machine.c 65.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "srcline.h"
14
#include "symbol.h"
15
#include "sort.h"
16
#include "strlist.h"
17
#include "target.h"
18
#include "thread.h"
19
#include "util.h"
20
#include "vdso.h"
21
#include <stdbool.h>
22 23 24
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
25
#include "unwind.h"
26
#include "linux/hash.h"
27
#include "asm/bug.h"
28
#include "bpf-event.h"
29

30
#include <linux/ctype.h>
31
#include <symbol/kallsyms.h>
32
#include <linux/mman.h>
33
#include <linux/zalloc.h>
34

35 36
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

37 38 39 40
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
41
	init_rwsem(&dsos->lock);
42 43
}

44 45 46 47 48 49
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
50
		threads->entries = RB_ROOT_CACHED;
51
		init_rwsem(&threads->lock);
52 53 54 55 56 57
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

58 59
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
60 61 62 63 64 65 66
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
67 68 69 70

	return machine->mmap_name ? 0 : -ENOMEM;
}

71 72
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
73 74
	int err = -ENOMEM;

75
	memset(machine, 0, sizeof(*machine));
76
	map_groups__init(&machine->kmaps, machine);
77
	RB_CLEAR_NODE(&machine->rb_node);
78
	dsos__init(&machine->dsos);
79

80
	machine__threads_init(machine);
81

82
	machine->vdso_info = NULL;
83
	machine->env = NULL;
84

85 86
	machine->pid = pid;

87
	machine->id_hdr_size = 0;
88
	machine->kptr_restrict_warned = false;
89
	machine->comm_exec = false;
90
	machine->kernel_start = 0;
91
	machine->vmlinux_map = NULL;
92

93 94 95 96
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

97 98 99
	if (machine__set_mmap_name(machine))
		goto out;

100
	if (pid != HOST_KERNEL_ID) {
101
		struct thread *thread = machine__findnew_thread(machine, -1,
102
								pid);
103 104 105
		char comm[64];

		if (thread == NULL)
106
			goto out;
107 108

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
109
		thread__set_comm(thread, comm, 0);
110
		thread__put(thread);
111 112
	}

113
	machine->current_tid = NULL;
114
	err = 0;
115

116
out:
117
	if (err) {
118
		zfree(&machine->root_dir);
119 120
		zfree(&machine->mmap_name);
	}
121 122 123
	return 0;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

141 142 143 144 145
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
146
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
147 148 149
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
150
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
151 152 153 154 155 156 157
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

158
static void dsos__purge(struct dsos *dsos)
159 160 161
{
	struct dso *pos, *n;

162
	down_write(&dsos->lock);
163

164
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
165
		RB_CLEAR_NODE(&pos->rb_node);
166
		pos->root = NULL;
167 168
		list_del_init(&pos->node);
		dso__put(pos);
169
	}
170

171
	up_write(&dsos->lock);
172
}
173

174 175 176
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
177
	exit_rwsem(&dsos->lock);
178 179
}

180 181
void machine__delete_threads(struct machine *machine)
{
182
	struct rb_node *nd;
183
	int i;
184

185 186
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
187
		down_write(&threads->lock);
188
		nd = rb_first_cached(&threads->entries);
189 190
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
191

192 193 194
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
195
		up_write(&threads->lock);
196 197 198
	}
}

199 200
void machine__exit(struct machine *machine)
{
201 202
	int i;

203 204 205
	if (machine == NULL)
		return;

206
	machine__destroy_kernel_maps(machine);
207
	map_groups__exit(&machine->kmaps);
208
	dsos__exit(&machine->dsos);
209
	machine__exit_vdso(machine);
210
	zfree(&machine->root_dir);
211
	zfree(&machine->mmap_name);
212
	zfree(&machine->current_tid);
213 214 215

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
216 217 218 219 220 221 222 223 224 225 226 227
		struct thread *thread, *n;
		/*
		 * Forget about the dead, at this point whatever threads were
		 * left in the dead lists better have a reference count taken
		 * by who is using them, and then, when they drop those references
		 * and it finally hits zero, thread__put() will check and see that
		 * its not in the dead threads list and will not try to remove it
		 * from there, just calling thread__delete() straight away.
		 */
		list_for_each_entry_safe(thread, n, &threads->dead, node)
			list_del_init(&thread->node);

228
		exit_rwsem(&threads->lock);
229
	}
230 231 232 233
}

void machine__delete(struct machine *machine)
{
234 235 236 237
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
238 239
}

240 241 242
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
243
	machines->guests = RB_ROOT_CACHED;
244 245 246 247 248 249 250 251 252
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
253 254
			      const char *root_dir)
{
255
	struct rb_node **p = &machines->guests.rb_root.rb_node;
256 257
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
258
	bool leftmost = true;
259 260 261 262 263 264 265 266 267 268 269 270 271 272

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
273
		else {
274
			p = &(*p)->rb_right;
275 276
			leftmost = false;
		}
277 278 279
	}

	rb_link_node(&machine->rb_node, parent, p);
280
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
281 282 283 284

	return machine;
}

285 286 287 288 289 290
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

291
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
292 293 294 295 296 297
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

298
struct machine *machines__find(struct machines *machines, pid_t pid)
299
{
300
	struct rb_node **p = &machines->guests.rb_root.rb_node;
301 302 303 304
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

305 306 307
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

324
struct machine *machines__findnew(struct machines *machines, pid_t pid)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
341
				seen = strlist__new(NULL, NULL);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

358 359
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
360 361 362
{
	struct rb_node *nd;

363
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
364 365 366 367 368
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

369
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
370 371 372 373
{
	struct rb_node *node;
	struct machine *machine;

374 375
	machines->host.id_hdr_size = id_hdr_size;

376 377
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
378 379 380 381 382 383 384
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

385 386 387 388 389 390 391 392 393 394 395 396 397
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

398
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
399 400 401 402
	if (!leader)
		goto out_err;

	if (!leader->mg)
403
		leader->mg = map_groups__new(machine);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
420
		map_groups__put(th->mg);
421 422 423
	}

	th->mg = map_groups__get(leader->mg);
424 425
out_put:
	thread__put(leader);
426 427 428
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
429
	goto out_put;
430 431
}

432
/*
433 434 435
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
436
 */
437
static struct thread*
438 439
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
440 441 442
{
	struct thread *th;

443
	th = threads->last_match;
444 445 446
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
447
			return thread__get(th);
448 449
		}

450
		threads->last_match = NULL;
451
	}
452

453 454 455
	return NULL;
}

456 457 458 459 460 461 462 463 464 465 466 467
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

468
static void
469
__threads__set_last_match(struct threads *threads, struct thread *th)
470 471 472 473
{
	threads->last_match = th;
}

474 475 476 477 478 479 480
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

481 482 483 484 485 486 487 488 489
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
490
	struct rb_node **p = &threads->entries.rb_root.rb_node;
491 492
	struct rb_node *parent = NULL;
	struct thread *th;
493
	bool leftmost = true;
494 495 496 497 498

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

499 500 501 502
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

503
		if (th->tid == tid) {
504
			threads__set_last_match(threads, th);
505
			machine__update_thread_pid(machine, th, pid);
506
			return thread__get(th);
507 508
		}

509
		if (tid < th->tid)
510
			p = &(*p)->rb_left;
511
		else {
512
			p = &(*p)->rb_right;
513 514
			leftmost = false;
		}
515 516 517 518 519
	}

	if (!create)
		return NULL;

520
	th = thread__new(pid, tid);
521 522
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
523
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
524 525 526 527 528 529 530 531 532

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
533
		if (thread__init_map_groups(th, machine)) {
534
			rb_erase_cached(&th->rb_node, &threads->entries);
535
			RB_CLEAR_NODE(&th->rb_node);
536
			thread__put(th);
537
			return NULL;
538
		}
539 540 541 542
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
543
		threads__set_last_match(threads, th);
544
		++threads->nr;
545 546 547 548 549
	}

	return th;
}

550 551
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
552
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
553 554
}

555 556
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
557
{
558
	struct threads *threads = machine__threads(machine, tid);
559 560
	struct thread *th;

561
	down_write(&threads->lock);
562
	th = __machine__findnew_thread(machine, pid, tid);
563
	up_write(&threads->lock);
564
	return th;
565 566
}

567 568
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
569
{
570
	struct threads *threads = machine__threads(machine, tid);
571
	struct thread *th;
572

573
	down_read(&threads->lock);
574
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
575
	up_read(&threads->lock);
576
	return th;
577
}
578

579 580 581 582 583 584 585 586 587
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

588 589
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
590
{
591 592 593
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
594
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
595
	int err = 0;
596

597 598 599
	if (exec)
		machine->comm_exec = true;

600 601 602
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

603 604
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
605
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
606
		err = -1;
607 608
	}

609 610 611
	thread__put(thread);

	return err;
612 613
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

645
int machine__process_lost_event(struct machine *machine __maybe_unused,
646
				union perf_event *event, struct perf_sample *sample __maybe_unused)
647
{
648
	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
649 650 651 652
		    event->lost.id, event->lost.lost);
	return 0;
}

653 654 655
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
656
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
657 658 659 660
		    sample->id, event->lost_samples.lost);
	return 0;
}

661 662 663
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
664 665 666
{
	struct dso *dso;

667
	down_write(&machine->dsos.lock);
668 669

	dso = __dsos__find(&machine->dsos, m->name, true);
670
	if (!dso) {
671
		dso = __dsos__addnew(&machine->dsos, m->name);
672
		if (dso == NULL)
673
			goto out_unlock;
674

675
		dso__set_module_info(dso, m, machine);
676
		dso__set_long_name(dso, strdup(filename), true);
677 678
	}

679
	dso__get(dso);
680
out_unlock:
681
	up_write(&machine->dsos.lock);
682 683 684
	return dso;
}

685 686 687 688 689 690 691 692
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

693 694 695 696 697 698 699 700
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

701 702 703 704 705 706 707 708
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

709 710 711 712 713 714 715
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
	struct map *map;

716
	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
717
	if (!map) {
718
		map = dso__new_map(event->ksymbol.name);
719 720 721
		if (!map)
			return -ENOMEM;

722 723
		map->start = event->ksymbol.addr;
		map->end = map->start + event->ksymbol.len;
724 725 726
		map_groups__insert(&machine->kmaps, map);
	}

727
	sym = symbol__new(map->map_ip(map, map->start),
728 729
			  event->ksymbol.len,
			  0, 0, event->ksymbol.name);
730 731 732 733 734 735 736 737 738 739 740 741
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

742
	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
743 744 745 746 747 748 749 750 751 752 753 754 755
	if (map)
		map_groups__remove(&machine->kmaps, map);

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

756
	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
757 758 759 760 761
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

777
	dso__set_long_name(dso, dup_filename, true);
778 779
}

780 781
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
782
{
783
	struct map *map = NULL;
784
	struct dso *dso = NULL;
785
	struct kmod_path m;
786

787
	if (kmod_path__parse_name(&m, filename))
788 789
		return NULL;

790
	map = map_groups__find_by_name(&machine->kmaps, m.name);
791 792 793 794 795 796 797
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
798
		goto out;
799
	}
800

801
	dso = machine__findnew_module_dso(machine, &m, filename);
802 803 804
	if (dso == NULL)
		goto out;

805
	map = map__new2(start, dso);
806
	if (map == NULL)
807
		goto out;
808 809

	map_groups__insert(&machine->kmaps, map);
810

811 812
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
813
out:
814 815
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
816
	zfree(&m.name);
817 818 819
	return map;
}

820
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
821 822
{
	struct rb_node *nd;
823
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
824

825
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
826
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
827
		ret += __dsos__fprintf(&pos->dsos.head, fp);
828 829 830 831 832
	}

	return ret;
}

833
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
834 835
				     bool (skip)(struct dso *dso, int parm), int parm)
{
836
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
837 838
}

839
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
840 841 842
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
843
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
844

845
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
846 847 848 849 850 851 852 853 854 855
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
856
	struct dso *kdso = machine__kernel_map(machine)->dso;
857 858 859

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
860 861
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
862 863 864 865 866 867 868 869 870 871 872 873 874
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
875 876
	size_t ret;
	int i;
877

878 879
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
880 881

		down_read(&threads->lock);
882

883
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
884

885 886
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
887
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
888

889 890
			ret += thread__fprintf(pos, fp);
		}
891

892
		up_read(&threads->lock);
893
	}
894 895 896 897 898
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
899
	const char *vmlinux_name = machine->mmap_name;
900 901 902
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
903 904 905
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

906 907
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
908
	} else {
J
Jiri Olsa 已提交
909 910 911
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

912 913 914
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
915 916 917 918 919 920 921 922 923 924 925 926
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

927 928
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
929 930 931 932 933 934 935
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

936 937 938 939 940 941
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
942
static int machine__get_running_kernel_start(struct machine *machine,
943 944
					     const char **symbol_name,
					     u64 *start, u64 *end)
945
{
946
	char filename[PATH_MAX];
947
	int i, err = -1;
948 949
	const char *name;
	u64 addr = 0;
950

951
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
952 953 954 955

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

956
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
957 958
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
959 960 961
			break;
	}

962 963 964
	if (err)
		return -1;

965 966
	if (symbol_name)
		*symbol_name = name;
967

968
	*start = addr;
969 970 971 972 973

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

974
	return 0;
975 976
}

977 978 979
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
980 981 982 983 984 985 986 987 988 989 990 991 992 993
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
994
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
995 996 997

	map_groups__insert(&machine->kmaps, map);

998 999
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1041 1042
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
1043
	int nr_cpus_avail, cpu;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1066

1067
	pgoff = find_entry_trampoline(kernel);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1084 1085
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1086 1087 1088 1089
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1090 1091 1092 1093 1094 1095 1096 1097
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1098 1099 1100
	return 0;
}

1101 1102
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1103
{
1104 1105
	struct kmap *kmap;
	struct map *map;
1106

1107 1108 1109
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1110 1111 1112
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1113

1114 1115 1116 1117 1118
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1119

1120 1121
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1122 1123 1124 1125 1126 1127

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1128 1129
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1130

1131 1132
	if (map == NULL)
		return;
1133

1134 1135 1136 1137 1138
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1139
	}
1140 1141

	map__zput(machine->vmlinux_map);
1142 1143
}

1144
int machines__create_guest_kernel_maps(struct machines *machines)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1193
void machines__destroy_kernel_maps(struct machines *machines)
1194
{
1195
	struct rb_node *next = rb_first_cached(&machines->guests);
1196 1197

	machine__destroy_kernel_maps(&machines->host);
1198 1199 1200 1201 1202

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1203
		rb_erase_cached(&pos->rb_node, &machines->guests);
1204 1205 1206 1207
		machine__delete(pos);
	}
}

1208
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1218
int machine__load_kallsyms(struct machine *machine, const char *filename)
1219
{
1220
	struct map *map = machine__kernel_map(machine);
1221
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1222 1223

	if (ret > 0) {
1224
		dso__set_loaded(map->dso);
1225 1226 1227 1228 1229
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1230
		map_groups__fixup_end(&machine->kmaps);
1231 1232 1233 1234 1235
	}

	return ret;
}

1236
int machine__load_vmlinux_path(struct machine *machine)
1237
{
1238
	struct map *map = machine__kernel_map(machine);
1239
	int ret = dso__load_vmlinux_path(map->dso, map);
1240

1241
	if (ret > 0)
1242
		dso__set_loaded(map->dso);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1261 1262
	if (!tmp)
		return NULL;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1285
	struct map *map = map_groups__find_by_name(mg, m->name);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1301
	if (m->comp && is_kmod_dso(map->dso)) {
1302
		map->dso->symtab_type++;
1303 1304
		map->dso->comp = m->comp;
	}
1305 1306 1307 1308

	return 0;
}

1309
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1310
				const char *dir_name, int depth)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1335 1336 1337 1338 1339 1340 1341 1342 1343
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1344 1345 1346
			if (ret < 0)
				goto out;
		} else {
1347
			struct kmod_path m;
1348

1349 1350 1351
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1352

1353 1354
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1355

1356
			zfree(&m.name);
1357

1358
			if (ret)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1377
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1378 1379 1380
		 machine->root_dir, version);
	free(version);

1381
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1382
}
1383
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1384
				u64 *size __maybe_unused,
1385 1386 1387 1388
				const char *name __maybe_unused)
{
	return 0;
}
1389

1390 1391
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1392
{
1393
	struct machine *machine = arg;
1394
	struct map *map;
1395

1396
	if (arch__fix_module_text_start(&start, &size, name) < 0)
1397 1398
		return -1;

1399
	map = machine__findnew_module_map(machine, start, name);
1400 1401
	if (map == NULL)
		return -1;
1402
	map->end = start + size;
1403 1404 1405 1406 1407 1408 1409 1410

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1411 1412 1413
	const char *modules;
	char path[PATH_MAX];

1414
	if (machine__is_default_guest(machine)) {
1415
		modules = symbol_conf.default_guest_modules;
1416 1417
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1418 1419 1420
		modules = path;
	}

1421
	if (symbol__restricted_filename(modules, "/proc/modules"))
1422 1423
		return -1;

1424
	if (modules__parse(modules, machine, machine__create_module))
1425 1426
		return -1;

1427 1428
	if (!machine__set_modules_path(machine))
		return 0;
1429

1430
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1431

1432
	return 0;
1433 1434
}

1435 1436 1437
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1438 1439 1440 1441 1442 1443 1444 1445
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
	map_groups__remove(&machine->kmaps, map);

	machine__set_kernel_mmap(machine, start, end);

	map_groups__insert(&machine->kmaps, map);
	map__put(map);
}

1462 1463 1464
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1465
	const char *name = NULL;
1466
	struct map *map;
1467
	u64 start = 0, end = ~0ULL;
1468 1469
	int ret;

1470
	if (kernel == NULL)
1471
		return -1;
1472

1473 1474
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1475
		goto out_put;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1486
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1487
		if (name &&
1488
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1489
			machine__destroy_kernel_maps(machine);
1490 1491
			ret = -1;
			goto out_put;
1492
		}
1493

1494 1495 1496 1497
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1498
		machine__update_kernel_mmap(machine, start, end);
1499 1500
	}

1501 1502 1503
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1504 1505 1506 1507 1508 1509 1510
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1511 1512 1513
out_put:
	dso__put(kernel);
	return ret;
1514 1515
}

1516 1517 1518 1519
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1520
	list_for_each_entry(dso, &machine->dsos.head, node) {
1521 1522 1523 1524 1525 1526 1527
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1554 1555 1556 1557 1558 1559 1560
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1561 1562 1563 1564
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1565 1566 1567 1568 1569 1570
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1571 1572
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1573 1574
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1575 1576
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1577 1578 1579 1580 1581 1582
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1583
				strlen(machine->mmap_name));
1584 1585 1586 1587
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1588 1589 1590
		struct dso *kernel = NULL;
		struct dso *dso;

1591
		down_read(&machine->dsos.lock);
1592

1593
		list_for_each_entry(dso, &machine->dsos.head, node) {
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1614 1615
				continue;

1616

1617 1618 1619 1620
			kernel = dso;
			break;
		}

1621
		up_read(&machine->dsos.lock);
1622

1623
		if (kernel == NULL)
1624
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1625 1626 1627 1628
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1629 1630
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1631
			goto out_problem;
1632
		}
1633

1634 1635
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1636

1637
		machine__update_kernel_mmap(machine, event->mmap.start,
1638
					 event->mmap.start + event->mmap.len);
1639 1640 1641 1642 1643 1644 1645

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1646 1647 1648
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1649 1650 1651 1652 1653 1654
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1655
			dso__load(kernel, machine__kernel_map(machine));
1656
		}
1657 1658
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1659 1660 1661 1662 1663 1664
	}
	return 0;
out_problem:
	return -1;
}

1665
int machine__process_mmap2_event(struct machine *machine,
1666
				 union perf_event *event,
1667
				 struct perf_sample *sample)
1668 1669 1670 1671 1672 1673 1674 1675
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1676 1677
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1678 1679 1680 1681 1682 1683 1684
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1685
					event->mmap2.tid);
1686 1687 1688
	if (thread == NULL)
		goto out_problem;

1689
	map = map__new(machine, event->mmap2.start,
1690
			event->mmap2.len, event->mmap2.pgoff,
1691
			event->mmap2.maj,
1692 1693
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1694 1695
			event->mmap2.prot,
			event->mmap2.flags,
1696
			event->mmap2.filename, thread);
1697 1698

	if (map == NULL)
1699
		goto out_problem_map;
1700

1701 1702 1703 1704
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1705
	thread__put(thread);
1706
	map__put(map);
1707 1708
	return 0;

1709 1710
out_problem_insert:
	map__put(map);
1711 1712
out_problem_map:
	thread__put(thread);
1713 1714 1715 1716 1717
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1718
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1719
				struct perf_sample *sample)
1720 1721 1722
{
	struct thread *thread;
	struct map *map;
1723
	u32 prot = 0;
1724 1725 1726 1727 1728
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1729 1730
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1731 1732 1733 1734 1735 1736
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1737
	thread = machine__findnew_thread(machine, event->mmap.pid,
1738
					 event->mmap.tid);
1739 1740
	if (thread == NULL)
		goto out_problem;
1741

1742
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1743
		prot = PROT_EXEC;
1744

1745
	map = map__new(machine, event->mmap.start,
1746
			event->mmap.len, event->mmap.pgoff,
1747
			0, 0, 0, 0, prot, 0,
1748
			event->mmap.filename,
1749
			thread);
1750

1751
	if (map == NULL)
1752
		goto out_problem_map;
1753

1754 1755 1756 1757
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1758
	thread__put(thread);
1759
	map__put(map);
1760 1761
	return 0;

1762 1763
out_problem_insert:
	map__put(map);
1764 1765
out_problem_map:
	thread__put(thread);
1766 1767 1768 1769 1770
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1771
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1772
{
1773 1774 1775
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1776
		threads__set_last_match(threads, NULL);
1777

1778
	if (lock)
1779
		down_write(&threads->lock);
1780 1781 1782

	BUG_ON(refcount_read(&th->refcnt) == 0);

1783
	rb_erase_cached(&th->rb_node, &threads->entries);
1784
	RB_CLEAR_NODE(&th->rb_node);
1785
	--threads->nr;
1786
	/*
1787 1788 1789
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1790
	 */
1791
	list_add_tail(&th->node, &threads->dead);
1792 1793 1794 1795 1796 1797 1798 1799

	/*
	 * We need to do the put here because if this is the last refcount,
	 * then we will be touching the threads->dead head when removing the
	 * thread.
	 */
	thread__put(th);

1800
	if (lock)
1801
		up_write(&threads->lock);
1802 1803
}

1804 1805 1806 1807 1808
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1809 1810
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1811
{
1812 1813 1814
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1815 1816 1817
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1818
	bool do_maps_clone = true;
1819
	int err = 0;
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1839
	/* if a thread currently exists for the thread id remove it */
1840
	if (thread != NULL) {
1841
		machine__remove_thread(machine, thread);
1842 1843
		thread__put(thread);
	}
1844

1845 1846
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1863 1864

	if (thread == NULL || parent == NULL ||
1865
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1866
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1867
		err = -1;
1868
	}
1869 1870
	thread__put(thread);
	thread__put(parent);
1871

1872
	return err;
1873 1874
}

1875 1876
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1877
{
1878 1879 1880
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1881 1882 1883 1884

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1885
	if (thread != NULL) {
1886
		thread__exited(thread);
1887 1888
		thread__put(thread);
	}
1889 1890 1891 1892

	return 0;
}

1893 1894
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1895 1896 1897 1898 1899
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1900
		ret = machine__process_comm_event(machine, event, sample); break;
1901
	case PERF_RECORD_MMAP:
1902
		ret = machine__process_mmap_event(machine, event, sample); break;
1903 1904
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1905
	case PERF_RECORD_MMAP2:
1906
		ret = machine__process_mmap2_event(machine, event, sample); break;
1907
	case PERF_RECORD_FORK:
1908
		ret = machine__process_fork_event(machine, event, sample); break;
1909
	case PERF_RECORD_EXIT:
1910
		ret = machine__process_exit_event(machine, event, sample); break;
1911
	case PERF_RECORD_LOST:
1912
		ret = machine__process_lost_event(machine, event, sample); break;
1913 1914
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1915
	case PERF_RECORD_ITRACE_START:
1916
		ret = machine__process_itrace_start_event(machine, event); break;
1917 1918
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1919 1920 1921
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1922 1923
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1924
	case PERF_RECORD_BPF_EVENT:
1925
		ret = machine__process_bpf(machine, event, sample); break;
1926 1927 1928 1929 1930 1931 1932
	default:
		ret = -1;
		break;
	}

	return ret;
}
1933

1934
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1935
{
1936
	if (!regexec(regex, sym->name, 0, NULL, 0))
1937 1938 1939 1940
		return 1;
	return 0;
}

1941
static void ip__resolve_ams(struct thread *thread,
1942 1943 1944 1945 1946 1947
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1948 1949 1950 1951 1952 1953 1954
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1955
	thread__find_cpumode_addr_location(thread, ip, &al);
1956 1957 1958 1959 1960

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1961
	ams->phys_addr = 0;
1962 1963
}

1964
static void ip__resolve_data(struct thread *thread,
1965 1966
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1967 1968 1969 1970 1971
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1972
	thread__find_symbol(thread, m, addr, &al);
1973

1974 1975 1976 1977
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1978
	ams->phys_addr = phys_addr;
1979 1980
}

1981 1982
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1983
{
1984
	struct mem_info *mi = mem_info__new();
1985 1986 1987 1988

	if (!mi)
		return NULL;

1989
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1990 1991
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1992 1993 1994 1995 1996
	mi->data_src.val = sample->data_src;

	return mi;
}

1997 1998
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1999 2000
	char *srcline = NULL;

2001
	if (!map || callchain_param.key == CCKEY_FUNCTION)
2002 2003 2004 2005 2006 2007 2008 2009
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2010
				      sym, show_sym, show_addr, ip);
2011 2012
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
2013

2014
	return srcline;
2015 2016
}

2017 2018 2019 2020 2021
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

2022
static int add_callchain_ip(struct thread *thread,
2023
			    struct callchain_cursor *cursor,
2024 2025
			    struct symbol **parent,
			    struct addr_location *root_al,
2026
			    u8 *cpumode,
2027 2028 2029
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2030
			    struct iterations *iter,
2031
			    u64 branch_from)
2032 2033
{
	struct addr_location al;
2034 2035
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2036
	const char *srcline = NULL;
2037 2038 2039

	al.filtered = 0;
	al.sym = NULL;
2040
	if (!cpumode) {
2041
		thread__find_cpumode_addr_location(thread, ip, &al);
2042
	} else {
2043 2044 2045
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2046
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2047 2048
				break;
			case PERF_CONTEXT_KERNEL:
2049
				*cpumode = PERF_RECORD_MISC_KERNEL;
2050 2051
				break;
			case PERF_CONTEXT_USER:
2052
				*cpumode = PERF_RECORD_MISC_USER;
2053 2054 2055 2056 2057 2058 2059 2060
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2061
				callchain_cursor_reset(cursor);
2062 2063 2064 2065
				return 1;
			}
			return 0;
		}
2066
		thread__find_symbol(thread, *cpumode, ip, &al);
2067 2068
	}

2069
	if (al.sym != NULL) {
2070
		if (perf_hpp_list.parent && !*parent &&
2071 2072 2073 2074 2075 2076 2077
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2078
			callchain_cursor_reset(cursor);
2079 2080 2081
		}
	}

2082 2083
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2084 2085 2086 2087 2088 2089

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2090
	srcline = callchain_srcline(al.map, al.sym, al.addr);
2091
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2092
				       branch, flags, nr_loop_iter,
2093
				       iter_cycles, branch_from, srcline);
2094 2095
}

2096 2097
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2098 2099
{
	unsigned int i;
2100 2101
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2102 2103 2104 2105 2106

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2107 2108
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2109 2110 2111 2112 2113
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

2114 2115 2116 2117 2118
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2119
	iter->nr_loop_iter++;
2120 2121 2122 2123 2124 2125
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2126 2127 2128 2129 2130 2131 2132
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2133 2134
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2171 2172 2173 2174 2175 2176 2177
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2178 2179 2180 2181 2182 2183 2184 2185
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2186
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2187 2188 2189 2190
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2191
{
K
Kan Liang 已提交
2192
	struct ip_callchain *chain = sample->callchain;
2193
	int chain_nr = min(max_stack, (int)chain->nr), i;
2194
	u8 cpumode = PERF_RECORD_MISC_USER;
2195
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2205 2206 2207
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2221
			int err;
2222 2223 2224
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2225 2226 2227
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2228 2229 2230 2231 2232 2233
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2234
					ip = lbr_stack->entries[0].to;
2235 2236
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2237 2238
					branch_from =
						lbr_stack->entries[0].from;
2239
				}
K
Kan Liang 已提交
2240
			} else {
2241 2242 2243 2244 2245 2246
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2247 2248
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2249
				else {
K
Kan Liang 已提交
2250
					ip = lbr_stack->entries[0].to;
2251 2252
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2253 2254
					branch_from =
						lbr_stack->entries[0].from;
2255
				}
K
Kan Liang 已提交
2256 2257
			}

2258 2259
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2260
					       branch, flags, NULL,
2261
					       branch_from);
K
Kan Liang 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2292
static int thread__resolve_callchain_sample(struct thread *thread,
2293
					    struct callchain_cursor *cursor,
2294
					    struct evsel *evsel,
K
Kan Liang 已提交
2295 2296 2297 2298 2299 2300 2301
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2302
	int chain_nr = 0;
2303
	u8 cpumode = PERF_RECORD_MISC_USER;
2304
	int i, j, err, nr_entries;
2305 2306 2307
	int skip_idx = -1;
	int first_call = 0;

2308 2309 2310
	if (chain)
		chain_nr = chain->nr;

2311
	if (perf_evsel__has_branch_callstack(evsel)) {
2312
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2313 2314 2315 2316 2317
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2318 2319 2320 2321
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2322
	skip_idx = arch_skip_callchain_idx(thread, chain);
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2339
		struct iterations iter[nr];
2340 2341 2342 2343 2344 2345 2346 2347 2348

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2349 2350 2351 2352

				if (chain == NULL)
					continue;

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2370 2371
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2372

2373
		for (i = 0; i < nr; i++) {
2374 2375 2376 2377 2378
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2379

2380
			if (!err)
2381
				err = add_callchain_ip(thread, cursor, parent, root_al,
2382 2383
						       NULL, be[i].from,
						       true, &be[i].flags,
2384
						       &iter[i], 0);
2385 2386 2387 2388 2389
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2390 2391 2392 2393

		if (chain_nr == 0)
			return 0;

2394 2395 2396 2397
		chain_nr -= nr;
	}

check_calls:
2398 2399 2400 2401 2402 2403
	if (callchain_param.order != ORDER_CALLEE) {
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2404
	for (i = first_call, nr_entries = 0;
2405
	     i < chain_nr && nr_entries < max_stack; i++) {
2406 2407 2408
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2409
			j = i;
2410
		else
2411 2412 2413 2414 2415 2416 2417
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2418 2419
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2420 2421 2422 2423 2424 2425 2426
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2427

2428 2429
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2430
				       false, NULL, NULL, 0);
2431 2432

		if (err)
2433
			return (err < 0) ? err : 0;
2434 2435 2436 2437 2438
	}

	return 0;
}

2439 2440 2441 2442 2443 2444
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2445
	int ret = 1;
2446 2447

	if (!symbol_conf.inline_name || !map || !sym)
2448
		return ret;
2449

2450 2451
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2452 2453 2454 2455 2456

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2457
			return ret;
2458 2459 2460 2461
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2462 2463 2464
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2465 2466 2467 2468 2469

		if (ret != 0)
			return ret;
	}

2470
	return ret;
2471 2472
}

2473 2474 2475
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2476
	const char *srcline = NULL;
2477
	u64 addr = entry->ip;
2478 2479 2480

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2481

2482 2483 2484
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2485 2486 2487 2488
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2489 2490
	if (entry->map)
		addr = map__map_ip(entry->map, entry->ip);
2491 2492

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2493
	return callchain_cursor_append(cursor, entry->ip,
2494
				       entry->map, entry->sym,
2495
				       false, NULL, 0, 0, 0, srcline);
2496 2497
}

2498 2499
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
2500
					    struct evsel *evsel,
2501 2502
					    struct perf_sample *sample,
					    int max_stack)
2503 2504
{
	/* Can we do dwarf post unwind? */
2505 2506
	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2507 2508 2509 2510 2511 2512 2513
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2514
	return unwind__get_entries(unwind_entry, cursor,
2515
				   thread, sample, max_stack);
2516
}
2517

2518 2519
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
2520
			      struct evsel *evsel,
2521 2522 2523 2524 2525 2526 2527
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2528
	callchain_cursor_reset(cursor);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2553
}
2554 2555 2556 2557 2558

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2559
	struct threads *threads;
2560 2561 2562
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2563
	int i;
2564

2565 2566
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2567 2568
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2569 2570 2571 2572 2573
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2574

2575 2576 2577 2578 2579
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2580 2581 2582
	}
	return rc;
}
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2595
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2596 2597 2598 2599 2600 2601 2602 2603 2604
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2605
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2606
				  struct target *target, struct perf_thread_map *threads,
2607
				  perf_event__handler_t process, bool data_mmap,
2608
				  unsigned int nr_threads_synthesize)
2609
{
2610
	if (target__has_task(target))
2611
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2612
	else if (target__has_cpu(target))
2613 2614 2615
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      nr_threads_synthesize);
2616 2617 2618
	/* command specified */
	return 0;
}
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2659
	thread__put(thread);
2660 2661 2662

	return 0;
}
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2673 2674 2675 2676 2677
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2678 2679
int machine__get_kernel_start(struct machine *machine)
{
2680
	struct map *map = machine__kernel_map(machine);
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2693
		err = map__load(map);
2694 2695 2696 2697 2698 2699
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2700 2701 2702 2703
			machine->kernel_start = map->start;
	}
	return err;
}
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2732 2733
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2734
	return dsos__findnew(&machine->dsos, filename);
2735
}
2736 2737 2738 2739 2740

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2741
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2742 2743 2744 2745 2746 2747 2748 2749

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}