
618 619 620
	if (dso == NULL)
		goto out;

621 622
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
623
		goto out;
624 625

	map_groups__insert(&machine->kmaps, map);
626

627 628
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
629
out:
630 631
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
632
	free(m.name);
633 634 635
	return map;
}

636
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
637 638
{
	struct rb_node *nd;
639
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
640

641
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
642
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
643
		ret += __dsos__fprintf(&pos->dsos.head, fp);
644 645 646 647 648
	}

	return ret;
}

649
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
650 651
				     bool (skip)(struct dso *dso, int parm), int parm)
{
652
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
653 654
}

655
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
656 657 658
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
659
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
660

661
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
662 663 664 665 666 667 668 669 670 671
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
672
	struct dso *kdso = machine__kernel_map(machine)->dso;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
689
	size_t ret;
690 691
	struct rb_node *nd;

692 693
	pthread_rwlock_rdlock(&machine->threads_lock);

694 695
	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);

696 697 698 699 700 701
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

702 703
	pthread_rwlock_unlock(&machine->threads_lock);

704 705 706 707 708 709 710 711 712 713 714
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
715
			vmlinux_name = DSO__NAME_KALLSYMS;
716

717 718
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
719 720 721 722 723 724 725 726 727
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

728 729 730
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
731 732 733 734 735 736 737 738 739 740 741 742
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

743 744 745 746 747 748 749 750 751
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

752 753 754 755 756 757
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
758 759
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
760
{
761
	char filename[PATH_MAX];
762 763 764
	int i;
	const char *name;
	u64 addr = 0;
765

766
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
767 768 769 770

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

771 772 773 774 775 776 777 778
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
779

780
	return addr;
781 782 783 784
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
785
	int type;
786
	u64 start = machine__get_running_kernel_start(machine, NULL);
787

788 789 790
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

791 792
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
793
		struct map *map;
794 795 796 797 798 799 800 801

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
802
		map = __machine__kernel_map(machine, type);
803
		kmap = map__kmap(map);
804 805 806
		if (!kmap)
			return -1;

807
		kmap->kmaps = &machine->kmaps;
808
		map_groups__insert(&machine->kmaps, map);
809 810 811 812 813 814 815
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
816
	int type;
817 818 819

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
820
		struct map *map = __machine__kernel_map(machine, type);
821

822
		if (map == NULL)
823 824
			continue;

825 826
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
827
		if (kmap && kmap->ref_reloc_sym) {
828 829 830 831 832
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
833 834 835 836
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
837 838
		}

839
		map__put(machine->vmlinux_maps[type]);
840 841 842 843
		machine->vmlinux_maps[type] = NULL;
	}
}

844
int machines__create_guest_kernel_maps(struct machines *machines)
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

893
void machines__destroy_kernel_maps(struct machines *machines)
894
{
895 896 897
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
898 899 900 901 902

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
903
		rb_erase(&pos->rb_node, &machines->guests);
904 905 906 907
		machine__delete(pos);
	}
}

908
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
909 910 911 912 913 914 915 916 917
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

918
int __machine__load_kallsyms(struct machine *machine, const char *filename,
919
			     enum map_type type, bool no_kcore)
920
{
921
	struct map *map = machine__kernel_map(machine);
922
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
923 924 925 926 927 928 929 930 931 932 933 934 935 936

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

937
int machine__load_kallsyms(struct machine *machine, const char *filename,
938
			   enum map_type type)
939
{
940
	return __machine__load_kallsyms(machine, filename, type, false);
941 942
}

943
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
944
{
945
	struct map *map = machine__kernel_map(machine);
946
	int ret = dso__load_vmlinux_path(map->dso, map);
947

948
	if (ret > 0)
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1021
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1022
				const char *dir_name, int depth)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1047 1048 1049 1050 1051 1052 1053 1054 1055
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1056 1057 1058
			if (ret < 0)
				goto out;
		} else {
1059
			struct kmod_path m;
1060

1061 1062 1063
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1064

1065 1066
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1067

1068
			free(m.name);
1069

1070
			if (ret)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1089
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1090 1091 1092
		 machine->root_dir, version);
	free(version);

1093
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1094
}
1095 1096 1097 1098 1099
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1100

1101
static int machine__create_module(void *arg, const char *name, u64 start)
1102
{
1103
	struct machine *machine = arg;
1104
	struct map *map;
1105

1106 1107 1108
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1109
	map = machine__findnew_module_map(machine, start, name);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1120 1121 1122
	const char *modules;
	char path[PATH_MAX];

1123
	if (machine__is_default_guest(machine)) {
1124
		modules = symbol_conf.default_guest_modules;
1125 1126
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1127 1128 1129
		modules = path;
	}

1130
	if (symbol__restricted_filename(modules, "/proc/modules"))
1131 1132
		return -1;

1133
	if (modules__parse(modules, machine, machine__create_module))
1134 1135
		return -1;

1136 1137
	if (!machine__set_modules_path(machine))
		return 0;
1138

1139
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1140

1141
	return 0;
1142 1143 1144 1145 1146
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1147
	const char *name;
1148
	u64 addr;
1149 1150
	int ret;

1151
	if (kernel == NULL)
1152
		return -1;
1153

1154 1155 1156
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1172

1173 1174 1175
	addr = machine__get_running_kernel_start(machine, &name);
	if (!addr) {
	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1176 1177 1178 1179
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1180 1181 1182
	return 0;
}

1183 1184 1185
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1199 1200
}

1201 1202 1203 1204
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1205
	list_for_each_entry(dso, &machine->dsos.head, node) {
1206 1207 1208 1209 1210 1211 1212
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1213 1214 1215 1216 1217 1218 1219 1220
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1221 1222 1223 1224
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1236 1237
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1249 1250 1251
		struct dso *kernel = NULL;
		struct dso *dso;

1252 1253
		pthread_rwlock_rdlock(&machine->dsos.lock);

1254
		list_for_each_entry(dso, &machine->dsos.head, node) {
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1275 1276
				continue;

1277

1278 1279 1280 1281
			kernel = dso;
			break;
		}

1282 1283
		pthread_rwlock_unlock(&machine->dsos.lock);

1284
		if (kernel == NULL)
1285
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1286 1287 1288 1289
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1290 1291
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1292
			goto out_problem;
1293
		}
1294

1295 1296
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1315
			dso__load(kernel, machine__kernel_map(machine));
1316 1317 1318 1319 1320 1321 1322
		}
	}
	return 0;
out_problem:
	return -1;
}

1323
int machine__process_mmap2_event(struct machine *machine,
1324
				 union perf_event *event,
1325
				 struct perf_sample *sample)
1326 1327 1328 1329 1330 1331 1332 1333 1334
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1335 1336
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1337 1338 1339 1340 1341 1342 1343
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1344
					event->mmap2.tid);
1345 1346 1347 1348 1349 1350 1351 1352
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1353
	map = map__new(machine, event->mmap2.start,
1354 1355 1356 1357
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1358 1359
			event->mmap2.prot,
			event->mmap2.flags,
1360
			event->mmap2.filename, type, thread);
1361 1362

	if (map == NULL)
1363
		goto out_problem_map;
1364

1365 1366 1367 1368
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1369
	thread__put(thread);
1370
	map__put(map);
1371 1372
	return 0;

1373 1374
out_problem_insert:
	map__put(map);
1375 1376
out_problem_map:
	thread__put(thread);
1377 1378 1379 1380 1381
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1382
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1383
				struct perf_sample *sample)
1384 1385 1386
{
	struct thread *thread;
	struct map *map;
1387
	enum map_type type;
1388 1389 1390 1391 1392
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1393 1394
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1395 1396 1397 1398 1399 1400
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1401
	thread = machine__findnew_thread(machine, event->mmap.pid,
1402
					 event->mmap.tid);
1403 1404
	if (thread == NULL)
		goto out_problem;
1405 1406 1407 1408 1409 1410

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1411
	map = map__new(machine, event->mmap.start,
1412
			event->mmap.len, event->mmap.pgoff,
1413
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1414
			event->mmap.filename,
1415
			type, thread);
1416

1417
	if (map == NULL)
1418
		goto out_problem_map;
1419

1420 1421 1422 1423
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1424
	thread__put(thread);
1425
	map__put(map);
1426 1427
	return 0;

1428 1429
out_problem_insert:
	map__put(map);
1430 1431
out_problem_map:
	thread__put(thread);
1432 1433 1434 1435 1436
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1437
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1438
{
1439
	if (machine->last_match == th)
1440
		machine->last_match = NULL;
1441

1442
	BUG_ON(refcount_read(&th->refcnt) == 0);
1443 1444
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1445
	rb_erase_init(&th->rb_node, &machine->threads);
1446
	RB_CLEAR_NODE(&th->rb_node);
1447
	--machine->nr_threads;
1448
	/*
1449 1450 1451
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1452 1453
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1454 1455
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1456
	thread__put(th);
1457 1458
}

1459 1460 1461 1462 1463
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1464 1465
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1466
{
1467 1468 1469
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1470 1471 1472
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1473
	int err = 0;
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1493
	/* if a thread currently exists for the thread id remove it */
1494
	if (thread != NULL) {
1495
		machine__remove_thread(machine, thread);
1496 1497
		thread__put(thread);
	}
1498

1499 1500
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1501 1502

	if (thread == NULL || parent == NULL ||
1503
	    thread__fork(thread, parent, sample->time) < 0) {
1504
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1505
		err = -1;
1506
	}
1507 1508
	thread__put(thread);
	thread__put(parent);
1509

1510
	return err;
1511 1512
}

1513 1514
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1515
{
1516 1517 1518
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1519 1520 1521 1522

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1523
	if (thread != NULL) {
1524
		thread__exited(thread);
1525 1526
		thread__put(thread);
	}
1527 1528 1529 1530

	return 0;
}

1531 1532
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1533 1534 1535 1536 1537
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1538
		ret = machine__process_comm_event(machine, event, sample); break;
1539
	case PERF_RECORD_MMAP:
1540
		ret = machine__process_mmap_event(machine, event, sample); break;
1541
	case PERF_RECORD_MMAP2:
1542
		ret = machine__process_mmap2_event(machine, event, sample); break;
1543
	case PERF_RECORD_FORK:
1544
		ret = machine__process_fork_event(machine, event, sample); break;
1545
	case PERF_RECORD_EXIT:
1546
		ret = machine__process_exit_event(machine, event, sample); break;
1547
	case PERF_RECORD_LOST:
1548
		ret = machine__process_lost_event(machine, event, sample); break;
1549 1550
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1551
	case PERF_RECORD_ITRACE_START:
1552
		ret = machine__process_itrace_start_event(machine, event); break;
1553 1554
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1555 1556 1557
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1558 1559 1560 1561 1562 1563 1564
	default:
		ret = -1;
		break;
	}

	return ret;
}
1565

1566
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1567
{
1568
	if (!regexec(regex, sym->name, 0, NULL, 0))
1569 1570 1571 1572
		return 1;
	return 0;
}

1573
static void ip__resolve_ams(struct thread *thread,
1574 1575 1576 1577 1578 1579
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1580 1581 1582 1583 1584 1585 1586
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1587
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1588 1589 1590 1591 1592 1593 1594

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1595
static void ip__resolve_data(struct thread *thread,
1596 1597 1598 1599 1600 1601
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1602
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1603 1604 1605 1606 1607 1608
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1609
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1610 1611
	}

1612 1613 1614 1615 1616 1617
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1618 1619
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1620 1621 1622 1623 1624 1625
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1626 1627
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1628 1629 1630 1631 1632
	mi->data_src.val = sample->data_src;

	return mi;
}

1633
static int add_callchain_ip(struct thread *thread,
1634
			    struct callchain_cursor *cursor,
1635 1636
			    struct symbol **parent,
			    struct addr_location *root_al,
1637
			    u8 *cpumode,
1638 1639 1640 1641 1642
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
			    int nr_loop_iter,
			    int samples)
1643 1644 1645 1646 1647
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1648
	if (!cpumode) {
1649 1650
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1651
	} else {
1652 1653 1654
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1655
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1656 1657
				break;
			case PERF_CONTEXT_KERNEL:
1658
				*cpumode = PERF_RECORD_MISC_KERNEL;
1659 1660
				break;
			case PERF_CONTEXT_USER:
1661
				*cpumode = PERF_RECORD_MISC_USER;
1662 1663 1664 1665 1666 1667 1668 1669
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1670
				callchain_cursor_reset(cursor);
1671 1672 1673 1674
				return 1;
			}
			return 0;
		}
1675 1676
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1677 1678
	}

1679
	if (al.sym != NULL) {
1680
		if (perf_hpp_list.parent && !*parent &&
1681 1682 1683 1684 1685 1686 1687
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1688
			callchain_cursor_reset(cursor);
1689 1690 1691
		}
	}

1692 1693
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1694 1695
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
				       branch, flags, nr_loop_iter, samples);
1696 1697
}

1698 1699
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1700 1701
{
	unsigned int i;
1702 1703
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1704 1705 1706 1707 1708

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1709 1710
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1711 1712 1713 1714 1715
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1757 1758 1759 1760 1761 1762 1763 1764
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1765
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1766 1767 1768 1769
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1770
{
K
Kan Liang 已提交
1771
	struct ip_callchain *chain = sample->callchain;
1772
	int chain_nr = min(max_stack, (int)chain->nr), i;
1773
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1784 1785 1786
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1800
			int err;
1801 1802 1803
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1804 1805 1806
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1807 1808 1809 1810 1811 1812
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1813
					ip = lbr_stack->entries[0].to;
1814 1815 1816
					branch = true;
					flags = &lbr_stack->entries[0].flags;
				}
K
Kan Liang 已提交
1817
			} else {
1818 1819 1820 1821 1822 1823
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1824 1825
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1826
				else {
K
Kan Liang 已提交
1827
					ip = lbr_stack->entries[0].to;
1828 1829 1830
					branch = true;
					flags = &lbr_stack->entries[0].flags;
				}
K
Kan Liang 已提交
1831 1832
			}

1833 1834 1835
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
					       branch, flags, 0, 0);
K
Kan Liang 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1846
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1847 1848 1849 1850 1851 1852 1853 1854
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1855
	int chain_nr = chain->nr;
1856
	u8 cpumode = PERF_RECORD_MISC_USER;
1857
	int i, j, err, nr_entries;
1858 1859
	int skip_idx = -1;
	int first_call = 0;
1860
	int nr_loop_iter;
1861

1862
	if (perf_evsel__has_branch_callstack(evsel)) {
1863
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
1864 1865 1866 1867 1868
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1869 1870 1871 1872
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
1873
	skip_idx = arch_skip_callchain_idx(thread, chain);
1874

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

1916
		nr_loop_iter = nr;
1917 1918
		nr = remove_loops(be, nr);

1919 1920 1921 1922 1923 1924 1925 1926 1927
		/*
		 * Get the number of iterations.
		 * It's only approximation, but good enough in practice.
		 */
		if (nr_loop_iter > nr)
			nr_loop_iter = nr_loop_iter - nr + 1;
		else
			nr_loop_iter = 0;

1928
		for (i = 0; i < nr; i++) {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
			if (i == nr - 1)
				err = add_callchain_ip(thread, cursor, parent,
						       root_al,
						       NULL, be[i].to,
						       true, &be[i].flags,
						       nr_loop_iter, 1);
			else
				err = add_callchain_ip(thread, cursor, parent,
						       root_al,
						       NULL, be[i].to,
						       true, &be[i].flags,
						       0, 0);

1942
			if (!err)
1943
				err = add_callchain_ip(thread, cursor, parent, root_al,
1944 1945 1946
						       NULL, be[i].from,
						       true, &be[i].flags,
						       0, 0);
1947 1948 1949 1950 1951 1952 1953 1954 1955
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1956
	for (i = first_call, nr_entries = 0;
1957
	     i < chain_nr && nr_entries < max_stack; i++) {
1958 1959 1960
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1961
			j = i;
1962
		else
1963 1964 1965 1966 1967 1968 1969
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1970

1971 1972
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
1973

1974 1975 1976
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
				       false, NULL, 0, 0);
1977 1978

		if (err)
1979
			return (err < 0) ? err : 0;
1980 1981 1982 1983 1984 1985 1986 1987
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
1988 1989 1990

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
1991
	return callchain_cursor_append(cursor, entry->ip,
1992 1993
				       entry->map, entry->sym,
				       false, NULL, 0, 0);
1994 1995
}

1996 1997 1998 1999 2000
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2012
	return unwind__get_entries(unwind_entry, cursor,
2013
				   thread, sample, max_stack);
2014
}
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

	callchain_cursor_reset(&callchain_cursor);

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2051
}
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
2075

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2097
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2098
				  struct target *target, struct thread_map *threads,
2099 2100
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
2101
{
2102
	if (target__has_task(target))
2103
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2104
	else if (target__has_cpu(target))
2105
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2106 2107 2108
	/* command specified */
	return 0;
}
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2149
	thread__put(thread);
2150 2151 2152

	return 0;
}
2153 2154 2155

int machine__get_kernel_start(struct machine *machine)
{
2156
	struct map *map = machine__kernel_map(machine);
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2169
		err = map__load(map);
2170 2171 2172 2173 2174
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2175 2176 2177

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2178
	return dsos__findnew(&machine->dsos, filename);
2179
}
2180 2181 2182 2183 2184

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2185
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2186 2187 2188 2189 2190 2191 2192 2193

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}