machine.c 73.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include <stdlib.h>
7
#include "callchain.h"
8
#include "debug.h"
9
#include "dso.h"
10
#include "env.h"
11
#include "event.h"
12 13
#include "evsel.h"
#include "hist.h"
14 15
#include "machine.h"
#include "map.h"
16 17 18
#include "map_symbol.h"
#include "branch.h"
#include "mem-events.h"
19
#include "srcline.h"
20
#include "symbol.h"
21
#include "sort.h"
22
#include "strlist.h"
23
#include "target.h"
24
#include "thread.h"
25
#include "util.h"
26
#include "vdso.h"
27
#include <stdbool.h>
28 29 30
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
31
#include "unwind.h"
32
#include "linux/hash.h"
33
#include "asm/bug.h"
34
#include "bpf-event.h"
35
#include <internal/lib.h> // page_size
36
#include "cgroup.h"
37

38
#include <linux/ctype.h>
39
#include <symbol/kallsyms.h>
40
#include <linux/mman.h>
41
#include <linux/string.h>
42
#include <linux/zalloc.h>
43

44 45
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

46 47 48 49 50
static struct dso *machine__kernel_dso(struct machine *machine)
{
	return machine->vmlinux_map->dso;
}

51 52 53 54
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
55
	init_rwsem(&dsos->lock);
56 57
}

58 59 60 61 62 63
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
64
		threads->entries = RB_ROOT_CACHED;
65
		init_rwsem(&threads->lock);
66 67 68 69 70 71
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

72 73
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
74 75 76 77 78 79 80
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
81 82 83 84

	return machine->mmap_name ? 0 : -ENOMEM;
}

85 86
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
87 88
	int err = -ENOMEM;

89
	memset(machine, 0, sizeof(*machine));
90
	maps__init(&machine->kmaps, machine);
91
	RB_CLEAR_NODE(&machine->rb_node);
92
	dsos__init(&machine->dsos);
93

94
	machine__threads_init(machine);
95

96
	machine->vdso_info = NULL;
97
	machine->env = NULL;
98

99 100
	machine->pid = pid;

101
	machine->id_hdr_size = 0;
102
	machine->kptr_restrict_warned = false;
103
	machine->comm_exec = false;
104
	machine->kernel_start = 0;
105
	machine->vmlinux_map = NULL;
106

107 108 109 110
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

111 112 113
	if (machine__set_mmap_name(machine))
		goto out;

114
	if (pid != HOST_KERNEL_ID) {
115
		struct thread *thread = machine__findnew_thread(machine, -1,
116
								pid);
117 118 119
		char comm[64];

		if (thread == NULL)
120
			goto out;
121 122

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123
		thread__set_comm(thread, comm, 0);
124
		thread__put(thread);
125 126
	}

127
	machine->current_tid = NULL;
128
	err = 0;
129

130
out:
131
	if (err) {
132
		zfree(&machine->root_dir);
133 134
		zfree(&machine->mmap_name);
	}
135 136 137
	return 0;
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

155 156 157 158 159
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
160
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 162 163
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
164
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 166 167 168 169 170 171
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

172
static void dsos__purge(struct dsos *dsos)
173 174 175
{
	struct dso *pos, *n;

176
	down_write(&dsos->lock);
177

178
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179
		RB_CLEAR_NODE(&pos->rb_node);
180
		pos->root = NULL;
181 182
		list_del_init(&pos->node);
		dso__put(pos);
183
	}
184

185
	up_write(&dsos->lock);
186
}
187

188 189 190
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
191
	exit_rwsem(&dsos->lock);
192 193
}

194 195
void machine__delete_threads(struct machine *machine)
{
196
	struct rb_node *nd;
197
	int i;
198

199 200
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
201
		down_write(&threads->lock);
202
		nd = rb_first_cached(&threads->entries);
203 204
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
205

206 207 208
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
209
		up_write(&threads->lock);
210 211 212
	}
}

213 214
void machine__exit(struct machine *machine)
{
215 216
	int i;

217 218 219
	if (machine == NULL)
		return;

220
	machine__destroy_kernel_maps(machine);
221
	maps__exit(&machine->kmaps);
222
	dsos__exit(&machine->dsos);
223
	machine__exit_vdso(machine);
224
	zfree(&machine->root_dir);
225
	zfree(&machine->mmap_name);
226
	zfree(&machine->current_tid);
227 228 229

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
230 231 232 233 234 235 236 237 238 239 240 241
		struct thread *thread, *n;
		/*
		 * Forget about the dead, at this point whatever threads were
		 * left in the dead lists better have a reference count taken
		 * by who is using them, and then, when they drop those references
		 * and it finally hits zero, thread__put() will check and see that
		 * its not in the dead threads list and will not try to remove it
		 * from there, just calling thread__delete() straight away.
		 */
		list_for_each_entry_safe(thread, n, &threads->dead, node)
			list_del_init(&thread->node);

242
		exit_rwsem(&threads->lock);
243
	}
244 245 246 247
}

void machine__delete(struct machine *machine)
{
248 249 250 251
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
252 253
}

254 255 256
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
257
	machines->guests = RB_ROOT_CACHED;
258 259 260 261 262 263 264 265 266
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
267 268
			      const char *root_dir)
{
269
	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 271
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
272
	bool leftmost = true;
273 274 275 276 277 278 279 280 281 282 283 284 285 286

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
287
		else {
288
			p = &(*p)->rb_right;
289 290
			leftmost = false;
		}
291 292 293
	}

	rb_link_node(&machine->rb_node, parent, p);
294
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 296 297 298

	return machine;
}

299 300 301 302 303 304
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

305
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 307 308 309 310 311
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

312
struct machine *machines__find(struct machines *machines, pid_t pid)
313
{
314
	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 316 317 318
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

319 320 321
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

338
struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
355
				seen = strlist__new(NULL, NULL);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

372 373
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
374 375 376
{
	struct rb_node *nd;

377
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 379 380 381 382
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

383
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 385 386 387
{
	struct rb_node *node;
	struct machine *machine;

388 389
	machines->host.id_hdr_size = id_hdr_size;

390 391
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
392 393 394 395 396 397 398
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

399 400 401 402 403 404 405 406 407 408 409 410 411
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

412
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 414 415
	if (!leader)
		goto out_err;

416 417
	if (!leader->maps)
		leader->maps = maps__new(machine);
418

419
	if (!leader->maps)
420 421
		goto out_err;

422
	if (th->maps == leader->maps)
423 424
		return;

425
	if (th->maps) {
426 427 428 429 430
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
431
		if (!maps__empty(th->maps))
432 433
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
434
		maps__put(th->maps);
435 436
	}

437
	th->maps = maps__get(leader->maps);
438 439
out_put:
	thread__put(leader);
440 441 442
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443
	goto out_put;
444 445
}

446
/*
447 448 449
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
450
 */
451
static struct thread*
452 453
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
454 455 456
{
	struct thread *th;

457
	th = threads->last_match;
458 459 460
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
461
			return thread__get(th);
462 463
		}

464
		threads->last_match = NULL;
465
	}
466

467 468 469
	return NULL;
}

470 471 472 473 474 475 476 477 478 479 480 481
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

482
static void
483
__threads__set_last_match(struct threads *threads, struct thread *th)
484 485 486 487
{
	threads->last_match = th;
}

488 489 490 491 492 493 494
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

495 496 497 498 499 500 501 502 503
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
504
	struct rb_node **p = &threads->entries.rb_root.rb_node;
505 506
	struct rb_node *parent = NULL;
	struct thread *th;
507
	bool leftmost = true;
508 509 510 511 512

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

513 514 515 516
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

517
		if (th->tid == tid) {
518
			threads__set_last_match(threads, th);
519
			machine__update_thread_pid(machine, th, pid);
520
			return thread__get(th);
521 522
		}

523
		if (tid < th->tid)
524
			p = &(*p)->rb_left;
525
		else {
526
			p = &(*p)->rb_right;
527 528
			leftmost = false;
		}
529 530 531 532 533
	}

	if (!create)
		return NULL;

534
	th = thread__new(pid, tid);
535 536
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
537
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538 539

		/*
540
		 * We have to initialize maps separately after rb tree is updated.
541 542
		 *
		 * The reason is that we call machine__findnew_thread
543
		 * within thread__init_maps to find the thread
544 545
		 * leader and that would screwed the rb tree.
		 */
546
		if (thread__init_maps(th, machine)) {
547
			rb_erase_cached(&th->rb_node, &threads->entries);
548
			RB_CLEAR_NODE(&th->rb_node);
549
			thread__put(th);
550
			return NULL;
551
		}
552 553 554 555
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
556
		threads__set_last_match(threads, th);
557
		++threads->nr;
558 559 560 561 562
	}

	return th;
}

563 564
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
565
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 567
}

568 569
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
570
{
571
	struct threads *threads = machine__threads(machine, tid);
572 573
	struct thread *th;

574
	down_write(&threads->lock);
575
	th = __machine__findnew_thread(machine, pid, tid);
576
	up_write(&threads->lock);
577
	return th;
578 579
}

580 581
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
582
{
583
	struct threads *threads = machine__threads(machine, tid);
584
	struct thread *th;
585

586
	down_read(&threads->lock);
587
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588
	up_read(&threads->lock);
589
	return th;
590
}
591

592 593 594 595 596 597 598 599 600
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

601 602
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
603
{
604 605 606
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
607
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608
	int err = 0;
609

610 611 612
	if (exec)
		machine->comm_exec = true;

613 614 615
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

616 617
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619
		err = -1;
620 621
	}

622 623 624
	thread__put(thread);

	return err;
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

658
int machine__process_cgroup_event(struct machine *machine,
659 660 661
				  union perf_event *event,
				  struct perf_sample *sample __maybe_unused)
{
662 663
	struct cgroup *cgrp;

664 665 666
	if (dump_trace)
		perf_event__fprintf_cgroup(event, stdout);

667 668 669 670
	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
	if (cgrp == NULL)
		return -ENOMEM;

671 672 673
	return 0;
}

674
int machine__process_lost_event(struct machine *machine __maybe_unused,
675
				union perf_event *event, struct perf_sample *sample __maybe_unused)
676
{
677
	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 679 680 681
		    event->lost.id, event->lost.lost);
	return 0;
}

682 683 684
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
685
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 687 688 689
		    sample->id, event->lost_samples.lost);
	return 0;
}

690 691 692
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
693 694 695
{
	struct dso *dso;

696
	down_write(&machine->dsos.lock);
697 698

	dso = __dsos__find(&machine->dsos, m->name, true);
699
	if (!dso) {
700
		dso = __dsos__addnew(&machine->dsos, m->name);
701
		if (dso == NULL)
702
			goto out_unlock;
703

704
		dso__set_module_info(dso, m, machine);
705
		dso__set_long_name(dso, strdup(filename), true);
706
		dso->kernel = DSO_TYPE_KERNEL;
707 708
	}

709
	dso__get(dso);
710
out_unlock:
711
	up_write(&machine->dsos.lock);
712 713 714
	return dso;
}

715 716 717 718 719 720 721 722
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

723 724 725 726 727 728 729 730
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

731 732 733 734 735 736 737 738
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

739 740 741 742 743 744
static int is_bpf_image(const char *name)
{
	return strncmp(name, "bpf_trampoline_", sizeof("bpf_trampoline_") - 1) ||
	       strncmp(name, "bpf_dispatcher_", sizeof("bpf_dispatcher_") - 1);
}

745 746 747 748 749
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
750
	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
751 752

	if (!map) {
753 754 755 756 757 758 759 760 761
		struct dso *dso = dso__new(event->ksymbol.name);

		if (dso) {
			dso->kernel = DSO_TYPE_KERNEL;
			map = map__new2(0, dso);
		}

		if (!dso || !map) {
			dso__put(dso);
762
			return -ENOMEM;
763
		}
764

765 766
		map->start = event->ksymbol.addr;
		map->end = map->start + event->ksymbol.len;
767
		maps__insert(&machine->kmaps, map);
768
		dso__set_loaded(dso);
769 770 771 772 773

		if (is_bpf_image(event->ksymbol.name)) {
			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
			dso__set_long_name(dso, "", false);
		}
774 775
	}

776
	sym = symbol__new(map->map_ip(map, map->start),
777 778
			  event->ksymbol.len,
			  0, 0, event->ksymbol.name);
779 780 781 782 783 784 785 786 787 788 789 790
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

791
	map = maps__find(&machine->kmaps, event->ksymbol.addr);
792
	if (map)
793
		maps__remove(&machine->kmaps, map);
794 795 796 797 798 799 800 801 802 803 804

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

805
	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
806 807 808 809 810
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

811 812
static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
					      const char *filename)
813
{
814 815
	struct map *map = NULL;
	struct kmod_path m;
816
	struct dso *dso;
817

818
	if (kmod_path__parse_name(&m, filename))
819 820
		return NULL;

821
	dso = machine__findnew_module_dso(machine, &m, filename);
822 823 824
	if (dso == NULL)
		goto out;

825
	map = map__new2(start, dso);
826
	if (map == NULL)
827
		goto out;
828

829
	maps__insert(&machine->kmaps, map);
830

831
	/* Put the map here because maps__insert alread got it */
832
	map__put(map);
833
out:
834 835
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
836
	zfree(&m.name);
837 838 839
	return map;
}

840
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
841 842
{
	struct rb_node *nd;
843
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
844

845
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
846
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
847
		ret += __dsos__fprintf(&pos->dsos.head, fp);
848 849 850 851 852
	}

	return ret;
}

853
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
854 855
				     bool (skip)(struct dso *dso, int parm), int parm)
{
856
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
857 858
}

859
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
860 861 862
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
863
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
864

865
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
866 867 868 869 870 871 872 873 874 875
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
876
	struct dso *kdso = machine__kernel_dso(machine);
877 878 879

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
880 881
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
882 883 884 885 886 887 888 889 890 891 892 893 894
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
895 896
	size_t ret;
	int i;
897

898 899
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
900 901

		down_read(&threads->lock);
902

903
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
904

905 906
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
907
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
908

909 910
			ret += thread__fprintf(pos, fp);
		}
911

912
		up_read(&threads->lock);
913
	}
914 915 916 917 918
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
919
	const char *vmlinux_name = machine->mmap_name;
920 921 922
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
923 924 925
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

926 927
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
928
	} else {
J
Jiri Olsa 已提交
929 930 931
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

932 933 934
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
935 936 937 938 939 940 941 942 943 944 945 946
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

947 948
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
949 950 951 952 953 954 955
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

956 957 958 959 960 961
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
962
static int machine__get_running_kernel_start(struct machine *machine,
963 964
					     const char **symbol_name,
					     u64 *start, u64 *end)
965
{
966
	char filename[PATH_MAX];
967
	int i, err = -1;
968 969
	const char *name;
	u64 addr = 0;
970

971
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
972 973 974 975

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

976
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
977 978
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
979 980 981
			break;
	}

982 983 984
	if (err)
		return -1;

985 986
	if (symbol_name)
		*symbol_name = name;
987

988
	*start = addr;
989 990 991 992 993

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

994
	return 0;
995 996
}

997 998 999
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

1013
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1014

1015
	maps__insert(&machine->kmaps, map);
1016

1017 1018
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1060
	struct maps *kmaps = &machine->kmaps;
1061
	int nr_cpus_avail, cpu;
1062 1063 1064 1065 1066 1067 1068 1069
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
1070
	maps__for_each_entry(kmaps, map) {
1071 1072 1073 1074 1075 1076
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

1077
		dest_map = maps__find(kmaps, map->pgoff);
1078 1079 1080 1081 1082 1083
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1084

1085
	pgoff = find_entry_trampoline(kernel);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1102 1103
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1104 1105 1106 1107
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1108 1109 1110 1111 1112 1113 1114 1115
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1116 1117 1118
	return 0;
}

1119 1120
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1121
{
1122 1123 1124
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1125 1126 1127
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1128

1129
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1130
	maps__insert(&machine->kmaps, machine->vmlinux_map);
1131 1132 1133 1134 1135
	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1136 1137
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1138

1139 1140
	if (map == NULL)
		return;
1141

1142
	kmap = map__kmap(map);
1143
	maps__remove(&machine->kmaps, map);
1144 1145 1146
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1147
	}
1148 1149

	map__zput(machine->vmlinux_map);
1150 1151
}

1152
int machines__create_guest_kernel_maps(struct machines *machines)
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1201
void machines__destroy_kernel_maps(struct machines *machines)
1202
{
1203
	struct rb_node *next = rb_first_cached(&machines->guests);
1204 1205

	machine__destroy_kernel_maps(&machines->host);
1206 1207 1208 1209 1210

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1211
		rb_erase_cached(&pos->rb_node, &machines->guests);
1212 1213 1214 1215
		machine__delete(pos);
	}
}

1216
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1217 1218 1219 1220 1221 1222 1223 1224 1225
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1226
int machine__load_kallsyms(struct machine *machine, const char *filename)
1227
{
1228
	struct map *map = machine__kernel_map(machine);
1229
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1230 1231

	if (ret > 0) {
1232
		dso__set_loaded(map->dso);
1233 1234 1235 1236 1237
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1238
		maps__fixup_end(&machine->kmaps);
1239 1240 1241 1242 1243
	}

	return ret;
}

1244
int machine__load_vmlinux_path(struct machine *machine)
1245
{
1246
	struct map *map = machine__kernel_map(machine);
1247
	int ret = dso__load_vmlinux_path(map->dso, map);
1248

1249
	if (ret > 0)
1250
		dso__set_loaded(map->dso);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1269 1270
	if (!tmp)
		return NULL;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1283 1284 1285 1286 1287 1288
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

1289
static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1290 1291
{
	char *long_name;
1292
	struct map *map = maps__find_by_name(maps, m->name);
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1308
	if (m->comp && is_kmod_dso(map->dso)) {
1309
		map->dso->symtab_type++;
1310 1311
		map->dso->comp = m->comp;
	}
1312 1313 1314 1315

	return 0;
}

1316
static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1341 1342 1343 1344 1345 1346 1347
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

1348
			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1349 1350 1351
			if (ret < 0)
				goto out;
		} else {
1352
			struct kmod_path m;
1353

1354 1355 1356
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1357

1358
			if (m.kmod)
1359
				ret = maps__set_module_path(maps, path, &m);
1360

1361
			zfree(&m.name);
1362

1363
			if (ret)
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1382
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1383 1384 1385
		 machine->root_dir, version);
	free(version);

1386
	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1387
}
1388
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1389
				u64 *size __maybe_unused,
1390 1391 1392 1393
				const char *name __maybe_unused)
{
	return 0;
}
1394

1395 1396
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1397
{
1398
	struct machine *machine = arg;
1399
	struct map *map;
1400

1401
	if (arch__fix_module_text_start(&start, &size, name) < 0)
1402 1403
		return -1;

1404
	map = machine__addnew_module_map(machine, start, name);
1405 1406
	if (map == NULL)
		return -1;
1407
	map->end = start + size;
1408 1409 1410 1411 1412 1413 1414 1415

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1416 1417 1418
	const char *modules;
	char path[PATH_MAX];

1419
	if (machine__is_default_guest(machine)) {
1420
		modules = symbol_conf.default_guest_modules;
1421 1422
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1423 1424 1425
		modules = path;
	}

1426
	if (symbol__restricted_filename(modules, "/proc/modules"))
1427 1428
		return -1;

1429
	if (modules__parse(modules, machine, machine__create_module))
1430 1431
		return -1;

1432 1433
	if (!machine__set_modules_path(machine))
		return 0;
1434

1435
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1436

1437
	return 0;
1438 1439
}

1440 1441 1442
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1443 1444 1445 1446 1447 1448 1449 1450
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1451 1452
}

1453 1454 1455 1456 1457 1458
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
1459
	maps__remove(&machine->kmaps, map);
1460 1461 1462

	machine__set_kernel_mmap(machine, start, end);

1463
	maps__insert(&machine->kmaps, map);
1464 1465 1466
	map__put(map);
}

1467 1468 1469
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1470
	const char *name = NULL;
1471
	struct map *map;
1472
	u64 start = 0, end = ~0ULL;
1473 1474
	int ret;

1475
	if (kernel == NULL)
1476
		return -1;
1477

1478 1479
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1480
		goto out_put;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1491
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1492
		if (name &&
1493
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1494
			machine__destroy_kernel_maps(machine);
1495 1496
			ret = -1;
			goto out_put;
1497
		}
1498

1499 1500 1501 1502
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1503
		machine__update_kernel_mmap(machine, start, end);
1504 1505
	}

1506 1507 1508
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1509 1510 1511 1512 1513 1514 1515
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1516 1517 1518
out_put:
	dso__put(kernel);
	return ret;
1519 1520
}

1521 1522 1523 1524
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1525
	list_for_each_entry(dso, &machine->dsos.head, node) {
1526 1527 1528 1529 1530 1531 1532
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
1543
	struct dso *kernel = machine__kernel_dso(machine);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1558 1559 1560 1561 1562 1563 1564
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1565 1566 1567 1568
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1569 1570 1571 1572 1573 1574
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1575 1576
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1577 1578
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1579 1580
		map = machine__addnew_module_map(machine, event->mmap.start,
						 event->mmap.filename);
1581 1582 1583 1584 1585 1586
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1587
				strlen(machine->mmap_name));
1588 1589 1590 1591
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1592 1593 1594
		struct dso *kernel = NULL;
		struct dso *dso;

1595
		down_read(&machine->dsos.lock);
1596

1597
		list_for_each_entry(dso, &machine->dsos.head, node) {
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1618 1619
				continue;

1620

1621 1622 1623 1624
			kernel = dso;
			break;
		}

1625
		up_read(&machine->dsos.lock);
1626

1627
		if (kernel == NULL)
1628
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1629 1630 1631 1632
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1633 1634
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1635
			goto out_problem;
1636
		}
1637

1638 1639
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1640

1641
		machine__update_kernel_mmap(machine, event->mmap.start,
1642
					 event->mmap.start + event->mmap.len);
1643 1644 1645 1646 1647 1648 1649

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1650 1651 1652
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1653 1654 1655 1656 1657 1658
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1659
			dso__load(kernel, machine__kernel_map(machine));
1660
		}
1661 1662
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1663 1664 1665 1666 1667 1668
	}
	return 0;
out_problem:
	return -1;
}

1669
int machine__process_mmap2_event(struct machine *machine,
1670
				 union perf_event *event,
1671
				 struct perf_sample *sample)
1672 1673 1674
{
	struct thread *thread;
	struct map *map;
1675 1676 1677 1678 1679 1680
	struct dso_id dso_id = {
		.maj = event->mmap2.maj,
		.min = event->mmap2.min,
		.ino = event->mmap2.ino,
		.ino_generation = event->mmap2.ino_generation,
	};
1681 1682 1683 1684 1685
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1686 1687
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1688 1689 1690 1691 1692 1693 1694
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1695
					event->mmap2.tid);
1696 1697 1698
	if (thread == NULL)
		goto out_problem;

1699
	map = map__new(machine, event->mmap2.start,
1700
			event->mmap2.len, event->mmap2.pgoff,
1701
			&dso_id, event->mmap2.prot,
1702
			event->mmap2.flags,
1703
			event->mmap2.filename, thread);
1704 1705

	if (map == NULL)
1706
		goto out_problem_map;
1707

1708 1709 1710 1711
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1712
	thread__put(thread);
1713
	map__put(map);
1714 1715
	return 0;

1716 1717
out_problem_insert:
	map__put(map);
1718 1719
out_problem_map:
	thread__put(thread);
1720 1721 1722 1723 1724
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1725
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1726
				struct perf_sample *sample)
1727 1728 1729
{
	struct thread *thread;
	struct map *map;
1730
	u32 prot = 0;
1731 1732 1733 1734 1735
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1736 1737
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1738 1739 1740 1741 1742 1743
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1744
	thread = machine__findnew_thread(machine, event->mmap.pid,
1745
					 event->mmap.tid);
1746 1747
	if (thread == NULL)
		goto out_problem;
1748

1749
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1750
		prot = PROT_EXEC;
1751

1752
	map = map__new(machine, event->mmap.start,
1753
			event->mmap.len, event->mmap.pgoff,
1754
			NULL, prot, 0, event->mmap.filename, thread);
1755

1756
	if (map == NULL)
1757
		goto out_problem_map;
1758

1759 1760 1761 1762
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1763
	thread__put(thread);
1764
	map__put(map);
1765 1766
	return 0;

1767 1768
out_problem_insert:
	map__put(map);
1769 1770
out_problem_map:
	thread__put(thread);
1771 1772 1773 1774 1775
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1776
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1777
{
1778 1779 1780
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1781
		threads__set_last_match(threads, NULL);
1782

1783
	if (lock)
1784
		down_write(&threads->lock);
1785 1786 1787

	BUG_ON(refcount_read(&th->refcnt) == 0);

1788
	rb_erase_cached(&th->rb_node, &threads->entries);
1789
	RB_CLEAR_NODE(&th->rb_node);
1790
	--threads->nr;
1791
	/*
1792 1793 1794
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1795
	 */
1796
	list_add_tail(&th->node, &threads->dead);
1797 1798 1799 1800 1801 1802 1803 1804

	/*
	 * We need to do the put here because if this is the last refcount,
	 * then we will be touching the threads->dead head when removing the
	 * thread.
	 */
	thread__put(th);

1805
	if (lock)
1806
		up_write(&threads->lock);
1807 1808
}

1809 1810 1811 1812 1813
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1814 1815
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1816
{
1817 1818 1819
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1820 1821 1822
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1823
	bool do_maps_clone = true;
1824
	int err = 0;
1825

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1844
	/* if a thread currently exists for the thread id remove it */
1845
	if (thread != NULL) {
1846
		machine__remove_thread(machine, thread);
1847 1848
		thread__put(thread);
	}
1849

1850 1851
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1868 1869

	if (thread == NULL || parent == NULL ||
1870
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1871
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1872
		err = -1;
1873
	}
1874 1875
	thread__put(thread);
	thread__put(parent);
1876

1877
	return err;
1878 1879
}

1880 1881
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1882
{
1883 1884 1885
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1886 1887 1888 1889

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1890
	if (thread != NULL) {
1891
		thread__exited(thread);
1892 1893
		thread__put(thread);
	}
1894 1895 1896 1897

	return 0;
}

1898 1899
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1900 1901 1902 1903 1904
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1905
		ret = machine__process_comm_event(machine, event, sample); break;
1906
	case PERF_RECORD_MMAP:
1907
		ret = machine__process_mmap_event(machine, event, sample); break;
1908 1909
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1910 1911
	case PERF_RECORD_CGROUP:
		ret = machine__process_cgroup_event(machine, event, sample); break;
1912
	case PERF_RECORD_MMAP2:
1913
		ret = machine__process_mmap2_event(machine, event, sample); break;
1914
	case PERF_RECORD_FORK:
1915
		ret = machine__process_fork_event(machine, event, sample); break;
1916
	case PERF_RECORD_EXIT:
1917
		ret = machine__process_exit_event(machine, event, sample); break;
1918
	case PERF_RECORD_LOST:
1919
		ret = machine__process_lost_event(machine, event, sample); break;
1920 1921
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1922
	case PERF_RECORD_ITRACE_START:
1923
		ret = machine__process_itrace_start_event(machine, event); break;
1924 1925
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1926 1927 1928
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1929 1930
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1931
	case PERF_RECORD_BPF_EVENT:
1932
		ret = machine__process_bpf(machine, event, sample); break;
1933 1934 1935 1936 1937 1938 1939
	default:
		ret = -1;
		break;
	}

	return ret;
}
1940

1941
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1942
{
1943
	if (!regexec(regex, sym->name, 0, NULL, 0))
1944 1945 1946 1947
		return 1;
	return 0;
}

1948
static void ip__resolve_ams(struct thread *thread,
1949 1950 1951 1952 1953 1954
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1955 1956 1957 1958 1959 1960 1961
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1962
	thread__find_cpumode_addr_location(thread, ip, &al);
1963 1964 1965

	ams->addr = ip;
	ams->al_addr = al.addr;
1966
	ams->ms.maps = al.maps;
1967 1968
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
1969
	ams->phys_addr = 0;
1970 1971
}

1972
static void ip__resolve_data(struct thread *thread,
1973 1974
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1975 1976 1977 1978 1979
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1980
	thread__find_symbol(thread, m, addr, &al);
1981

1982 1983
	ams->addr = addr;
	ams->al_addr = al.addr;
1984
	ams->ms.maps = al.maps;
1985 1986
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
1987
	ams->phys_addr = phys_addr;
1988 1989
}

1990 1991
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1992
{
1993
	struct mem_info *mi = mem_info__new();
1994 1995 1996 1997

	if (!mi)
		return NULL;

1998
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1999 2000
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
2001 2002 2003 2004 2005
	mi->data_src.val = sample->data_src;

	return mi;
}

2006
static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2007
{
2008
	struct map *map = ms->map;
2009 2010
	char *srcline = NULL;

2011
	if (!map || callchain_param.key == CCKEY_FUNCTION)
2012 2013 2014 2015 2016 2017 2018 2019
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2020
				      ms->sym, show_sym, show_addr, ip);
2021 2022
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
2023

2024
	return srcline;
2025 2026
}

2027 2028 2029 2030 2031
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

2032
static int add_callchain_ip(struct thread *thread,
2033
			    struct callchain_cursor *cursor,
2034 2035
			    struct symbol **parent,
			    struct addr_location *root_al,
2036
			    u8 *cpumode,
2037 2038 2039
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2040
			    struct iterations *iter,
2041
			    u64 branch_from)
2042
{
2043
	struct map_symbol ms;
2044
	struct addr_location al;
2045 2046
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2047
	const char *srcline = NULL;
2048 2049 2050

	al.filtered = 0;
	al.sym = NULL;
2051
	if (!cpumode) {
2052
		thread__find_cpumode_addr_location(thread, ip, &al);
2053
	} else {
2054 2055 2056
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2057
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2058 2059
				break;
			case PERF_CONTEXT_KERNEL:
2060
				*cpumode = PERF_RECORD_MISC_KERNEL;
2061 2062
				break;
			case PERF_CONTEXT_USER:
2063
				*cpumode = PERF_RECORD_MISC_USER;
2064 2065 2066 2067 2068 2069 2070 2071
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2072
				callchain_cursor_reset(cursor);
2073 2074 2075 2076
				return 1;
			}
			return 0;
		}
2077
		thread__find_symbol(thread, *cpumode, ip, &al);
2078 2079
	}

2080
	if (al.sym != NULL) {
2081
		if (perf_hpp_list.parent && !*parent &&
2082 2083 2084 2085 2086 2087 2088
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2089
			callchain_cursor_reset(cursor);
2090 2091 2092
		}
	}

2093 2094
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2095 2096 2097 2098 2099 2100

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2101
	ms.maps = al.maps;
2102 2103 2104 2105
	ms.map = al.map;
	ms.sym = al.sym;
	srcline = callchain_srcline(&ms, al.addr);
	return callchain_cursor_append(cursor, ip, &ms,
2106
				       branch, flags, nr_loop_iter,
2107
				       iter_cycles, branch_from, srcline);
2108 2109
}

2110 2111
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2112 2113
{
	unsigned int i;
2114
	const struct branch_stack *bs = sample->branch_stack;
2115
	struct branch_entry *entries = perf_sample__branch_entries(sample);
2116
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2117 2118 2119 2120 2121

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2122 2123 2124
		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
		bi[i].flags = entries[i].flags;
2125 2126 2127 2128
	}
	return bi;
}

2129 2130 2131 2132 2133
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2134
	iter->nr_loop_iter++;
2135 2136 2137 2138 2139 2140
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2141 2142 2143 2144 2145 2146 2147
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2148 2149
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2186 2187 2188 2189 2190 2191 2192
				nr -= off;
			}
		}
	}
	return nr;
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
static int lbr_callchain_add_kernel_ip(struct thread *thread,
				       struct callchain_cursor *cursor,
				       struct perf_sample *sample,
				       struct symbol **parent,
				       struct addr_location *root_al,
				       u64 branch_from,
				       bool callee, int end)
{
	struct ip_callchain *chain = sample->callchain;
	u8 cpumode = PERF_RECORD_MISC_USER;
	int err, i;

	if (callee) {
		for (i = 0; i < end + 1; i++) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, chain->ips[i],
					       false, NULL, NULL, branch_from);
			if (err)
				return err;
		}
		return 0;
	}

	for (i = end; i >= 0; i--) {
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, chain->ips[i],
				       false, NULL, NULL, branch_from);
		if (err)
			return err;
	}

	return 0;
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
static void save_lbr_cursor_node(struct thread *thread,
				 struct callchain_cursor *cursor,
				 int idx)
{
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;

	if (!lbr_stitch)
		return;

	if (cursor->pos == cursor->nr) {
		lbr_stitch->prev_lbr_cursor[idx].valid = false;
		return;
	}

	if (!cursor->curr)
		cursor->curr = cursor->first;
	else
		cursor->curr = cursor->curr->next;
	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
	       sizeof(struct callchain_cursor_node));

	lbr_stitch->prev_lbr_cursor[idx].valid = true;
	cursor->pos++;
}

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
static int lbr_callchain_add_lbr_ip(struct thread *thread,
				    struct callchain_cursor *cursor,
				    struct perf_sample *sample,
				    struct symbol **parent,
				    struct addr_location *root_al,
				    u64 *branch_from,
				    bool callee)
{
	struct branch_stack *lbr_stack = sample->branch_stack;
	struct branch_entry *entries = perf_sample__branch_entries(sample);
	u8 cpumode = PERF_RECORD_MISC_USER;
	int lbr_nr = lbr_stack->nr;
	struct branch_flags *flags;
	int err, i;
	u64 ip;

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	/*
	 * The curr and pos are not used in writing session. They are cleared
	 * in callchain_cursor_commit() when the writing session is closed.
	 * Using curr and pos to track the current cursor node.
	 */
	if (thread->lbr_stitch) {
		cursor->curr = NULL;
		cursor->pos = cursor->nr;
		if (cursor->nr) {
			cursor->curr = cursor->first;
			for (i = 0; i < (int)(cursor->nr - 1); i++)
				cursor->curr = cursor->curr->next;
		}
	}

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	if (callee) {
		/* Add LBR ip from first entries.to */
		ip = entries[0].to;
		flags = &entries[0].flags;
		*branch_from = entries[0].from;
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
				       true, flags, NULL,
				       *branch_from);
		if (err)
			return err;

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		/*
		 * The number of cursor node increases.
		 * Move the current cursor node.
		 * But does not need to save current cursor node for entry 0.
		 * It's impossible to stitch the whole LBRs of previous sample.
		 */
		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
			if (!cursor->curr)
				cursor->curr = cursor->first;
			else
				cursor->curr = cursor->curr->next;
			cursor->pos++;
		}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
		/* Add LBR ip from entries.from one by one. */
		for (i = 0; i < lbr_nr; i++) {
			ip = entries[i].from;
			flags = &entries[i].flags;
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
					       true, flags, NULL,
					       *branch_from);
			if (err)
				return err;
2319
			save_lbr_cursor_node(thread, cursor, i);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		}
		return 0;
	}

	/* Add LBR ip from entries.from one by one. */
	for (i = lbr_nr - 1; i >= 0; i--) {
		ip = entries[i].from;
		flags = &entries[i].flags;
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
				       true, flags, NULL,
				       *branch_from);
		if (err)
			return err;
2334
		save_lbr_cursor_node(thread, cursor, i);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	}

	/* Add LBR ip from first entries.to */
	ip = entries[0].to;
	flags = &entries[0].flags;
	*branch_from = entries[0].from;
	err = add_callchain_ip(thread, cursor, parent,
			       root_al, &cpumode, ip,
			       true, flags, NULL,
			       *branch_from);
	if (err)
		return err;

	return 0;
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
					     struct callchain_cursor *cursor)
{
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
	struct callchain_cursor_node *cnode;
	struct stitch_list *stitch_node;
	int err;

	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
		cnode = &stitch_node->cursor;

		err = callchain_cursor_append(cursor, cnode->ip,
					      &cnode->ms,
					      cnode->branch,
					      &cnode->branch_flags,
					      cnode->nr_loop_iter,
					      cnode->iter_cycles,
					      cnode->branch_from,
					      cnode->srcline);
		if (err)
			return err;
	}
	return 0;
}

static struct stitch_list *get_stitch_node(struct thread *thread)
{
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
	struct stitch_list *stitch_node;

	if (!list_empty(&lbr_stitch->free_lists)) {
		stitch_node = list_first_entry(&lbr_stitch->free_lists,
					       struct stitch_list, node);
		list_del(&stitch_node->node);

		return stitch_node;
	}

	return malloc(sizeof(struct stitch_list));
}

static bool has_stitched_lbr(struct thread *thread,
			     struct perf_sample *cur,
			     struct perf_sample *prev,
			     unsigned int max_lbr,
			     bool callee)
{
	struct branch_stack *cur_stack = cur->branch_stack;
	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
	struct branch_stack *prev_stack = prev->branch_stack;
	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
	int i, j, nr_identical_branches = 0;
	struct stitch_list *stitch_node;
	u64 cur_base, distance;

	if (!cur_stack || !prev_stack)
		return false;

	/* Find the physical index of the base-of-stack for current sample. */
	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;

	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
						     (max_lbr + prev_stack->hw_idx - cur_base);
	/* Previous sample has shorter stack. Nothing can be stitched. */
	if (distance + 1 > prev_stack->nr)
		return false;

	/*
	 * Check if there are identical LBRs between two samples.
	 * Identicall LBRs must have same from, to and flags values. Also,
	 * they have to be saved in the same LBR registers (same physical
	 * index).
	 *
	 * Starts from the base-of-stack of current sample.
	 */
	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
		if ((prev_entries[i].from != cur_entries[j].from) ||
		    (prev_entries[i].to != cur_entries[j].to) ||
		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
			break;
		nr_identical_branches++;
	}

	if (!nr_identical_branches)
		return false;

	/*
	 * Save the LBRs between the base-of-stack of previous sample
	 * and the base-of-stack of current sample into lbr_stitch->lists.
	 * These LBRs will be stitched later.
	 */
	for (i = prev_stack->nr - 1; i > (int)distance; i--) {

		if (!lbr_stitch->prev_lbr_cursor[i].valid)
			continue;

		stitch_node = get_stitch_node(thread);
		if (!stitch_node)
			return false;

		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
		       sizeof(struct callchain_cursor_node));

		if (callee)
			list_add(&stitch_node->node, &lbr_stitch->lists);
		else
			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
	}

	return true;
}

2464
static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2465 2466 2467 2468 2469 2470 2471 2472
{
	if (thread->lbr_stitch)
		return true;

	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
	if (!thread->lbr_stitch)
		goto err;

2473 2474 2475 2476
	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
	if (!thread->lbr_stitch->prev_lbr_cursor)
		goto free_lbr_stitch;

2477 2478 2479
	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);

2480 2481 2482 2483
	return true;

free_lbr_stitch:
	zfree(&thread->lbr_stitch);
2484 2485 2486 2487 2488 2489
err:
	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
	thread->lbr_stitch_enable = false;
	return false;
}

K
Kan Liang 已提交
2490 2491 2492 2493 2494 2495 2496 2497
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2498
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2499 2500 2501
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
2502 2503
					int max_stack,
					unsigned int max_lbr)
2504
{
2505
	bool callee = (callchain_param.order == ORDER_CALLEE);
K
Kan Liang 已提交
2506
	struct ip_callchain *chain = sample->callchain;
2507
	int chain_nr = min(max_stack, (int)chain->nr), i;
2508
	struct lbr_stitch *lbr_stitch;
2509
	bool stitched_lbr = false;
2510
	u64 branch_from = 0;
2511
	int err;
K
Kan Liang 已提交
2512 2513 2514 2515 2516 2517 2518

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
2519 2520 2521
	if (i == chain_nr)
		return 0;

2522
	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2523
	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2524 2525
		lbr_stitch = thread->lbr_stitch;

2526 2527 2528 2529 2530 2531 2532 2533
		stitched_lbr = has_stitched_lbr(thread, sample,
						&lbr_stitch->prev_sample,
						max_lbr, callee);

		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
			list_replace_init(&lbr_stitch->lists,
					  &lbr_stitch->free_lists);
		}
2534 2535 2536
		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
	}

2537
	if (callee) {
2538
		/* Add kernel ip */
2539 2540 2541 2542 2543 2544
		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
						  parent, root_al, branch_from,
						  true, i);
		if (err)
			goto error;

2545 2546
		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
					       root_al, &branch_from, true);
2547 2548
		if (err)
			goto error;
K
Kan Liang 已提交
2549

2550 2551 2552 2553 2554 2555
		if (stitched_lbr) {
			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
			if (err)
				goto error;
		}

2556
	} else {
2557 2558 2559 2560 2561
		if (stitched_lbr) {
			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
			if (err)
				goto error;
		}
2562 2563
		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
					       root_al, &branch_from, false);
2564
		if (err)
2565 2566 2567
			goto error;

		/* Add kernel ip */
2568 2569 2570 2571 2572
		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
						  parent, root_al, branch_from,
						  false, i);
		if (err)
			goto error;
2573 2574
	}
	return 1;
2575 2576 2577

error:
	return (err < 0) ? err : 0;
K
Kan Liang 已提交
2578 2579
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2601
static int thread__resolve_callchain_sample(struct thread *thread,
2602
					    struct callchain_cursor *cursor,
2603
					    struct evsel *evsel,
K
Kan Liang 已提交
2604 2605 2606 2607 2608 2609
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
2610
	struct branch_entry *entries = perf_sample__branch_entries(sample);
K
Kan Liang 已提交
2611
	struct ip_callchain *chain = sample->callchain;
2612
	int chain_nr = 0;
2613
	u8 cpumode = PERF_RECORD_MISC_USER;
2614
	int i, j, err, nr_entries;
2615 2616 2617
	int skip_idx = -1;
	int first_call = 0;

2618 2619 2620
	if (chain)
		chain_nr = chain->nr;

2621
	if (evsel__has_branch_callstack(evsel)) {
2622 2623
		struct perf_env *env = perf_evsel__env(evsel);

2624
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2625 2626
						   root_al, max_stack,
						   !env ? 0 : env->max_branches);
K
Kan Liang 已提交
2627 2628 2629 2630
		if (err)
			return (err < 0) ? err : 0;
	}

2631 2632 2633 2634
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2635
	skip_idx = arch_skip_callchain_idx(thread, chain);
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2652
		struct iterations iter[nr];
2653 2654 2655 2656 2657 2658 2659 2660

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
2661
				be[i] = entries[i];
2662 2663 2664 2665

				if (chain == NULL)
					continue;

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
2680
				be[i] = entries[branch->nr - i - 1];
2681 2682
		}

2683 2684
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2685

2686
		for (i = 0; i < nr; i++) {
2687 2688 2689 2690 2691
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2692

2693
			if (!err)
2694
				err = add_callchain_ip(thread, cursor, parent, root_al,
2695 2696
						       NULL, be[i].from,
						       true, &be[i].flags,
2697
						       &iter[i], 0);
2698 2699 2700 2701 2702
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2703 2704 2705 2706

		if (chain_nr == 0)
			return 0;

2707 2708 2709 2710
		chain_nr -= nr;
	}

check_calls:
2711
	if (chain && callchain_param.order != ORDER_CALLEE) {
2712 2713 2714 2715 2716
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2717
	for (i = first_call, nr_entries = 0;
2718
	     i < chain_nr && nr_entries < max_stack; i++) {
2719 2720 2721
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2722
			j = i;
2723
		else
2724 2725 2726 2727 2728 2729 2730
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2731 2732
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2733 2734 2735 2736 2737 2738 2739
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2740

2741 2742
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2743
				       false, NULL, NULL, 0);
2744 2745

		if (err)
2746
			return (err < 0) ? err : 0;
2747 2748 2749 2750 2751
	}

	return 0;
}

2752
static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2753
{
2754 2755
	struct symbol *sym = ms->sym;
	struct map *map = ms->map;
2756 2757 2758
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2759
	int ret = 1;
2760 2761

	if (!symbol_conf.inline_name || !map || !sym)
2762
		return ret;
2763

2764 2765
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2766 2767 2768 2769 2770

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2771
			return ret;
2772 2773 2774 2775
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2776
		struct map_symbol ilist_ms = {
2777
			.maps = ms->maps,
2778 2779 2780 2781
			.map = map,
			.sym = ilist->symbol,
		};
		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2782
					      NULL, 0, 0, 0, ilist->srcline);
2783 2784 2785 2786 2787

		if (ret != 0)
			return ret;
	}

2788
	return ret;
2789 2790
}

2791 2792 2793
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2794
	const char *srcline = NULL;
2795
	u64 addr = entry->ip;
2796

2797
	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2798
		return 0;
2799

2800
	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2801 2802
		return 0;

2803 2804 2805 2806
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2807 2808
	if (entry->ms.map)
		addr = map__map_ip(entry->ms.map, entry->ip);
2809

2810 2811
	srcline = callchain_srcline(&entry->ms, addr);
	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2812
				       false, NULL, 0, 0, 0, srcline);
2813 2814
}

2815 2816
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
2817
					    struct evsel *evsel,
2818 2819
					    struct perf_sample *sample,
					    int max_stack)
2820 2821
{
	/* Can we do dwarf post unwind? */
2822 2823
	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2824 2825 2826 2827 2828 2829 2830
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2831
	return unwind__get_entries(unwind_entry, cursor,
2832
				   thread, sample, max_stack);
2833
}
2834

2835 2836
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
2837
			      struct evsel *evsel,
2838 2839 2840 2841 2842 2843 2844
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2845
	callchain_cursor_reset(cursor);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2870
}
2871 2872 2873 2874 2875

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2876
	struct threads *threads;
2877 2878 2879
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2880
	int i;
2881

2882 2883
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2884 2885
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2886 2887 2888 2889 2890
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2891

2892 2893 2894 2895 2896
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2897 2898 2899
	}
	return rc;
}
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2912
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2913 2914 2915 2916 2917 2918 2919 2920 2921
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2922 2923
pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
2924 2925 2926
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);

	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2927 2928 2929 2930 2931 2932 2933 2934 2935
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;
2936
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2937 2938 2939 2940 2941 2942 2943

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

2944
		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2945 2946
		if (!machine->current_tid)
			return -ENOMEM;
2947
		for (i = 0; i < nr_cpus; i++)
2948 2949 2950
			machine->current_tid[i] = -1;
	}

2951
	if (cpu >= nr_cpus) {
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2964
	thread__put(thread);
2965 2966 2967

	return 0;
}
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2978 2979 2980 2981 2982
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2983 2984
int machine__get_kernel_start(struct machine *machine)
{
2985
	struct map *map = machine__kernel_map(machine);
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2998
		err = map__load(map);
2999 3000 3001 3002 3003 3004
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
3005 3006 3007 3008
			machine->kernel_start = map->start;
	}
	return err;
}
3009

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

3037 3038 3039 3040 3041
struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
{
	return dsos__findnew_id(&machine->dsos, filename, id);
}

3042 3043
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
3044
	return machine__findnew_dso_id(machine, filename, NULL);
3045
}
3046 3047 3048 3049 3050

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
3051
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3052 3053 3054 3055 3056 3057 3058 3059

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}