machine.c 59.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24

25 26
#include "sane_ctype.h"
#include <symbol/kallsyms.h>
27
#include <linux/mman.h>
28

29 30
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

31 32 33 34
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
35
	init_rwsem(&dsos->lock);
36 37
}

38 39 40 41 42 43 44
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
45
		init_rwsem(&threads->lock);
46 47 48 49 50 51
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

52 53
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
54 55 56 57 58 59 60
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
61 62 63 64

	return machine->mmap_name ? 0 : -ENOMEM;
}

65 66
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
67 68
	int err = -ENOMEM;

69
	memset(machine, 0, sizeof(*machine));
70
	map_groups__init(&machine->kmaps, machine);
71
	RB_CLEAR_NODE(&machine->rb_node);
72
	dsos__init(&machine->dsos);
73

74
	machine__threads_init(machine);
75

76
	machine->vdso_info = NULL;
77
	machine->env = NULL;
78

79 80
	machine->pid = pid;

81
	machine->id_hdr_size = 0;
82
	machine->kptr_restrict_warned = false;
83
	machine->comm_exec = false;
84
	machine->kernel_start = 0;
85
	machine->vmlinux_map = NULL;
86

87 88 89 90
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

91 92 93
	if (machine__set_mmap_name(machine))
		goto out;

94
	if (pid != HOST_KERNEL_ID) {
95
		struct thread *thread = machine__findnew_thread(machine, -1,
96
								pid);
97 98 99
		char comm[64];

		if (thread == NULL)
100
			goto out;
101 102

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103
		thread__set_comm(thread, comm, 0);
104
		thread__put(thread);
105 106
	}

107
	machine->current_tid = NULL;
108
	err = 0;
109

110
out:
111
	if (err) {
112
		zfree(&machine->root_dir);
113 114
		zfree(&machine->mmap_name);
	}
115 116 117
	return 0;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

135 136 137 138 139
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
140
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141 142 143
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
144
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 146 147 148 149 150 151
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

152
static void dsos__purge(struct dsos *dsos)
153 154 155
{
	struct dso *pos, *n;

156
	down_write(&dsos->lock);
157

158
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
159
		RB_CLEAR_NODE(&pos->rb_node);
160
		pos->root = NULL;
161 162
		list_del_init(&pos->node);
		dso__put(pos);
163
	}
164

165
	up_write(&dsos->lock);
166
}
167

168 169 170
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
171
	exit_rwsem(&dsos->lock);
172 173
}

174 175
void machine__delete_threads(struct machine *machine)
{
176
	struct rb_node *nd;
177
	int i;
178

179 180
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
181
		down_write(&threads->lock);
182 183 184
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
185

186 187 188
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
189
		up_write(&threads->lock);
190 191 192
	}
}

193 194
void machine__exit(struct machine *machine)
{
195 196
	int i;

197 198 199
	if (machine == NULL)
		return;

200
	machine__destroy_kernel_maps(machine);
201
	map_groups__exit(&machine->kmaps);
202
	dsos__exit(&machine->dsos);
203
	machine__exit_vdso(machine);
204
	zfree(&machine->root_dir);
205
	zfree(&machine->mmap_name);
206
	zfree(&machine->current_tid);
207 208 209

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
210
		exit_rwsem(&threads->lock);
211
	}
212 213 214 215
}

void machine__delete(struct machine *machine)
{
216 217 218 219
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
235 236
			      const char *root_dir)
{
237
	struct rb_node **p = &machines->guests.rb_node;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
259
	rb_insert_color(&machine->rb_node, &machines->guests);
260 261 262 263

	return machine;
}

264 265 266 267 268 269 270 271 272 273 274 275 276
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

277
struct machine *machines__find(struct machines *machines, pid_t pid)
278
{
279
	struct rb_node **p = &machines->guests.rb_node;
280 281 282 283
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

284 285 286
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

303
struct machine *machines__findnew(struct machines *machines, pid_t pid)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
320
				seen = strlist__new(NULL, NULL);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

337 338
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
339 340 341
{
	struct rb_node *nd;

342
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 344 345 346 347
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

348
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349 350 351 352
{
	struct rb_node *node;
	struct machine *machine;

353 354 355
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 357 358 359 360 361 362
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

363 364 365 366 367 368 369 370 371 372 373 374 375
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

376
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 378 379 380
	if (!leader)
		goto out_err;

	if (!leader->mg)
381
		leader->mg = map_groups__new(machine);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
398
		map_groups__put(th->mg);
399 400 401
	}

	th->mg = map_groups__get(leader->mg);
402 403
out_put:
	thread__put(leader);
404 405 406
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407
	goto out_put;
408 409
}

410
/*
411 412 413
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
414
 */
415 416 417
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
418 419 420
{
	struct thread *th;

421
	th = threads->last_match;
422 423 424
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
425
			return thread__get(th);
426 427
		}

428
		threads->last_match = NULL;
429
	}
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	return NULL;
}

/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
	struct rb_node **p = &threads->entries.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

451 452 453 454
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

455
		if (th->tid == tid) {
456
			threads->last_match = th;
457
			machine__update_thread_pid(machine, th, pid);
458
			return thread__get(th);
459 460
		}

461
		if (tid < th->tid)
462 463 464 465 466 467 468 469
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

470
	th = thread__new(pid, tid);
471 472
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
473
		rb_insert_color(&th->rb_node, &threads->entries);
474 475 476 477 478 479 480 481 482

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
483
		if (thread__init_map_groups(th, machine)) {
484
			rb_erase_init(&th->rb_node, &threads->entries);
485
			RB_CLEAR_NODE(&th->rb_node);
486
			thread__put(th);
487
			return NULL;
488
		}
489 490 491 492
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
493 494
		threads->last_match = th;
		++threads->nr;
495 496 497 498 499
	}

	return th;
}

500 501
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
502
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
503 504
}

505 506
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
507
{
508
	struct threads *threads = machine__threads(machine, tid);
509 510
	struct thread *th;

511
	down_write(&threads->lock);
512
	th = __machine__findnew_thread(machine, pid, tid);
513
	up_write(&threads->lock);
514
	return th;
515 516
}

517 518
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
519
{
520
	struct threads *threads = machine__threads(machine, tid);
521
	struct thread *th;
522

523
	down_read(&threads->lock);
524
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
525
	up_read(&threads->lock);
526
	return th;
527
}
528

529 530 531 532 533 534 535 536 537
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

538 539
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
540
{
541 542 543
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
544
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
545
	int err = 0;
546

547 548 549
	if (exec)
		machine->comm_exec = true;

550 551 552
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

553 554
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
555
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
556
		err = -1;
557 558
	}

559 560 561
	thread__put(thread);

	return err;
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

595
int machine__process_lost_event(struct machine *machine __maybe_unused,
596
				union perf_event *event, struct perf_sample *sample __maybe_unused)
597 598 599 600 601 602
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

603 604 605 606 607 608 609 610
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

611 612 613
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
614 615 616
{
	struct dso *dso;

617
	down_write(&machine->dsos.lock);
618 619

	dso = __dsos__find(&machine->dsos, m->name, true);
620
	if (!dso) {
621
		dso = __dsos__addnew(&machine->dsos, m->name);
622
		if (dso == NULL)
623
			goto out_unlock;
624

625
		dso__set_module_info(dso, m, machine);
626
		dso__set_long_name(dso, strdup(filename), true);
627 628
	}

629
	dso__get(dso);
630
out_unlock:
631
	up_write(&machine->dsos.lock);
632 633 634
	return dso;
}

635 636 637 638 639 640 641 642
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

643 644 645 646 647 648 649 650
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

651 652 653 654 655 656 657 658
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

674
	dso__set_long_name(dso, dup_filename, true);
675 676
}

677 678
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
679
{
680
	struct map *map = NULL;
681
	struct dso *dso = NULL;
682
	struct kmod_path m;
683

684
	if (kmod_path__parse_name(&m, filename))
685 686
		return NULL;

687
	map = map_groups__find_by_name(&machine->kmaps, m.name);
688 689 690 691 692 693 694
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
695
		goto out;
696
	}
697

698
	dso = machine__findnew_module_dso(machine, &m, filename);
699 700 701
	if (dso == NULL)
		goto out;

702
	map = map__new2(start, dso);
703
	if (map == NULL)
704
		goto out;
705 706

	map_groups__insert(&machine->kmaps, map);
707

708 709
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
710
out:
711 712
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
713
	free(m.name);
714 715 716
	return map;
}

717
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
718 719
{
	struct rb_node *nd;
720
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
721

722
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
723
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
724
		ret += __dsos__fprintf(&pos->dsos.head, fp);
725 726 727 728 729
	}

	return ret;
}

730
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
731 732
				     bool (skip)(struct dso *dso, int parm), int parm)
{
733
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
734 735
}

736
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
737 738 739
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
740
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
741

742
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
743 744 745 746 747 748 749 750 751 752
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
753
	struct dso *kdso = machine__kernel_map(machine)->dso;
754 755 756

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
757 758
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
759 760 761 762 763 764 765 766 767 768 769 770 771
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
772 773
	size_t ret;
	int i;
774

775 776
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
777 778

		down_read(&threads->lock);
779

780
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
781

782 783
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
784

785 786
			ret += thread__fprintf(pos, fp);
		}
787

788
		up_read(&threads->lock);
789
	}
790 791 792 793 794
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
795
	const char *vmlinux_name = machine->mmap_name;
796 797 798
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
799 800 801
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

802 803
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
804
	} else {
J
Jiri Olsa 已提交
805 806 807
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

808 809 810
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
811 812 813 814 815 816 817 818 819 820 821 822
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

823 824
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
825 826 827 828 829 830 831
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

832 833 834 835 836 837
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
838 839
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
840
{
841
	char filename[PATH_MAX];
842
	int i, err = -1;
843 844
	const char *name;
	u64 addr = 0;
845

846
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
847 848 849 850

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

851
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
852 853
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
854 855 856
			break;
	}

857 858 859
	if (err)
		return -1;

860 861
	if (symbol_name)
		*symbol_name = name;
862

863 864
	*start = addr;
	return 0;
865 866
}

867 868 869
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
870 871 872 873 874 875 876 877 878 879 880 881 882 883
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
884
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
885 886 887

	map_groups__insert(&machine->kmaps, map);

888 889
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
931 932
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
933
	int nr_cpus_avail, cpu;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
956

957
	pgoff = find_entry_trampoline(kernel);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

974 975
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

976 977 978 979
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

980 981 982 983 984 985 986 987
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
988 989 990
	return 0;
}

991 992
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
993
{
994 995
	struct kmap *kmap;
	struct map *map;
996

997 998 999
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1000 1001 1002
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1003

1004 1005 1006 1007 1008
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1009

1010 1011
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1012 1013 1014 1015 1016 1017

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1018 1019
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1020

1021 1022
	if (map == NULL)
		return;
1023

1024 1025 1026 1027 1028
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1029
	}
1030 1031

	map__zput(machine->vmlinux_map);
1032 1033
}

1034
int machines__create_guest_kernel_maps(struct machines *machines)
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1083
void machines__destroy_kernel_maps(struct machines *machines)
1084
{
1085 1086 1087
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
1088 1089 1090 1091 1092

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1093
		rb_erase(&pos->rb_node, &machines->guests);
1094 1095 1096 1097
		machine__delete(pos);
	}
}

1098
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1108
int machine__load_kallsyms(struct machine *machine, const char *filename)
1109
{
1110
	struct map *map = machine__kernel_map(machine);
1111
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1112 1113

	if (ret > 0) {
1114
		dso__set_loaded(map->dso);
1115 1116 1117 1118 1119
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1120
		map_groups__fixup_end(&machine->kmaps);
1121 1122 1123 1124 1125
	}

	return ret;
}

1126
int machine__load_vmlinux_path(struct machine *machine)
1127
{
1128
	struct map *map = machine__kernel_map(machine);
1129
	int ret = dso__load_vmlinux_path(map->dso, map);
1130

1131
	if (ret > 0)
1132
		dso__set_loaded(map->dso);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1174
	struct map *map = map_groups__find_by_name(mg, m->name);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1196
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1197
				const char *dir_name, int depth)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1222 1223 1224 1225 1226 1227 1228 1229 1230
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1231 1232 1233
			if (ret < 0)
				goto out;
		} else {
1234
			struct kmod_path m;
1235

1236 1237 1238
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1239

1240 1241
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1242

1243
			free(m.name);
1244

1245
			if (ret)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1264
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1265 1266 1267
		 machine->root_dir, version);
	free(version);

1268
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1269
}
1270 1271 1272 1273 1274
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1275

1276 1277
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1278
{
1279
	struct machine *machine = arg;
1280
	struct map *map;
1281

1282 1283 1284
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1285
	map = machine__findnew_module_map(machine, start, name);
1286 1287
	if (map == NULL)
		return -1;
1288
	map->end = start + size;
1289 1290 1291 1292 1293 1294 1295 1296

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1297 1298 1299
	const char *modules;
	char path[PATH_MAX];

1300
	if (machine__is_default_guest(machine)) {
1301
		modules = symbol_conf.default_guest_modules;
1302 1303
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1304 1305 1306
		modules = path;
	}

1307
	if (symbol__restricted_filename(modules, "/proc/modules"))
1308 1309
		return -1;

1310
	if (modules__parse(modules, machine, machine__create_module))
1311 1312
		return -1;

1313 1314
	if (!machine__set_modules_path(machine))
		return 0;
1315

1316
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1317

1318
	return 0;
1319 1320
}

1321 1322 1323
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1324 1325 1326 1327 1328 1329 1330 1331
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1332 1333
}

1334 1335 1336
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1337
	const char *name = NULL;
1338
	struct map *map;
1339
	u64 addr = 0;
1340 1341
	int ret;

1342
	if (kernel == NULL)
1343
		return -1;
1344

1345 1346
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1347
		goto out_put;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1358 1359
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
1360
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1361
			machine__destroy_kernel_maps(machine);
1362 1363
			ret = -1;
			goto out_put;
1364
		}
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
1377 1378
	}

1379 1380 1381
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1382 1383 1384 1385
	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);
1386 1387 1388
out_put:
	dso__put(kernel);
	return ret;
1389 1390
}

1391 1392 1393 1394
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1395
	list_for_each_entry(dso, &machine->dsos.head, node) {
1396 1397 1398 1399 1400 1401 1402
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1429 1430 1431 1432 1433 1434 1435
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1436 1437 1438 1439
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1440 1441 1442 1443 1444 1445
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1446 1447
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1448 1449
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1450 1451
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1452 1453 1454 1455 1456 1457
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1458
				strlen(machine->mmap_name));
1459 1460 1461 1462
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1463 1464 1465
		struct dso *kernel = NULL;
		struct dso *dso;

1466
		down_read(&machine->dsos.lock);
1467

1468
		list_for_each_entry(dso, &machine->dsos.head, node) {
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1489 1490
				continue;

1491

1492 1493 1494 1495
			kernel = dso;
			break;
		}

1496
		up_read(&machine->dsos.lock);
1497

1498
		if (kernel == NULL)
1499
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1500 1501 1502 1503
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1504 1505
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1506
			goto out_problem;
1507
		}
1508

1509 1510
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1511

1512 1513
		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);
1514 1515 1516 1517 1518 1519 1520

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1521 1522 1523
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1524 1525 1526 1527 1528 1529
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1530
			dso__load(kernel, machine__kernel_map(machine));
1531
		}
1532 1533
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1534 1535 1536 1537 1538 1539
	}
	return 0;
out_problem:
	return -1;
}

1540
int machine__process_mmap2_event(struct machine *machine,
1541
				 union perf_event *event,
1542
				 struct perf_sample *sample)
1543 1544 1545 1546 1547 1548 1549 1550
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1551 1552
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1553 1554 1555 1556 1557 1558 1559
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1560
					event->mmap2.tid);
1561 1562 1563
	if (thread == NULL)
		goto out_problem;

1564
	map = map__new(machine, event->mmap2.start,
1565
			event->mmap2.len, event->mmap2.pgoff,
1566
			event->mmap2.maj,
1567 1568
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1569 1570
			event->mmap2.prot,
			event->mmap2.flags,
1571
			event->mmap2.filename, thread);
1572 1573

	if (map == NULL)
1574
		goto out_problem_map;
1575

1576 1577 1578 1579
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1580
	thread__put(thread);
1581
	map__put(map);
1582 1583
	return 0;

1584 1585
out_problem_insert:
	map__put(map);
1586 1587
out_problem_map:
	thread__put(thread);
1588 1589 1590 1591 1592
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1593
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1594
				struct perf_sample *sample)
1595 1596 1597
{
	struct thread *thread;
	struct map *map;
1598
	u32 prot = 0;
1599 1600 1601 1602 1603
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1604 1605
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1606 1607 1608 1609 1610 1611
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1612
	thread = machine__findnew_thread(machine, event->mmap.pid,
1613
					 event->mmap.tid);
1614 1615
	if (thread == NULL)
		goto out_problem;
1616

1617
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1618
		prot = PROT_EXEC;
1619

1620
	map = map__new(machine, event->mmap.start,
1621
			event->mmap.len, event->mmap.pgoff,
1622
			0, 0, 0, 0, prot, 0,
1623
			event->mmap.filename,
1624
			thread);
1625

1626
	if (map == NULL)
1627
		goto out_problem_map;
1628

1629 1630 1631 1632
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1633
	thread__put(thread);
1634
	map__put(map);
1635 1636
	return 0;

1637 1638
out_problem_insert:
	map__put(map);
1639 1640
out_problem_map:
	thread__put(thread);
1641 1642 1643 1644 1645
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1646
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1647
{
1648 1649 1650 1651
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1652

1653
	BUG_ON(refcount_read(&th->refcnt) == 0);
1654
	if (lock)
1655
		down_write(&threads->lock);
1656
	rb_erase_init(&th->rb_node, &threads->entries);
1657
	RB_CLEAR_NODE(&th->rb_node);
1658
	--threads->nr;
1659
	/*
1660 1661 1662
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1663
	 */
1664
	list_add_tail(&th->node, &threads->dead);
1665
	if (lock)
1666
		up_write(&threads->lock);
1667
	thread__put(th);
1668 1669
}

1670 1671 1672 1673 1674
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1675 1676
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1677
{
1678 1679 1680
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1681 1682 1683
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1684
	int err = 0;
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1704
	/* if a thread currently exists for the thread id remove it */
1705
	if (thread != NULL) {
1706
		machine__remove_thread(machine, thread);
1707 1708
		thread__put(thread);
	}
1709

1710 1711
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1712 1713

	if (thread == NULL || parent == NULL ||
1714
	    thread__fork(thread, parent, sample->time) < 0) {
1715
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1716
		err = -1;
1717
	}
1718 1719
	thread__put(thread);
	thread__put(parent);
1720

1721
	return err;
1722 1723
}

1724 1725
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1726
{
1727 1728 1729
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1730 1731 1732 1733

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1734
	if (thread != NULL) {
1735
		thread__exited(thread);
1736 1737
		thread__put(thread);
	}
1738 1739 1740 1741

	return 0;
}

1742 1743
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1744 1745 1746 1747 1748
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1749
		ret = machine__process_comm_event(machine, event, sample); break;
1750
	case PERF_RECORD_MMAP:
1751
		ret = machine__process_mmap_event(machine, event, sample); break;
1752 1753
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1754
	case PERF_RECORD_MMAP2:
1755
		ret = machine__process_mmap2_event(machine, event, sample); break;
1756
	case PERF_RECORD_FORK:
1757
		ret = machine__process_fork_event(machine, event, sample); break;
1758
	case PERF_RECORD_EXIT:
1759
		ret = machine__process_exit_event(machine, event, sample); break;
1760
	case PERF_RECORD_LOST:
1761
		ret = machine__process_lost_event(machine, event, sample); break;
1762 1763
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1764
	case PERF_RECORD_ITRACE_START:
1765
		ret = machine__process_itrace_start_event(machine, event); break;
1766 1767
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1768 1769 1770
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1771 1772 1773 1774 1775 1776 1777
	default:
		ret = -1;
		break;
	}

	return ret;
}
1778

1779
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1780
{
1781
	if (!regexec(regex, sym->name, 0, NULL, 0))
1782 1783 1784 1785
		return 1;
	return 0;
}

1786
static void ip__resolve_ams(struct thread *thread,
1787 1788 1789 1790 1791 1792
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1793 1794 1795 1796 1797 1798 1799
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1800
	thread__find_cpumode_addr_location(thread, ip, &al);
1801 1802 1803 1804 1805

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1806
	ams->phys_addr = 0;
1807 1808
}

1809
static void ip__resolve_data(struct thread *thread,
1810 1811
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1812 1813 1814 1815 1816
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1817
	thread__find_symbol(thread, m, addr, &al);
1818

1819 1820 1821 1822
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1823
	ams->phys_addr = phys_addr;
1824 1825
}

1826 1827
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1828
{
1829
	struct mem_info *mi = mem_info__new();
1830 1831 1832 1833

	if (!mi)
		return NULL;

1834
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1835 1836
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1837 1838 1839 1840 1841
	mi->data_src.val = sample->data_src;

	return mi;
}

1842 1843
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1844 1845
	char *srcline = NULL;

1846
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1847 1848 1849 1850 1851 1852 1853 1854
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1855
				      sym, show_sym, show_addr, ip);
1856 1857
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1858

1859
	return srcline;
1860 1861
}

1862 1863 1864 1865 1866
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1867
static int add_callchain_ip(struct thread *thread,
1868
			    struct callchain_cursor *cursor,
1869 1870
			    struct symbol **parent,
			    struct addr_location *root_al,
1871
			    u8 *cpumode,
1872 1873 1874
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1875
			    struct iterations *iter,
1876
			    u64 branch_from)
1877 1878
{
	struct addr_location al;
1879 1880
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1881
	const char *srcline = NULL;
1882 1883 1884

	al.filtered = 0;
	al.sym = NULL;
1885
	if (!cpumode) {
1886
		thread__find_cpumode_addr_location(thread, ip, &al);
1887
	} else {
1888 1889 1890
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1891
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1892 1893
				break;
			case PERF_CONTEXT_KERNEL:
1894
				*cpumode = PERF_RECORD_MISC_KERNEL;
1895 1896
				break;
			case PERF_CONTEXT_USER:
1897
				*cpumode = PERF_RECORD_MISC_USER;
1898 1899 1900 1901 1902 1903 1904 1905
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1906
				callchain_cursor_reset(cursor);
1907 1908 1909 1910
				return 1;
			}
			return 0;
		}
1911
		thread__find_symbol(thread, *cpumode, ip, &al);
1912 1913
	}

1914
	if (al.sym != NULL) {
1915
		if (perf_hpp_list.parent && !*parent &&
1916 1917 1918 1919 1920 1921 1922
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1923
			callchain_cursor_reset(cursor);
1924 1925 1926
		}
	}

1927 1928
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1929 1930 1931 1932 1933 1934

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1935
	srcline = callchain_srcline(al.map, al.sym, al.addr);
1936
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
1937
				       branch, flags, nr_loop_iter,
1938
				       iter_cycles, branch_from, srcline);
1939 1940
}

1941 1942
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1943 1944
{
	unsigned int i;
1945 1946
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1947 1948 1949 1950 1951

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1952 1953
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1954 1955 1956 1957 1958
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1971 1972 1973 1974 1975 1976 1977
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1978 1979
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2016 2017 2018 2019 2020 2021 2022
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2023 2024 2025 2026 2027 2028 2029 2030
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2031
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2032 2033 2034 2035
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2036
{
K
Kan Liang 已提交
2037
	struct ip_callchain *chain = sample->callchain;
2038
	int chain_nr = min(max_stack, (int)chain->nr), i;
2039
	u8 cpumode = PERF_RECORD_MISC_USER;
2040
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2050 2051 2052
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2066
			int err;
2067 2068 2069
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2070 2071 2072
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2073 2074 2075 2076 2077 2078
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2079
					ip = lbr_stack->entries[0].to;
2080 2081
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2082 2083
					branch_from =
						lbr_stack->entries[0].from;
2084
				}
K
Kan Liang 已提交
2085
			} else {
2086 2087 2088 2089 2090 2091
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2092 2093
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2094
				else {
K
Kan Liang 已提交
2095
					ip = lbr_stack->entries[0].to;
2096 2097
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2098 2099
					branch_from =
						lbr_stack->entries[0].from;
2100
				}
K
Kan Liang 已提交
2101 2102
			}

2103 2104
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2105
					       branch, flags, NULL,
2106
					       branch_from);
K
Kan Liang 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
2117
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2118 2119 2120 2121 2122 2123 2124 2125
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2126
	int chain_nr = 0;
2127
	u8 cpumode = PERF_RECORD_MISC_USER;
2128
	int i, j, err, nr_entries;
2129 2130 2131
	int skip_idx = -1;
	int first_call = 0;

2132 2133 2134
	if (chain)
		chain_nr = chain->nr;

2135
	if (perf_evsel__has_branch_callstack(evsel)) {
2136
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2137 2138 2139 2140 2141
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2142 2143 2144 2145
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2146
	skip_idx = arch_skip_callchain_idx(thread, chain);
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2163
		struct iterations iter[nr];
2164 2165 2166 2167 2168 2169 2170 2171 2172

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2173 2174 2175 2176

				if (chain == NULL)
					continue;

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2194 2195
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2196

2197
		for (i = 0; i < nr; i++) {
2198 2199 2200 2201 2202
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2203

2204
			if (!err)
2205
				err = add_callchain_ip(thread, cursor, parent, root_al,
2206 2207
						       NULL, be[i].from,
						       true, &be[i].flags,
2208
						       &iter[i], 0);
2209 2210 2211 2212 2213
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2214 2215 2216 2217

		if (chain_nr == 0)
			return 0;

2218 2219 2220 2221
		chain_nr -= nr;
	}

check_calls:
2222
	for (i = first_call, nr_entries = 0;
2223
	     i < chain_nr && nr_entries < max_stack; i++) {
2224 2225 2226
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2227
			j = i;
2228
		else
2229 2230 2231 2232 2233 2234 2235
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2236

2237 2238
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2239

2240 2241
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2242
				       false, NULL, NULL, 0);
2243 2244

		if (err)
2245
			return (err < 0) ? err : 0;
2246 2247 2248 2249 2250
	}

	return 0;
}

2251 2252 2253 2254 2255 2256
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2257
	int ret = 1;
2258 2259

	if (!symbol_conf.inline_name || !map || !sym)
2260
		return ret;
2261 2262 2263 2264 2265 2266 2267

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2268
			return ret;
2269 2270 2271 2272
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2273 2274 2275
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2276 2277 2278 2279 2280

		if (ret != 0)
			return ret;
	}

2281
	return ret;
2282 2283
}

2284 2285 2286
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2287
	const char *srcline = NULL;
2288
	u64 addr;
2289 2290 2291

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2292

2293 2294 2295
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2296 2297 2298 2299 2300 2301 2302
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
	addr = map__map_ip(entry->map, entry->ip);

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2303
	return callchain_cursor_append(cursor, entry->ip,
2304
				       entry->map, entry->sym,
2305
				       false, NULL, 0, 0, 0, srcline);
2306 2307
}

2308 2309 2310 2311 2312
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2324
	return unwind__get_entries(unwind_entry, cursor,
2325
				   thread, sample, max_stack);
2326
}
2327

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2338
	callchain_cursor_reset(cursor);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2363
}
2364 2365 2366 2367 2368

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2369
	struct threads *threads;
2370 2371 2372
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2373
	int i;
2374

2375 2376 2377 2378 2379 2380 2381 2382
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2383

2384 2385 2386 2387 2388
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2389 2390 2391
	}
	return rc;
}
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2414
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2415
				  struct target *target, struct thread_map *threads,
2416
				  perf_event__handler_t process, bool data_mmap,
2417 2418
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
2419
{
2420
	if (target__has_task(target))
2421
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2422
	else if (target__has_cpu(target))
2423 2424 2425 2426
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
2427 2428 2429
	/* command specified */
	return 0;
}
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2470
	thread__put(thread);
2471 2472 2473

	return 0;
}
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2484 2485 2486 2487 2488
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2489 2490
int machine__get_kernel_start(struct machine *machine)
{
2491
	struct map *map = machine__kernel_map(machine);
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2504
		err = map__load(map);
2505 2506 2507 2508 2509 2510
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2511 2512 2513 2514
			machine->kernel_start = map->start;
	}
	return err;
}
2515 2516 2517

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2518
	return dsos__findnew(&machine->dsos, filename);
2519
}
2520 2521 2522 2523 2524

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2525
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2526 2527 2528 2529 2530 2531 2532 2533

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}