machine.c 64.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include <stdlib.h>
7
#include "callchain.h"
8
#include "debug.h"
9
#include "dso.h"
10
#include "env.h"
11
#include "event.h"
12 13
#include "evsel.h"
#include "hist.h"
14 15
#include "machine.h"
#include "map.h"
16 17 18
#include "map_symbol.h"
#include "branch.h"
#include "mem-events.h"
19
#include "srcline.h"
20
#include "symbol.h"
21
#include "sort.h"
22
#include "strlist.h"
23
#include "target.h"
24
#include "thread.h"
25
#include "util.h"
26
#include "vdso.h"
27
#include <stdbool.h>
28 29 30
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
31
#include "unwind.h"
32
#include "linux/hash.h"
33
#include "asm/bug.h"
34
#include "bpf-event.h"
35
#include <internal/lib.h> // page_size
36

37
#include <linux/ctype.h>
38
#include <symbol/kallsyms.h>
39
#include <linux/mman.h>
40
#include <linux/string.h>
41
#include <linux/zalloc.h>
42

43 44
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

45 46 47 48 49
static struct dso *machine__kernel_dso(struct machine *machine)
{
	return machine->vmlinux_map->dso;
}

50 51 52 53
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
54
	init_rwsem(&dsos->lock);
55 56
}

57 58 59 60 61 62
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
63
		threads->entries = RB_ROOT_CACHED;
64
		init_rwsem(&threads->lock);
65 66 67 68 69 70
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

71 72
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
73 74 75 76 77 78 79
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
80 81 82 83

	return machine->mmap_name ? 0 : -ENOMEM;
}

84 85
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
86 87
	int err = -ENOMEM;

88
	memset(machine, 0, sizeof(*machine));
89
	map_groups__init(&machine->kmaps, machine);
90
	RB_CLEAR_NODE(&machine->rb_node);
91
	dsos__init(&machine->dsos);
92

93
	machine__threads_init(machine);
94

95
	machine->vdso_info = NULL;
96
	machine->env = NULL;
97

98 99
	machine->pid = pid;

100
	machine->id_hdr_size = 0;
101
	machine->kptr_restrict_warned = false;
102
	machine->comm_exec = false;
103
	machine->kernel_start = 0;
104
	machine->vmlinux_map = NULL;
105

106 107 108 109
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

110 111 112
	if (machine__set_mmap_name(machine))
		goto out;

113
	if (pid != HOST_KERNEL_ID) {
114
		struct thread *thread = machine__findnew_thread(machine, -1,
115
								pid);
116 117 118
		char comm[64];

		if (thread == NULL)
119
			goto out;
120 121

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122
		thread__set_comm(thread, comm, 0);
123
		thread__put(thread);
124 125
	}

126
	machine->current_tid = NULL;
127
	err = 0;
128

129
out:
130
	if (err) {
131
		zfree(&machine->root_dir);
132 133
		zfree(&machine->mmap_name);
	}
134 135 136
	return 0;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

154 155 156 157 158
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
159
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160 161 162
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
163
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164 165 166 167 168 169 170
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

171
static void dsos__purge(struct dsos *dsos)
172 173 174
{
	struct dso *pos, *n;

175
	down_write(&dsos->lock);
176

177
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
178
		RB_CLEAR_NODE(&pos->rb_node);
179
		pos->root = NULL;
180 181
		list_del_init(&pos->node);
		dso__put(pos);
182
	}
183

184
	up_write(&dsos->lock);
185
}
186

187 188 189
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
190
	exit_rwsem(&dsos->lock);
191 192
}

193 194
void machine__delete_threads(struct machine *machine)
{
195
	struct rb_node *nd;
196
	int i;
197

198 199
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
200
		down_write(&threads->lock);
201
		nd = rb_first_cached(&threads->entries);
202 203
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
204

205 206 207
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
208
		up_write(&threads->lock);
209 210 211
	}
}

212 213
void machine__exit(struct machine *machine)
{
214 215
	int i;

216 217 218
	if (machine == NULL)
		return;

219
	machine__destroy_kernel_maps(machine);
220
	map_groups__exit(&machine->kmaps);
221
	dsos__exit(&machine->dsos);
222
	machine__exit_vdso(machine);
223
	zfree(&machine->root_dir);
224
	zfree(&machine->mmap_name);
225
	zfree(&machine->current_tid);
226 227 228

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
229 230 231 232 233 234 235 236 237 238 239 240
		struct thread *thread, *n;
		/*
		 * Forget about the dead, at this point whatever threads were
		 * left in the dead lists better have a reference count taken
		 * by who is using them, and then, when they drop those references
		 * and it finally hits zero, thread__put() will check and see that
		 * its not in the dead threads list and will not try to remove it
		 * from there, just calling thread__delete() straight away.
		 */
		list_for_each_entry_safe(thread, n, &threads->dead, node)
			list_del_init(&thread->node);

241
		exit_rwsem(&threads->lock);
242
	}
243 244 245 246
}

void machine__delete(struct machine *machine)
{
247 248 249 250
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
251 252
}

253 254 255
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
256
	machines->guests = RB_ROOT_CACHED;
257 258 259 260 261 262 263 264 265
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
266 267
			      const char *root_dir)
{
268
	struct rb_node **p = &machines->guests.rb_root.rb_node;
269 270
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
271
	bool leftmost = true;
272 273 274 275 276 277 278 279 280 281 282 283 284 285

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
286
		else {
287
			p = &(*p)->rb_right;
288 289
			leftmost = false;
		}
290 291 292
	}

	rb_link_node(&machine->rb_node, parent, p);
293
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294 295 296 297

	return machine;
}

298 299 300 301 302 303
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

304
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305 306 307 308 309 310
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

311
struct machine *machines__find(struct machines *machines, pid_t pid)
312
{
313
	struct rb_node **p = &machines->guests.rb_root.rb_node;
314 315 316 317
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

318 319 320
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

337
struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
354
				seen = strlist__new(NULL, NULL);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

371 372
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
373 374 375
{
	struct rb_node *nd;

376
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377 378 379 380 381
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

382
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 384 385 386
{
	struct rb_node *node;
	struct machine *machine;

387 388
	machines->host.id_hdr_size = id_hdr_size;

389 390
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
391 392 393 394 395 396 397
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

398 399 400 401 402 403 404 405 406 407 408 409 410
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

411
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412 413 414 415
	if (!leader)
		goto out_err;

	if (!leader->mg)
416
		leader->mg = map_groups__new(machine);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
433
		map_groups__put(th->mg);
434 435 436
	}

	th->mg = map_groups__get(leader->mg);
437 438
out_put:
	thread__put(leader);
439 440 441
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442
	goto out_put;
443 444
}

445
/*
446 447 448
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
449
 */
450
static struct thread*
451 452
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
453 454 455
{
	struct thread *th;

456
	th = threads->last_match;
457 458 459
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
460
			return thread__get(th);
461 462
		}

463
		threads->last_match = NULL;
464
	}
465

466 467 468
	return NULL;
}

469 470 471 472 473 474 475 476 477 478 479 480
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

481
static void
482
__threads__set_last_match(struct threads *threads, struct thread *th)
483 484 485 486
{
	threads->last_match = th;
}

487 488 489 490 491 492 493
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

494 495 496 497 498 499 500 501 502
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
503
	struct rb_node **p = &threads->entries.rb_root.rb_node;
504 505
	struct rb_node *parent = NULL;
	struct thread *th;
506
	bool leftmost = true;
507 508 509 510 511

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

512 513 514 515
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

516
		if (th->tid == tid) {
517
			threads__set_last_match(threads, th);
518
			machine__update_thread_pid(machine, th, pid);
519
			return thread__get(th);
520 521
		}

522
		if (tid < th->tid)
523
			p = &(*p)->rb_left;
524
		else {
525
			p = &(*p)->rb_right;
526 527
			leftmost = false;
		}
528 529 530 531 532
	}

	if (!create)
		return NULL;

533
	th = thread__new(pid, tid);
534 535
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
536
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537 538 539 540 541 542 543 544 545

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
546
		if (thread__init_map_groups(th, machine)) {
547
			rb_erase_cached(&th->rb_node, &threads->entries);
548
			RB_CLEAR_NODE(&th->rb_node);
549
			thread__put(th);
550
			return NULL;
551
		}
552 553 554 555
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
556
		threads__set_last_match(threads, th);
557
		++threads->nr;
558 559 560 561 562
	}

	return th;
}

563 564
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
565
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 567
}

568 569
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
570
{
571
	struct threads *threads = machine__threads(machine, tid);
572 573
	struct thread *th;

574
	down_write(&threads->lock);
575
	th = __machine__findnew_thread(machine, pid, tid);
576
	up_write(&threads->lock);
577
	return th;
578 579
}

580 581
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
582
{
583
	struct threads *threads = machine__threads(machine, tid);
584
	struct thread *th;
585

586
	down_read(&threads->lock);
587
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588
	up_read(&threads->lock);
589
	return th;
590
}
591

592 593 594 595 596 597 598 599 600
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

601 602
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
603
{
604 605 606
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
607
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608
	int err = 0;
609

610 611 612
	if (exec)
		machine->comm_exec = true;

613 614 615
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

616 617
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619
		err = -1;
620 621
	}

622 623 624
	thread__put(thread);

	return err;
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

658
int machine__process_lost_event(struct machine *machine __maybe_unused,
659
				union perf_event *event, struct perf_sample *sample __maybe_unused)
660
{
661
	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
662 663 664 665
		    event->lost.id, event->lost.lost);
	return 0;
}

666 667 668
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
669
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
670 671 672 673
		    sample->id, event->lost_samples.lost);
	return 0;
}

674 675 676
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
677 678 679
{
	struct dso *dso;

680
	down_write(&machine->dsos.lock);
681 682

	dso = __dsos__find(&machine->dsos, m->name, true);
683
	if (!dso) {
684
		dso = __dsos__addnew(&machine->dsos, m->name);
685
		if (dso == NULL)
686
			goto out_unlock;
687

688
		dso__set_module_info(dso, m, machine);
689
		dso__set_long_name(dso, strdup(filename), true);
690 691
	}

692
	dso__get(dso);
693
out_unlock:
694
	up_write(&machine->dsos.lock);
695 696 697
	return dso;
}

698 699 700 701 702 703 704 705
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

706 707 708 709 710 711 712 713
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

714 715 716 717 718 719 720 721
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

722 723 724 725 726 727 728
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
	struct map *map;

729
	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
730
	if (!map) {
731
		map = dso__new_map(event->ksymbol.name);
732 733 734
		if (!map)
			return -ENOMEM;

735 736
		map->start = event->ksymbol.addr;
		map->end = map->start + event->ksymbol.len;
737 738 739
		map_groups__insert(&machine->kmaps, map);
	}

740
	sym = symbol__new(map->map_ip(map, map->start),
741 742
			  event->ksymbol.len,
			  0, 0, event->ksymbol.name);
743 744 745 746 747 748 749 750 751 752 753 754
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

755
	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
756 757 758 759 760 761 762 763 764 765 766 767 768
	if (map)
		map_groups__remove(&machine->kmaps, map);

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

769
	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
770 771 772 773 774
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

775 776
static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
					      const char *filename)
777
{
778 779
	struct map *map = NULL;
	struct kmod_path m;
780
	struct dso *dso;
781

782
	if (kmod_path__parse_name(&m, filename))
783 784
		return NULL;

785
	dso = machine__findnew_module_dso(machine, &m, filename);
786 787 788
	if (dso == NULL)
		goto out;

789
	map = map__new2(start, dso);
790
	if (map == NULL)
791
		goto out;
792 793

	map_groups__insert(&machine->kmaps, map);
794

795 796
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
797
out:
798 799
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
800
	zfree(&m.name);
801 802 803
	return map;
}

804
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
805 806
{
	struct rb_node *nd;
807
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
808

809
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
810
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
811
		ret += __dsos__fprintf(&pos->dsos.head, fp);
812 813 814 815 816
	}

	return ret;
}

817
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
818 819
				     bool (skip)(struct dso *dso, int parm), int parm)
{
820
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
821 822
}

823
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
824 825 826
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
827
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
828

829
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
830 831 832 833 834 835 836 837 838 839
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
840
	struct dso *kdso = machine__kernel_dso(machine);
841 842 843

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
844 845
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
846 847 848 849 850 851 852 853 854 855 856 857 858
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
859 860
	size_t ret;
	int i;
861

862 863
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
864 865

		down_read(&threads->lock);
866

867
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
868

869 870
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
871
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
872

873 874
			ret += thread__fprintf(pos, fp);
		}
875

876
		up_read(&threads->lock);
877
	}
878 879 880 881 882
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
883
	const char *vmlinux_name = machine->mmap_name;
884 885 886
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
887 888 889
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

890 891
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
892
	} else {
J
Jiri Olsa 已提交
893 894 895
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

896 897 898
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
899 900 901 902 903 904 905 906 907 908 909 910
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

911 912
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
913 914 915 916 917 918 919
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

920 921 922 923 924 925
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
926
static int machine__get_running_kernel_start(struct machine *machine,
927 928
					     const char **symbol_name,
					     u64 *start, u64 *end)
929
{
930
	char filename[PATH_MAX];
931
	int i, err = -1;
932 933
	const char *name;
	u64 addr = 0;
934

935
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
936 937 938 939

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

940
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
941 942
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
943 944 945
			break;
	}

946 947 948
	if (err)
		return -1;

949 950
	if (symbol_name)
		*symbol_name = name;
951

952
	*start = addr;
953 954 955 956 957

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

958
	return 0;
959 960
}

961 962 963
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
964 965 966 967 968 969 970 971 972 973 974 975 976 977
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
978
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
979 980 981

	map_groups__insert(&machine->kmaps, map);

982 983
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1025 1026
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
1027
	int nr_cpus_avail, cpu;
1028 1029 1030 1031 1032 1033 1034 1035
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
1036
	maps__for_each_entry(maps, map) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1050

1051
	pgoff = find_entry_trampoline(kernel);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1068 1069
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1070 1071 1072 1073
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1074 1075 1076 1077 1078 1079 1080 1081
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1082 1083 1084
	return 0;
}

1085 1086
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1087
{
1088 1089
	struct kmap *kmap;
	struct map *map;
1090

1091 1092 1093
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1094 1095 1096
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1097

1098 1099 1100 1101 1102
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1103

1104 1105
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1106 1107 1108 1109 1110 1111

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1112 1113
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1114

1115 1116
	if (map == NULL)
		return;
1117

1118 1119 1120 1121 1122
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1123
	}
1124 1125

	map__zput(machine->vmlinux_map);
1126 1127
}

1128
int machines__create_guest_kernel_maps(struct machines *machines)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1177
void machines__destroy_kernel_maps(struct machines *machines)
1178
{
1179
	struct rb_node *next = rb_first_cached(&machines->guests);
1180 1181

	machine__destroy_kernel_maps(&machines->host);
1182 1183 1184 1185 1186

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1187
		rb_erase_cached(&pos->rb_node, &machines->guests);
1188 1189 1190 1191
		machine__delete(pos);
	}
}

1192
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1193 1194 1195 1196 1197 1198 1199 1200 1201
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1202
int machine__load_kallsyms(struct machine *machine, const char *filename)
1203
{
1204
	struct map *map = machine__kernel_map(machine);
1205
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1206 1207

	if (ret > 0) {
1208
		dso__set_loaded(map->dso);
1209 1210 1211 1212 1213
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1214
		map_groups__fixup_end(&machine->kmaps);
1215 1216 1217 1218 1219
	}

	return ret;
}

1220
int machine__load_vmlinux_path(struct machine *machine)
1221
{
1222
	struct map *map = machine__kernel_map(machine);
1223
	int ret = dso__load_vmlinux_path(map->dso, map);
1224

1225
	if (ret > 0)
1226
		dso__set_loaded(map->dso);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1245 1246
	if (!tmp)
		return NULL;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1269
	struct map *map = map_groups__find_by_name(mg, m->name);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1285
	if (m->comp && is_kmod_dso(map->dso)) {
1286
		map->dso->symtab_type++;
1287 1288
		map->dso->comp = m->comp;
	}
1289 1290 1291 1292

	return 0;
}

1293
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1294
				const char *dir_name, int depth)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1319 1320 1321 1322 1323 1324 1325 1326 1327
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1328 1329 1330
			if (ret < 0)
				goto out;
		} else {
1331
			struct kmod_path m;
1332

1333 1334 1335
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1336

1337 1338
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1339

1340
			zfree(&m.name);
1341

1342
			if (ret)
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1361
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1362 1363 1364
		 machine->root_dir, version);
	free(version);

1365
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1366
}
1367
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1368
				u64 *size __maybe_unused,
1369 1370 1371 1372
				const char *name __maybe_unused)
{
	return 0;
}
1373

1374 1375
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1376
{
1377
	struct machine *machine = arg;
1378
	struct map *map;
1379

1380
	if (arch__fix_module_text_start(&start, &size, name) < 0)
1381 1382
		return -1;

1383
	map = machine__addnew_module_map(machine, start, name);
1384 1385
	if (map == NULL)
		return -1;
1386
	map->end = start + size;
1387 1388 1389 1390 1391 1392 1393 1394

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1395 1396 1397
	const char *modules;
	char path[PATH_MAX];

1398
	if (machine__is_default_guest(machine)) {
1399
		modules = symbol_conf.default_guest_modules;
1400 1401
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1402 1403 1404
		modules = path;
	}

1405
	if (symbol__restricted_filename(modules, "/proc/modules"))
1406 1407
		return -1;

1408
	if (modules__parse(modules, machine, machine__create_module))
1409 1410
		return -1;

1411 1412
	if (!machine__set_modules_path(machine))
		return 0;
1413

1414
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1415

1416
	return 0;
1417 1418
}

1419 1420 1421
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1422 1423 1424 1425 1426 1427 1428 1429
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
	map_groups__remove(&machine->kmaps, map);

	machine__set_kernel_mmap(machine, start, end);

	map_groups__insert(&machine->kmaps, map);
	map__put(map);
}

1446 1447 1448
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1449
	const char *name = NULL;
1450
	struct map *map;
1451
	u64 start = 0, end = ~0ULL;
1452 1453
	int ret;

1454
	if (kernel == NULL)
1455
		return -1;
1456

1457 1458
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1459
		goto out_put;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1470
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1471
		if (name &&
1472
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1473
			machine__destroy_kernel_maps(machine);
1474 1475
			ret = -1;
			goto out_put;
1476
		}
1477

1478 1479 1480 1481
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1482
		machine__update_kernel_mmap(machine, start, end);
1483 1484
	}

1485 1486 1487
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1488 1489 1490 1491 1492 1493 1494
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1495 1496 1497
out_put:
	dso__put(kernel);
	return ret;
1498 1499
}

1500 1501 1502 1503
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1504
	list_for_each_entry(dso, &machine->dsos.head, node) {
1505 1506 1507 1508 1509 1510 1511
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
1522
	struct dso *kernel = machine__kernel_dso(machine);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1537 1538 1539 1540 1541 1542 1543
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1544 1545 1546 1547
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1548 1549 1550 1551 1552 1553
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1554 1555
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1556 1557
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1558 1559
		map = machine__addnew_module_map(machine, event->mmap.start,
						 event->mmap.filename);
1560 1561 1562 1563 1564 1565
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1566
				strlen(machine->mmap_name));
1567 1568 1569 1570
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1571 1572 1573
		struct dso *kernel = NULL;
		struct dso *dso;

1574
		down_read(&machine->dsos.lock);
1575

1576
		list_for_each_entry(dso, &machine->dsos.head, node) {
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1597 1598
				continue;

1599

1600 1601 1602 1603
			kernel = dso;
			break;
		}

1604
		up_read(&machine->dsos.lock);
1605

1606
		if (kernel == NULL)
1607
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1608 1609 1610 1611
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1612 1613
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1614
			goto out_problem;
1615
		}
1616

1617 1618
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1619

1620
		machine__update_kernel_mmap(machine, event->mmap.start,
1621
					 event->mmap.start + event->mmap.len);
1622 1623 1624 1625 1626 1627 1628

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1629 1630 1631
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1632 1633 1634 1635 1636 1637
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1638
			dso__load(kernel, machine__kernel_map(machine));
1639
		}
1640 1641
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1642 1643 1644 1645 1646 1647
	}
	return 0;
out_problem:
	return -1;
}

1648
int machine__process_mmap2_event(struct machine *machine,
1649
				 union perf_event *event,
1650
				 struct perf_sample *sample)
1651 1652 1653 1654 1655 1656 1657 1658
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1659 1660
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661 1662 1663 1664 1665 1666 1667
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1668
					event->mmap2.tid);
1669 1670 1671
	if (thread == NULL)
		goto out_problem;

1672
	map = map__new(machine, event->mmap2.start,
1673
			event->mmap2.len, event->mmap2.pgoff,
1674
			event->mmap2.maj,
1675 1676
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1677 1678
			event->mmap2.prot,
			event->mmap2.flags,
1679
			event->mmap2.filename, thread);
1680 1681

	if (map == NULL)
1682
		goto out_problem_map;
1683

1684 1685 1686 1687
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1688
	thread__put(thread);
1689
	map__put(map);
1690 1691
	return 0;

1692 1693
out_problem_insert:
	map__put(map);
1694 1695
out_problem_map:
	thread__put(thread);
1696 1697 1698 1699 1700
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1701
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1702
				struct perf_sample *sample)
1703 1704 1705
{
	struct thread *thread;
	struct map *map;
1706
	u32 prot = 0;
1707 1708 1709 1710 1711
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1712 1713
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1714 1715 1716 1717 1718 1719
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1720
	thread = machine__findnew_thread(machine, event->mmap.pid,
1721
					 event->mmap.tid);
1722 1723
	if (thread == NULL)
		goto out_problem;
1724

1725
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1726
		prot = PROT_EXEC;
1727

1728
	map = map__new(machine, event->mmap.start,
1729
			event->mmap.len, event->mmap.pgoff,
1730
			0, 0, 0, 0, prot, 0,
1731
			event->mmap.filename,
1732
			thread);
1733

1734
	if (map == NULL)
1735
		goto out_problem_map;
1736

1737 1738 1739 1740
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1741
	thread__put(thread);
1742
	map__put(map);
1743 1744
	return 0;

1745 1746
out_problem_insert:
	map__put(map);
1747 1748
out_problem_map:
	thread__put(thread);
1749 1750 1751 1752 1753
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1754
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1755
{
1756 1757 1758
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1759
		threads__set_last_match(threads, NULL);
1760

1761
	if (lock)
1762
		down_write(&threads->lock);
1763 1764 1765

	BUG_ON(refcount_read(&th->refcnt) == 0);

1766
	rb_erase_cached(&th->rb_node, &threads->entries);
1767
	RB_CLEAR_NODE(&th->rb_node);
1768
	--threads->nr;
1769
	/*
1770 1771 1772
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1773
	 */
1774
	list_add_tail(&th->node, &threads->dead);
1775 1776 1777 1778 1779 1780 1781 1782

	/*
	 * We need to do the put here because if this is the last refcount,
	 * then we will be touching the threads->dead head when removing the
	 * thread.
	 */
	thread__put(th);

1783
	if (lock)
1784
		up_write(&threads->lock);
1785 1786
}

1787 1788 1789 1790 1791
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1792 1793
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1794
{
1795 1796 1797
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1798 1799 1800
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1801
	bool do_maps_clone = true;
1802
	int err = 0;
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1822
	/* if a thread currently exists for the thread id remove it */
1823
	if (thread != NULL) {
1824
		machine__remove_thread(machine, thread);
1825 1826
		thread__put(thread);
	}
1827

1828 1829
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1846 1847

	if (thread == NULL || parent == NULL ||
1848
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1849
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1850
		err = -1;
1851
	}
1852 1853
	thread__put(thread);
	thread__put(parent);
1854

1855
	return err;
1856 1857
}

1858 1859
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1860
{
1861 1862 1863
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1864 1865 1866 1867

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1868
	if (thread != NULL) {
1869
		thread__exited(thread);
1870 1871
		thread__put(thread);
	}
1872 1873 1874 1875

	return 0;
}

1876 1877
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1878 1879 1880 1881 1882
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1883
		ret = machine__process_comm_event(machine, event, sample); break;
1884
	case PERF_RECORD_MMAP:
1885
		ret = machine__process_mmap_event(machine, event, sample); break;
1886 1887
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1888
	case PERF_RECORD_MMAP2:
1889
		ret = machine__process_mmap2_event(machine, event, sample); break;
1890
	case PERF_RECORD_FORK:
1891
		ret = machine__process_fork_event(machine, event, sample); break;
1892
	case PERF_RECORD_EXIT:
1893
		ret = machine__process_exit_event(machine, event, sample); break;
1894
	case PERF_RECORD_LOST:
1895
		ret = machine__process_lost_event(machine, event, sample); break;
1896 1897
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1898
	case PERF_RECORD_ITRACE_START:
1899
		ret = machine__process_itrace_start_event(machine, event); break;
1900 1901
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1902 1903 1904
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1905 1906
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1907
	case PERF_RECORD_BPF_EVENT:
1908
		ret = machine__process_bpf(machine, event, sample); break;
1909 1910 1911 1912 1913 1914 1915
	default:
		ret = -1;
		break;
	}

	return ret;
}
1916

1917
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1918
{
1919
	if (!regexec(regex, sym->name, 0, NULL, 0))
1920 1921 1922 1923
		return 1;
	return 0;
}

1924
static void ip__resolve_ams(struct thread *thread,
1925 1926 1927 1928 1929 1930
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1931 1932 1933 1934 1935 1936 1937
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1938
	thread__find_cpumode_addr_location(thread, ip, &al);
1939 1940 1941

	ams->addr = ip;
	ams->al_addr = al.addr;
1942
	ams->ms.mg  = al.mg;
1943 1944
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
1945
	ams->phys_addr = 0;
1946 1947
}

1948
static void ip__resolve_data(struct thread *thread,
1949 1950
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1951 1952 1953 1954 1955
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1956
	thread__find_symbol(thread, m, addr, &al);
1957

1958 1959
	ams->addr = addr;
	ams->al_addr = al.addr;
1960
	ams->ms.mg  = al.mg;
1961 1962
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
1963
	ams->phys_addr = phys_addr;
1964 1965
}

1966 1967
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1968
{
1969
	struct mem_info *mi = mem_info__new();
1970 1971 1972 1973

	if (!mi)
		return NULL;

1974
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1975 1976
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1977 1978 1979 1980 1981
	mi->data_src.val = sample->data_src;

	return mi;
}

1982
static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1983
{
1984
	struct map *map = ms->map;
1985 1986
	char *srcline = NULL;

1987
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1988 1989 1990 1991 1992 1993 1994 1995
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1996
				      ms->sym, show_sym, show_addr, ip);
1997 1998
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1999

2000
	return srcline;
2001 2002
}

2003 2004 2005 2006 2007
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

2008
static int add_callchain_ip(struct thread *thread,
2009
			    struct callchain_cursor *cursor,
2010 2011
			    struct symbol **parent,
			    struct addr_location *root_al,
2012
			    u8 *cpumode,
2013 2014 2015
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2016
			    struct iterations *iter,
2017
			    u64 branch_from)
2018
{
2019
	struct map_symbol ms;
2020
	struct addr_location al;
2021 2022
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2023
	const char *srcline = NULL;
2024 2025 2026

	al.filtered = 0;
	al.sym = NULL;
2027
	if (!cpumode) {
2028
		thread__find_cpumode_addr_location(thread, ip, &al);
2029
	} else {
2030 2031 2032
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2033
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2034 2035
				break;
			case PERF_CONTEXT_KERNEL:
2036
				*cpumode = PERF_RECORD_MISC_KERNEL;
2037 2038
				break;
			case PERF_CONTEXT_USER:
2039
				*cpumode = PERF_RECORD_MISC_USER;
2040 2041 2042 2043 2044 2045 2046 2047
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2048
				callchain_cursor_reset(cursor);
2049 2050 2051 2052
				return 1;
			}
			return 0;
		}
2053
		thread__find_symbol(thread, *cpumode, ip, &al);
2054 2055
	}

2056
	if (al.sym != NULL) {
2057
		if (perf_hpp_list.parent && !*parent &&
2058 2059 2060 2061 2062 2063 2064
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2065
			callchain_cursor_reset(cursor);
2066 2067 2068
		}
	}

2069 2070
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2071 2072 2073 2074 2075 2076

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2077
	ms.mg  = al.mg;
2078 2079 2080 2081
	ms.map = al.map;
	ms.sym = al.sym;
	srcline = callchain_srcline(&ms, al.addr);
	return callchain_cursor_append(cursor, ip, &ms,
2082
				       branch, flags, nr_loop_iter,
2083
				       iter_cycles, branch_from, srcline);
2084 2085
}

2086 2087
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2088 2089
{
	unsigned int i;
2090 2091
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2092 2093 2094 2095 2096

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2097 2098
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2099 2100 2101 2102 2103
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

2104 2105 2106 2107 2108
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2109
	iter->nr_loop_iter++;
2110 2111 2112 2113 2114 2115
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2116 2117 2118 2119 2120 2121 2122
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2123 2124
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2161 2162 2163 2164 2165 2166 2167
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2168 2169 2170 2171 2172 2173 2174 2175
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2176
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2177 2178 2179 2180
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2181
{
K
Kan Liang 已提交
2182
	struct ip_callchain *chain = sample->callchain;
2183
	int chain_nr = min(max_stack, (int)chain->nr), i;
2184
	u8 cpumode = PERF_RECORD_MISC_USER;
2185
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2195 2196 2197
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2211
			int err;
2212 2213 2214
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2215 2216 2217
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2218 2219 2220 2221 2222 2223
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2224
					ip = lbr_stack->entries[0].to;
2225 2226
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2227 2228
					branch_from =
						lbr_stack->entries[0].from;
2229
				}
K
Kan Liang 已提交
2230
			} else {
2231 2232 2233 2234 2235 2236
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2237 2238
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2239
				else {
K
Kan Liang 已提交
2240
					ip = lbr_stack->entries[0].to;
2241 2242
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2243 2244
					branch_from =
						lbr_stack->entries[0].from;
2245
				}
K
Kan Liang 已提交
2246 2247
			}

2248 2249
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2250
					       branch, flags, NULL,
2251
					       branch_from);
K
Kan Liang 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2282
static int thread__resolve_callchain_sample(struct thread *thread,
2283
					    struct callchain_cursor *cursor,
2284
					    struct evsel *evsel,
K
Kan Liang 已提交
2285 2286 2287 2288 2289 2290 2291
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2292
	int chain_nr = 0;
2293
	u8 cpumode = PERF_RECORD_MISC_USER;
2294
	int i, j, err, nr_entries;
2295 2296 2297
	int skip_idx = -1;
	int first_call = 0;

2298 2299 2300
	if (chain)
		chain_nr = chain->nr;

2301
	if (perf_evsel__has_branch_callstack(evsel)) {
2302
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2303 2304 2305 2306 2307
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2308 2309 2310 2311
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2312
	skip_idx = arch_skip_callchain_idx(thread, chain);
2313

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2329
		struct iterations iter[nr];
2330 2331 2332 2333 2334 2335 2336 2337 2338

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2339 2340 2341 2342

				if (chain == NULL)
					continue;

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2360 2361
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2362

2363
		for (i = 0; i < nr; i++) {
2364 2365 2366 2367 2368
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2369

2370
			if (!err)
2371
				err = add_callchain_ip(thread, cursor, parent, root_al,
2372 2373
						       NULL, be[i].from,
						       true, &be[i].flags,
2374
						       &iter[i], 0);
2375 2376 2377 2378 2379
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2380 2381 2382 2383

		if (chain_nr == 0)
			return 0;

2384 2385 2386 2387
		chain_nr -= nr;
	}

check_calls:
2388 2389 2390 2391 2392 2393
	if (callchain_param.order != ORDER_CALLEE) {
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2394
	for (i = first_call, nr_entries = 0;
2395
	     i < chain_nr && nr_entries < max_stack; i++) {
2396 2397 2398
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2399
			j = i;
2400
		else
2401 2402 2403 2404 2405 2406 2407
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2408 2409
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2410 2411 2412 2413 2414 2415 2416
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2417

2418 2419
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2420
				       false, NULL, NULL, 0);
2421 2422

		if (err)
2423
			return (err < 0) ? err : 0;
2424 2425 2426 2427 2428
	}

	return 0;
}

2429
static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2430
{
2431 2432
	struct symbol *sym = ms->sym;
	struct map *map = ms->map;
2433 2434 2435
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2436
	int ret = 1;
2437 2438

	if (!symbol_conf.inline_name || !map || !sym)
2439
		return ret;
2440

2441 2442
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2443 2444 2445 2446 2447

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2448
			return ret;
2449 2450 2451 2452
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2453 2454 2455 2456 2457
		struct map_symbol ilist_ms = {
			.map = map,
			.sym = ilist->symbol,
		};
		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2458
					      NULL, 0, 0, 0, ilist->srcline);
2459 2460 2461 2462 2463

		if (ret != 0)
			return ret;
	}

2464
	return ret;
2465 2466
}

2467 2468 2469
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2470
	const char *srcline = NULL;
2471
	u64 addr = entry->ip;
2472

2473
	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2474
		return 0;
2475

2476
	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2477 2478
		return 0;

2479 2480 2481 2482
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2483 2484
	if (entry->ms.map)
		addr = map__map_ip(entry->ms.map, entry->ip);
2485

2486 2487
	srcline = callchain_srcline(&entry->ms, addr);
	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2488
				       false, NULL, 0, 0, 0, srcline);
2489 2490
}

2491 2492
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
2493
					    struct evsel *evsel,
2494 2495
					    struct perf_sample *sample,
					    int max_stack)
2496 2497
{
	/* Can we do dwarf post unwind? */
2498 2499
	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2500 2501 2502 2503 2504 2505 2506
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2507
	return unwind__get_entries(unwind_entry, cursor,
2508
				   thread, sample, max_stack);
2509
}
2510

2511 2512
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
2513
			      struct evsel *evsel,
2514 2515 2516 2517 2518 2519 2520
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2521
	callchain_cursor_reset(cursor);
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2546
}
2547 2548 2549 2550 2551

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2552
	struct threads *threads;
2553 2554 2555
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2556
	int i;
2557

2558 2559
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2560 2561
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2562 2563 2564 2565 2566
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2567

2568 2569 2570 2571 2572
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2573 2574 2575
	}
	return rc;
}
2576

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2588
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2589 2590 2591 2592 2593 2594 2595 2596 2597
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2598 2599
pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
2600 2601 2602
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);

	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2603 2604 2605 2606 2607 2608 2609 2610 2611
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;
2612
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2613 2614 2615 2616 2617 2618 2619

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

2620
		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2621 2622
		if (!machine->current_tid)
			return -ENOMEM;
2623
		for (i = 0; i < nr_cpus; i++)
2624 2625 2626
			machine->current_tid[i] = -1;
	}

2627
	if (cpu >= nr_cpus) {
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2640
	thread__put(thread);
2641 2642 2643

	return 0;
}
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2654 2655 2656 2657 2658
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2659 2660
int machine__get_kernel_start(struct machine *machine)
{
2661
	struct map *map = machine__kernel_map(machine);
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2674
		err = map__load(map);
2675 2676 2677 2678 2679 2680
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2681 2682 2683 2684
			machine->kernel_start = map->start;
	}
	return err;
}
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2713 2714
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2715
	return dsos__findnew(&machine->dsos, filename);
2716
}
2717 2718 2719 2720 2721

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2722
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2723 2724 2725 2726 2727 2728 2729 2730

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}