machine.c 56.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24

25 26 27
#include "sane_ctype.h"
#include <symbol/kallsyms.h>

28 29
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

30 31 32 33
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
34
	init_rwsem(&dsos->lock);
35 36
}

37 38 39 40 41 42 43
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
44
		init_rwsem(&threads->lock);
45 46 47 48 49 50
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

51 52
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
53 54
	int err = -ENOMEM;

55
	memset(machine, 0, sizeof(*machine));
56
	map_groups__init(&machine->kmaps, machine);
57
	RB_CLEAR_NODE(&machine->rb_node);
58
	dsos__init(&machine->dsos);
59

60
	machine__threads_init(machine);
61

62
	machine->vdso_info = NULL;
63
	machine->env = NULL;
64

65 66
	machine->pid = pid;

67
	machine->id_hdr_size = 0;
68
	machine->kptr_restrict_warned = false;
69
	machine->comm_exec = false;
70
	machine->kernel_start = 0;
71

72 73
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

74 75 76 77 78
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
79
		struct thread *thread = machine__findnew_thread(machine, -1,
80
								pid);
81 82 83
		char comm[64];

		if (thread == NULL)
84
			goto out;
85 86

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
87
		thread__set_comm(thread, comm, 0);
88
		thread__put(thread);
89 90
	}

91
	machine->current_tid = NULL;
92
	err = 0;
93

94 95 96
out:
	if (err)
		zfree(&machine->root_dir);
97 98 99
	return 0;
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

136
static void dsos__purge(struct dsos *dsos)
137 138 139
{
	struct dso *pos, *n;

140
	down_write(&dsos->lock);
141

142
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
143
		RB_CLEAR_NODE(&pos->rb_node);
144
		pos->root = NULL;
145 146
		list_del_init(&pos->node);
		dso__put(pos);
147
	}
148

149
	up_write(&dsos->lock);
150
}
151

152 153 154
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
155
	exit_rwsem(&dsos->lock);
156 157
}

158 159
void machine__delete_threads(struct machine *machine)
{
160
	struct rb_node *nd;
161
	int i;
162

163 164
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
165
		down_write(&threads->lock);
166 167 168
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
169

170 171 172
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
173
		up_write(&threads->lock);
174 175 176
	}
}

177 178
void machine__exit(struct machine *machine)
{
179 180
	int i;

181 182 183
	if (machine == NULL)
		return;

184
	machine__destroy_kernel_maps(machine);
185
	map_groups__exit(&machine->kmaps);
186
	dsos__exit(&machine->dsos);
187
	machine__exit_vdso(machine);
188
	zfree(&machine->root_dir);
189
	zfree(&machine->current_tid);
190 191 192

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
193
		exit_rwsem(&threads->lock);
194
	}
195 196 197 198
}

void machine__delete(struct machine *machine)
{
199 200 201 202
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
203 204
}

205 206 207 208 209 210 211 212 213 214 215 216 217
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
218 219
			      const char *root_dir)
{
220
	struct rb_node **p = &machines->guests.rb_node;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
242
	rb_insert_color(&machine->rb_node, &machines->guests);
243 244 245 246

	return machine;
}

247 248 249 250 251 252 253 254 255 256 257 258 259
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

260
struct machine *machines__find(struct machines *machines, pid_t pid)
261
{
262
	struct rb_node **p = &machines->guests.rb_node;
263 264 265 266
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

267 268 269
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

286
struct machine *machines__findnew(struct machines *machines, pid_t pid)
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
303
				seen = strlist__new(NULL, NULL);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

320 321
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
322 323 324
{
	struct rb_node *nd;

325
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

345
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
346 347 348 349
{
	struct rb_node *node;
	struct machine *machine;

350 351 352
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
353 354 355 356 357 358 359
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

360 361 362 363 364 365 366 367 368 369 370 371 372
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

373
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
374 375 376 377
	if (!leader)
		goto out_err;

	if (!leader->mg)
378
		leader->mg = map_groups__new(machine);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
395
		map_groups__put(th->mg);
396 397 398
	}

	th->mg = map_groups__get(leader->mg);
399 400
out_put:
	thread__put(leader);
401 402 403
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
404
	goto out_put;
405 406
}

407
/*
408
 * Caller must eventually drop thread->refcnt returned with a successful
409 410
 * lookup/new thread inserted.
 */
411
static struct thread *____machine__findnew_thread(struct machine *machine,
412
						  struct threads *threads,
413 414
						  pid_t pid, pid_t tid,
						  bool create)
415
{
416
	struct rb_node **p = &threads->entries.rb_node;
417 418 419 420
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
421
	 * Front-end cache - TID lookups come in blocks,
422 423 424
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
425
	th = threads->last_match;
426 427 428
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
429
			return thread__get(th);
430 431
		}

432
		threads->last_match = NULL;
433
	}
434 435 436 437 438

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

439
		if (th->tid == tid) {
440
			threads->last_match = th;
441
			machine__update_thread_pid(machine, th, pid);
442
			return thread__get(th);
443 444
		}

445
		if (tid < th->tid)
446 447 448 449 450 451 452 453
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

454
	th = thread__new(pid, tid);
455 456
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
457
		rb_insert_color(&th->rb_node, &threads->entries);
458 459 460 461 462 463 464 465 466

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
467
		if (thread__init_map_groups(th, machine)) {
468
			rb_erase_init(&th->rb_node, &threads->entries);
469
			RB_CLEAR_NODE(&th->rb_node);
470
			thread__put(th);
471
			return NULL;
472
		}
473 474 475 476
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
477 478
		threads->last_match = th;
		++threads->nr;
479 480 481 482 483
	}

	return th;
}

484 485
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
486
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
487 488
}

489 490
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
491
{
492
	struct threads *threads = machine__threads(machine, tid);
493 494
	struct thread *th;

495
	down_write(&threads->lock);
496
	th = __machine__findnew_thread(machine, pid, tid);
497
	up_write(&threads->lock);
498
	return th;
499 500
}

501 502
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
503
{
504
	struct threads *threads = machine__threads(machine, tid);
505
	struct thread *th;
506

507
	down_read(&threads->lock);
508
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
509
	up_read(&threads->lock);
510
	return th;
511
}
512

513 514 515 516 517 518 519 520 521
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

522 523
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
524
{
525 526 527
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
528
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
529
	int err = 0;
530

531 532 533
	if (exec)
		machine->comm_exec = true;

534 535 536
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

537 538
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
539
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
540
		err = -1;
541 542
	}

543 544 545
	thread__put(thread);

	return err;
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

579
int machine__process_lost_event(struct machine *machine __maybe_unused,
580
				union perf_event *event, struct perf_sample *sample __maybe_unused)
581 582 583 584 585 586
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

587 588 589 590 591 592 593 594
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

595 596 597
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
598 599 600
{
	struct dso *dso;

601
	down_write(&machine->dsos.lock);
602 603

	dso = __dsos__find(&machine->dsos, m->name, true);
604
	if (!dso) {
605
		dso = __dsos__addnew(&machine->dsos, m->name);
606
		if (dso == NULL)
607
			goto out_unlock;
608

609
		dso__set_module_info(dso, m, machine);
610
		dso__set_long_name(dso, strdup(filename), true);
611 612
	}

613
	dso__get(dso);
614
out_unlock:
615
	up_write(&machine->dsos.lock);
616 617 618
	return dso;
}

619 620 621 622 623 624 625 626
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

627 628 629 630 631 632 633 634
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

635 636 637 638 639 640 641 642
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

658
	dso__set_long_name(dso, dup_filename, true);
659 660
}

661 662
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
663
{
664
	struct map *map = NULL;
665
	struct dso *dso = NULL;
666
	struct kmod_path m;
667

668
	if (kmod_path__parse_name(&m, filename))
669 670
		return NULL;

671 672
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
673 674 675 676 677 678 679
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
680
		goto out;
681
	}
682

683
	dso = machine__findnew_module_dso(machine, &m, filename);
684 685 686
	if (dso == NULL)
		goto out;

687 688
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
689
		goto out;
690 691

	map_groups__insert(&machine->kmaps, map);
692

693 694
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
695
out:
696 697
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
698
	free(m.name);
699 700 701
	return map;
}

702
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
703 704
{
	struct rb_node *nd;
705
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
706

707
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
708
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
709
		ret += __dsos__fprintf(&pos->dsos.head, fp);
710 711 712 713 714
	}

	return ret;
}

715
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
716 717
				     bool (skip)(struct dso *dso, int parm), int parm)
{
718
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
719 720
}

721
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
722 723 724
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
725
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
726

727
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
728 729 730 731 732 733 734 735 736 737
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
738
	struct dso *kdso = machine__kernel_map(machine)->dso;
739 740 741

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
742 743
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
744 745 746 747 748 749 750 751 752 753 754 755 756
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
757 758
	size_t ret;
	int i;
759

760 761
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
762 763

		down_read(&threads->lock);
764

765
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
766

767 768
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
769

770 771
			ret += thread__fprintf(pos, fp);
		}
772

773
		up_read(&threads->lock);
774
	}
775 776 777 778 779 780 781 782 783 784 785
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
786
			vmlinux_name = DSO__NAME_KALLSYMS;
787

788 789
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
790 791 792 793 794 795 796 797 798
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

799 800 801
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
802 803 804 805 806 807 808 809 810 811 812 813
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

814 815 816 817 818 819 820 821 822
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

823 824 825 826 827 828
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
829 830
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
831
{
832
	char filename[PATH_MAX];
833
	int i, err = -1;
834 835
	const char *name;
	u64 addr = 0;
836

837
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
838 839 840 841

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

842
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
843 844
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
845 846 847
			break;
	}

848 849 850
	if (err)
		return -1;

851 852
	if (symbol_name)
		*symbol_name = name;
853

854 855
	*start = addr;
	return 0;
856 857 858 859
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
860
	int type;
861 862 863 864
	u64 start = 0;

	if (machine__get_running_kernel_start(machine, NULL, &start))
		return -1;
865

866 867 868
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

869 870
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
871
		struct map *map;
872 873 874 875 876 877 878 879

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
880
		map = __machine__kernel_map(machine, type);
881
		kmap = map__kmap(map);
882 883 884
		if (!kmap)
			return -1;

885
		kmap->kmaps = &machine->kmaps;
886
		map_groups__insert(&machine->kmaps, map);
887 888 889 890 891 892 893
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
894
	int type;
895 896 897

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
898
		struct map *map = __machine__kernel_map(machine, type);
899

900
		if (map == NULL)
901 902
			continue;

903 904
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
905
		if (kmap && kmap->ref_reloc_sym) {
906 907 908 909 910
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
911 912 913 914
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
915 916
		}

917
		map__put(machine->vmlinux_maps[type]);
918 919 920 921
		machine->vmlinux_maps[type] = NULL;
	}
}

922
int machines__create_guest_kernel_maps(struct machines *machines)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

971
void machines__destroy_kernel_maps(struct machines *machines)
972
{
973 974 975
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
976 977 978 979 980

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
981
		rb_erase(&pos->rb_node, &machines->guests);
982 983 984 985
		machine__delete(pos);
	}
}

986
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
987 988 989 990 991 992 993 994 995
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

996
int __machine__load_kallsyms(struct machine *machine, const char *filename,
997
			     enum map_type type, bool no_kcore)
998
{
999
	struct map *map = machine__kernel_map(machine);
1000
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

1015
int machine__load_kallsyms(struct machine *machine, const char *filename,
1016
			   enum map_type type)
1017
{
1018
	return __machine__load_kallsyms(machine, filename, type, false);
1019 1020
}

1021
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1022
{
1023
	struct map *map = machine__kernel_map(machine);
1024
	int ret = dso__load_vmlinux_path(map->dso, map);
1025

1026
	if (ret > 0)
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1099
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1100
				const char *dir_name, int depth)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1125 1126 1127 1128 1129 1130 1131 1132 1133
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1134 1135 1136
			if (ret < 0)
				goto out;
		} else {
1137
			struct kmod_path m;
1138

1139 1140 1141
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1142

1143 1144
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1145

1146
			free(m.name);
1147

1148
			if (ret)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1167
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1168 1169 1170
		 machine->root_dir, version);
	free(version);

1171
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1172
}
1173 1174 1175 1176 1177
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1178

1179 1180
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1181
{
1182
	struct machine *machine = arg;
1183
	struct map *map;
1184

1185 1186 1187
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1188
	map = machine__findnew_module_map(machine, start, name);
1189 1190
	if (map == NULL)
		return -1;
1191
	map->end = start + size;
1192 1193 1194 1195 1196 1197 1198 1199

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1200 1201 1202
	const char *modules;
	char path[PATH_MAX];

1203
	if (machine__is_default_guest(machine)) {
1204
		modules = symbol_conf.default_guest_modules;
1205 1206
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1207 1208 1209
		modules = path;
	}

1210
	if (symbol__restricted_filename(modules, "/proc/modules"))
1211 1212
		return -1;

1213
	if (modules__parse(modules, machine, machine__create_module))
1214 1215
		return -1;

1216 1217
	if (!machine__set_modules_path(machine))
		return 0;
1218

1219
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1220

1221
	return 0;
1222 1223 1224 1225 1226
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1227 1228
	const char *name = NULL;
	u64 addr = 0;
1229 1230
	int ret;

1231
	if (kernel == NULL)
1232
		return -1;
1233

1234 1235 1236
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1252

1253 1254 1255 1256 1257 1258
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1259 1260
	}

1261 1262 1263
	return 0;
}

1264 1265 1266
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1280 1281
}

1282 1283 1284 1285
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1286
	list_for_each_entry(dso, &machine->dsos.head, node) {
1287 1288 1289 1290 1291 1292 1293
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1294 1295 1296 1297 1298 1299 1300 1301
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1302 1303 1304 1305
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1317 1318
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1330 1331 1332
		struct dso *kernel = NULL;
		struct dso *dso;

1333
		down_read(&machine->dsos.lock);
1334

1335
		list_for_each_entry(dso, &machine->dsos.head, node) {
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1356 1357
				continue;

1358

1359 1360 1361 1362
			kernel = dso;
			break;
		}

1363
		up_read(&machine->dsos.lock);
1364

1365
		if (kernel == NULL)
1366
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1367 1368 1369 1370
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1371 1372
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1373
			goto out_problem;
1374
		}
1375

1376 1377
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1396
			dso__load(kernel, machine__kernel_map(machine));
1397 1398 1399 1400 1401 1402 1403
		}
	}
	return 0;
out_problem:
	return -1;
}

1404
int machine__process_mmap2_event(struct machine *machine,
1405
				 union perf_event *event,
1406
				 struct perf_sample *sample)
1407 1408 1409 1410 1411 1412 1413 1414 1415
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1416 1417
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1418 1419 1420 1421 1422 1423 1424
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1425
					event->mmap2.tid);
1426 1427 1428 1429 1430 1431 1432 1433
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1434
	map = map__new(machine, event->mmap2.start,
1435
			event->mmap2.len, event->mmap2.pgoff,
1436
			event->mmap2.maj,
1437 1438
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1439 1440
			event->mmap2.prot,
			event->mmap2.flags,
1441
			event->mmap2.filename, type, thread);
1442 1443

	if (map == NULL)
1444
		goto out_problem_map;
1445

1446 1447 1448 1449
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1450
	thread__put(thread);
1451
	map__put(map);
1452 1453
	return 0;

1454 1455
out_problem_insert:
	map__put(map);
1456 1457
out_problem_map:
	thread__put(thread);
1458 1459 1460 1461 1462
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1463
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1464
				struct perf_sample *sample)
1465 1466 1467
{
	struct thread *thread;
	struct map *map;
1468
	enum map_type type;
1469 1470 1471 1472 1473
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1474 1475
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1476 1477 1478 1479 1480 1481
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1482
	thread = machine__findnew_thread(machine, event->mmap.pid,
1483
					 event->mmap.tid);
1484 1485
	if (thread == NULL)
		goto out_problem;
1486 1487 1488 1489 1490 1491

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1492
	map = map__new(machine, event->mmap.start,
1493
			event->mmap.len, event->mmap.pgoff,
1494
			0, 0, 0, 0, 0, 0,
1495
			event->mmap.filename,
1496
			type, thread);
1497

1498
	if (map == NULL)
1499
		goto out_problem_map;
1500

1501 1502 1503 1504
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1505
	thread__put(thread);
1506
	map__put(map);
1507 1508
	return 0;

1509 1510
out_problem_insert:
	map__put(map);
1511 1512
out_problem_map:
	thread__put(thread);
1513 1514 1515 1516 1517
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1518
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1519
{
1520 1521 1522 1523
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1524

1525
	BUG_ON(refcount_read(&th->refcnt) == 0);
1526
	if (lock)
1527
		down_write(&threads->lock);
1528
	rb_erase_init(&th->rb_node, &threads->entries);
1529
	RB_CLEAR_NODE(&th->rb_node);
1530
	--threads->nr;
1531
	/*
1532 1533 1534
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1535
	 */
1536
	list_add_tail(&th->node, &threads->dead);
1537
	if (lock)
1538
		up_write(&threads->lock);
1539
	thread__put(th);
1540 1541
}

1542 1543 1544 1545 1546
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1547 1548
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1549
{
1550 1551 1552
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1553 1554 1555
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1556
	int err = 0;
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1576
	/* if a thread currently exists for the thread id remove it */
1577
	if (thread != NULL) {
1578
		machine__remove_thread(machine, thread);
1579 1580
		thread__put(thread);
	}
1581

1582 1583
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1584 1585

	if (thread == NULL || parent == NULL ||
1586
	    thread__fork(thread, parent, sample->time) < 0) {
1587
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1588
		err = -1;
1589
	}
1590 1591
	thread__put(thread);
	thread__put(parent);
1592

1593
	return err;
1594 1595
}

1596 1597
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1598
{
1599 1600 1601
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1602 1603 1604 1605

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1606
	if (thread != NULL) {
1607
		thread__exited(thread);
1608 1609
		thread__put(thread);
	}
1610 1611 1612 1613

	return 0;
}

1614 1615
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1616 1617 1618 1619 1620
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1621
		ret = machine__process_comm_event(machine, event, sample); break;
1622
	case PERF_RECORD_MMAP:
1623
		ret = machine__process_mmap_event(machine, event, sample); break;
1624 1625
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1626
	case PERF_RECORD_MMAP2:
1627
		ret = machine__process_mmap2_event(machine, event, sample); break;
1628
	case PERF_RECORD_FORK:
1629
		ret = machine__process_fork_event(machine, event, sample); break;
1630
	case PERF_RECORD_EXIT:
1631
		ret = machine__process_exit_event(machine, event, sample); break;
1632
	case PERF_RECORD_LOST:
1633
		ret = machine__process_lost_event(machine, event, sample); break;
1634 1635
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1636
	case PERF_RECORD_ITRACE_START:
1637
		ret = machine__process_itrace_start_event(machine, event); break;
1638 1639
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1640 1641 1642
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1643 1644 1645 1646 1647 1648 1649
	default:
		ret = -1;
		break;
	}

	return ret;
}
1650

1651
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1652
{
1653
	if (!regexec(regex, sym->name, 0, NULL, 0))
1654 1655 1656 1657
		return 1;
	return 0;
}

1658
static void ip__resolve_ams(struct thread *thread,
1659 1660 1661 1662 1663 1664
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1665 1666 1667 1668 1669 1670 1671
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1672
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1673 1674 1675 1676 1677

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1678
	ams->phys_addr = 0;
1679 1680
}

1681
static void ip__resolve_data(struct thread *thread,
1682 1683
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1684 1685 1686 1687 1688
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1689
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1690 1691 1692 1693 1694 1695
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1696
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1697 1698
	}

1699 1700 1701 1702
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1703
	ams->phys_addr = phys_addr;
1704 1705
}

1706 1707
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1708 1709 1710 1711 1712 1713
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1714
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1715 1716
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1717 1718 1719 1720 1721
	mi->data_src.val = sample->data_src;

	return mi;
}

1722 1723
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1724 1725
	char *srcline = NULL;

1726
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1727 1728 1729 1730 1731 1732 1733 1734
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1735
				      sym, show_sym, show_addr, ip);
1736 1737
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1738

1739
	return srcline;
1740 1741
}

1742 1743 1744 1745 1746
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1747
static int add_callchain_ip(struct thread *thread,
1748
			    struct callchain_cursor *cursor,
1749 1750
			    struct symbol **parent,
			    struct addr_location *root_al,
1751
			    u8 *cpumode,
1752 1753 1754
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1755
			    struct iterations *iter,
1756
			    u64 branch_from)
1757 1758
{
	struct addr_location al;
1759 1760
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1761
	const char *srcline = NULL;
1762 1763 1764

	al.filtered = 0;
	al.sym = NULL;
1765
	if (!cpumode) {
1766 1767
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1768
	} else {
1769 1770 1771
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1772
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1773 1774
				break;
			case PERF_CONTEXT_KERNEL:
1775
				*cpumode = PERF_RECORD_MISC_KERNEL;
1776 1777
				break;
			case PERF_CONTEXT_USER:
1778
				*cpumode = PERF_RECORD_MISC_USER;
1779 1780 1781 1782 1783 1784 1785 1786
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1787
				callchain_cursor_reset(cursor);
1788 1789 1790 1791
				return 1;
			}
			return 0;
		}
1792 1793
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1794 1795
	}

1796
	if (al.sym != NULL) {
1797
		if (perf_hpp_list.parent && !*parent &&
1798 1799 1800 1801 1802 1803 1804
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1805
			callchain_cursor_reset(cursor);
1806 1807 1808
		}
	}

1809 1810
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1811 1812 1813 1814 1815 1816

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1817
	srcline = callchain_srcline(al.map, al.sym, al.addr);
1818
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1819
				       branch, flags, nr_loop_iter,
1820
				       iter_cycles, branch_from, srcline);
1821 1822
}

1823 1824
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1825 1826
{
	unsigned int i;
1827 1828
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1829 1830 1831 1832 1833

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1834 1835
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1836 1837 1838 1839 1840
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1853 1854 1855 1856 1857 1858 1859
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1860 1861
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

1898 1899 1900 1901 1902 1903 1904
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1905 1906 1907 1908 1909 1910 1911 1912
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1913
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1914 1915 1916 1917
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1918
{
K
Kan Liang 已提交
1919
	struct ip_callchain *chain = sample->callchain;
1920
	int chain_nr = min(max_stack, (int)chain->nr), i;
1921
	u8 cpumode = PERF_RECORD_MISC_USER;
1922
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1932 1933 1934
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1948
			int err;
1949 1950 1951
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1952 1953 1954
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1955 1956 1957 1958 1959 1960
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1961
					ip = lbr_stack->entries[0].to;
1962 1963
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1964 1965
					branch_from =
						lbr_stack->entries[0].from;
1966
				}
K
Kan Liang 已提交
1967
			} else {
1968 1969 1970 1971 1972 1973
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1974 1975
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1976
				else {
K
Kan Liang 已提交
1977
					ip = lbr_stack->entries[0].to;
1978 1979
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1980 1981
					branch_from =
						lbr_stack->entries[0].from;
1982
				}
K
Kan Liang 已提交
1983 1984
			}

1985 1986
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
1987
					       branch, flags, NULL,
1988
					       branch_from);
K
Kan Liang 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1999
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2000 2001 2002 2003 2004 2005 2006 2007
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2008
	int chain_nr = 0;
2009
	u8 cpumode = PERF_RECORD_MISC_USER;
2010
	int i, j, err, nr_entries;
2011 2012 2013
	int skip_idx = -1;
	int first_call = 0;

2014 2015 2016
	if (chain)
		chain_nr = chain->nr;

2017
	if (perf_evsel__has_branch_callstack(evsel)) {
2018
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2019 2020 2021 2022 2023
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2024 2025 2026 2027
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2028
	skip_idx = arch_skip_callchain_idx(thread, chain);
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2045
		struct iterations iter[nr];
2046 2047 2048 2049 2050 2051 2052 2053 2054

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2055 2056 2057 2058

				if (chain == NULL)
					continue;

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2076 2077
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2078

2079
		for (i = 0; i < nr; i++) {
2080 2081 2082 2083 2084
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2085

2086
			if (!err)
2087
				err = add_callchain_ip(thread, cursor, parent, root_al,
2088 2089
						       NULL, be[i].from,
						       true, &be[i].flags,
2090
						       &iter[i], 0);
2091 2092 2093 2094 2095
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2096 2097 2098 2099

		if (chain_nr == 0)
			return 0;

2100 2101 2102 2103
		chain_nr -= nr;
	}

check_calls:
2104
	for (i = first_call, nr_entries = 0;
2105
	     i < chain_nr && nr_entries < max_stack; i++) {
2106 2107 2108
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2109
			j = i;
2110
		else
2111 2112 2113 2114 2115 2116 2117
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2118

2119 2120
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2121

2122 2123
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2124
				       false, NULL, NULL, 0);
2125 2126

		if (err)
2127
			return (err < 0) ? err : 0;
2128 2129 2130 2131 2132
	}

	return 0;
}

2133 2134 2135 2136 2137 2138
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2139
	int ret = 1;
2140 2141

	if (!symbol_conf.inline_name || !map || !sym)
2142
		return ret;
2143 2144 2145 2146 2147 2148 2149

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2150
			return ret;
2151 2152 2153 2154
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2155 2156 2157
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2158 2159 2160 2161 2162

		if (ret != 0)
			return ret;
	}

2163
	return ret;
2164 2165
}

2166 2167 2168
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2169
	const char *srcline = NULL;
2170 2171 2172

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2173

2174 2175 2176
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2177
	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2178
	return callchain_cursor_append(cursor, entry->ip,
2179
				       entry->map, entry->sym,
2180
				       false, NULL, 0, 0, 0, srcline);
2181 2182
}

2183 2184 2185 2186 2187
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2199
	return unwind__get_entries(unwind_entry, cursor,
2200
				   thread, sample, max_stack);
2201
}
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2213
	callchain_cursor_reset(cursor);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2238
}
2239 2240 2241 2242 2243

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2244
	struct threads *threads;
2245 2246 2247
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2248
	int i;
2249

2250 2251 2252 2253 2254 2255 2256 2257
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2258

2259 2260 2261 2262 2263
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2264 2265 2266
	}
	return rc;
}
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2289
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2290
				  struct target *target, struct thread_map *threads,
2291
				  perf_event__handler_t process, bool data_mmap,
2292 2293
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
2294
{
2295
	if (target__has_task(target))
2296
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2297
	else if (target__has_cpu(target))
2298 2299 2300 2301
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
2302 2303 2304
	/* command specified */
	return 0;
}
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2345
	thread__put(thread);
2346 2347 2348

	return 0;
}
2349 2350 2351

int machine__get_kernel_start(struct machine *machine)
{
2352
	struct map *map = machine__kernel_map(machine);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2365
		err = map__load(map);
2366
		if (!err)
2367 2368 2369 2370
			machine->kernel_start = map->start;
	}
	return err;
}
2371 2372 2373

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2374
	return dsos__findnew(&machine->dsos, filename);
2375
}
2376 2377 2378 2379 2380

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2381
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2382 2383 2384 2385 2386 2387 2388 2389

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}