machine.c 56.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24

25 26 27
#include "sane_ctype.h"
#include <symbol/kallsyms.h>

28 29
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

30 31 32 33
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
34
	init_rwsem(&dsos->lock);
35 36
}

37 38 39 40 41 42 43
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
44
		init_rwsem(&threads->lock);
45 46 47 48 49 50
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

51 52
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
53 54 55 56 57 58 59
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
60 61 62 63

	return machine->mmap_name ? 0 : -ENOMEM;
}

64 65
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
66 67
	int err = -ENOMEM;

68
	memset(machine, 0, sizeof(*machine));
69
	map_groups__init(&machine->kmaps, machine);
70
	RB_CLEAR_NODE(&machine->rb_node);
71
	dsos__init(&machine->dsos);
72

73
	machine__threads_init(machine);
74

75
	machine->vdso_info = NULL;
76
	machine->env = NULL;
77

78 79
	machine->pid = pid;

80
	machine->id_hdr_size = 0;
81
	machine->kptr_restrict_warned = false;
82
	machine->comm_exec = false;
83
	machine->kernel_start = 0;
84

85 86
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

87 88 89 90
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

91 92 93
	if (machine__set_mmap_name(machine))
		goto out;

94
	if (pid != HOST_KERNEL_ID) {
95
		struct thread *thread = machine__findnew_thread(machine, -1,
96
								pid);
97 98 99
		char comm[64];

		if (thread == NULL)
100
			goto out;
101 102

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103
		thread__set_comm(thread, comm, 0);
104
		thread__put(thread);
105 106
	}

107
	machine->current_tid = NULL;
108
	err = 0;
109

110
out:
111
	if (err) {
112
		zfree(&machine->root_dir);
113 114
		zfree(&machine->mmap_name);
	}
115 116 117
	return 0;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

135 136 137 138 139 140 141 142 143 144 145
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
146
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
147 148 149 150 151 152 153
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

154
static void dsos__purge(struct dsos *dsos)
155 156 157
{
	struct dso *pos, *n;

158
	down_write(&dsos->lock);
159

160
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
161
		RB_CLEAR_NODE(&pos->rb_node);
162
		pos->root = NULL;
163 164
		list_del_init(&pos->node);
		dso__put(pos);
165
	}
166

167
	up_write(&dsos->lock);
168
}
169

170 171 172
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
173
	exit_rwsem(&dsos->lock);
174 175
}

176 177
void machine__delete_threads(struct machine *machine)
{
178
	struct rb_node *nd;
179
	int i;
180

181 182
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
183
		down_write(&threads->lock);
184 185 186
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
187

188 189 190
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
191
		up_write(&threads->lock);
192 193 194
	}
}

195 196
void machine__exit(struct machine *machine)
{
197 198
	int i;

199 200 201
	if (machine == NULL)
		return;

202
	machine__destroy_kernel_maps(machine);
203
	map_groups__exit(&machine->kmaps);
204
	dsos__exit(&machine->dsos);
205
	machine__exit_vdso(machine);
206
	zfree(&machine->root_dir);
207
	zfree(&machine->mmap_name);
208
	zfree(&machine->current_tid);
209 210 211

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
212
		exit_rwsem(&threads->lock);
213
	}
214 215 216 217
}

void machine__delete(struct machine *machine)
{
218 219 220 221
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
237 238
			      const char *root_dir)
{
239
	struct rb_node **p = &machines->guests.rb_node;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
261
	rb_insert_color(&machine->rb_node, &machines->guests);
262 263 264 265

	return machine;
}

266 267 268 269 270 271 272 273 274 275 276 277 278
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

279
struct machine *machines__find(struct machines *machines, pid_t pid)
280
{
281
	struct rb_node **p = &machines->guests.rb_node;
282 283 284 285
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

286 287 288
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

305
struct machine *machines__findnew(struct machines *machines, pid_t pid)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
322
				seen = strlist__new(NULL, NULL);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

339 340
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
341 342 343
{
	struct rb_node *nd;

344
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
345 346 347 348 349
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

350
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
351 352 353 354
{
	struct rb_node *node;
	struct machine *machine;

355 356 357
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
358 359 360 361 362 363 364
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

365 366 367 368 369 370 371 372 373 374 375 376 377
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

378
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
379 380 381 382
	if (!leader)
		goto out_err;

	if (!leader->mg)
383
		leader->mg = map_groups__new(machine);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
400
		map_groups__put(th->mg);
401 402 403
	}

	th->mg = map_groups__get(leader->mg);
404 405
out_put:
	thread__put(leader);
406 407 408
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
409
	goto out_put;
410 411
}

412
/*
413
 * Caller must eventually drop thread->refcnt returned with a successful
414 415
 * lookup/new thread inserted.
 */
416
static struct thread *____machine__findnew_thread(struct machine *machine,
417
						  struct threads *threads,
418 419
						  pid_t pid, pid_t tid,
						  bool create)
420
{
421
	struct rb_node **p = &threads->entries.rb_node;
422 423 424 425
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
426
	 * Front-end cache - TID lookups come in blocks,
427 428 429
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
430
	th = threads->last_match;
431 432 433
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
434
			return thread__get(th);
435 436
		}

437
		threads->last_match = NULL;
438
	}
439 440 441 442 443

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

444
		if (th->tid == tid) {
445
			threads->last_match = th;
446
			machine__update_thread_pid(machine, th, pid);
447
			return thread__get(th);
448 449
		}

450
		if (tid < th->tid)
451 452 453 454 455 456 457 458
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

459
	th = thread__new(pid, tid);
460 461
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
462
		rb_insert_color(&th->rb_node, &threads->entries);
463 464 465 466 467 468 469 470 471

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
472
		if (thread__init_map_groups(th, machine)) {
473
			rb_erase_init(&th->rb_node, &threads->entries);
474
			RB_CLEAR_NODE(&th->rb_node);
475
			thread__put(th);
476
			return NULL;
477
		}
478 479 480 481
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
482 483
		threads->last_match = th;
		++threads->nr;
484 485 486 487 488
	}

	return th;
}

489 490
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
491
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
492 493
}

494 495
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
496
{
497
	struct threads *threads = machine__threads(machine, tid);
498 499
	struct thread *th;

500
	down_write(&threads->lock);
501
	th = __machine__findnew_thread(machine, pid, tid);
502
	up_write(&threads->lock);
503
	return th;
504 505
}

506 507
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
508
{
509
	struct threads *threads = machine__threads(machine, tid);
510
	struct thread *th;
511

512
	down_read(&threads->lock);
513
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
514
	up_read(&threads->lock);
515
	return th;
516
}
517

518 519 520 521 522 523 524 525 526
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

527 528
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
529
{
530 531 532
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
533
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
534
	int err = 0;
535

536 537 538
	if (exec)
		machine->comm_exec = true;

539 540 541
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

542 543
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
544
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
545
		err = -1;
546 547
	}

548 549 550
	thread__put(thread);

	return err;
551 552
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

584
int machine__process_lost_event(struct machine *machine __maybe_unused,
585
				union perf_event *event, struct perf_sample *sample __maybe_unused)
586 587 588 589 590 591
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

592 593 594 595 596 597 598 599
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

600 601 602
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
603 604 605
{
	struct dso *dso;

606
	down_write(&machine->dsos.lock);
607 608

	dso = __dsos__find(&machine->dsos, m->name, true);
609
	if (!dso) {
610
		dso = __dsos__addnew(&machine->dsos, m->name);
611
		if (dso == NULL)
612
			goto out_unlock;
613

614
		dso__set_module_info(dso, m, machine);
615
		dso__set_long_name(dso, strdup(filename), true);
616 617
	}

618
	dso__get(dso);
619
out_unlock:
620
	up_write(&machine->dsos.lock);
621 622 623
	return dso;
}

624 625 626 627 628 629 630 631
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

632 633 634 635 636 637 638 639
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

640 641 642 643 644 645 646 647
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

663
	dso__set_long_name(dso, dup_filename, true);
664 665
}

666 667
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
668
{
669
	struct map *map = NULL;
670
	struct dso *dso = NULL;
671
	struct kmod_path m;
672

673
	if (kmod_path__parse_name(&m, filename))
674 675
		return NULL;

676 677
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
678 679 680 681 682 683 684
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
685
		goto out;
686
	}
687

688
	dso = machine__findnew_module_dso(machine, &m, filename);
689 690 691
	if (dso == NULL)
		goto out;

692 693
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
694
		goto out;
695 696

	map_groups__insert(&machine->kmaps, map);
697

698 699
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
700
out:
701 702
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
703
	free(m.name);
704 705 706
	return map;
}

707
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
708 709
{
	struct rb_node *nd;
710
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
711

712
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
713
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
714
		ret += __dsos__fprintf(&pos->dsos.head, fp);
715 716 717 718 719
	}

	return ret;
}

720
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
721 722
				     bool (skip)(struct dso *dso, int parm), int parm)
{
723
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
724 725
}

726
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
727 728 729
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
730
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
731

732
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
733 734 735 736 737 738 739 740 741 742
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
743
	struct dso *kdso = machine__kernel_map(machine)->dso;
744 745 746

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
747 748
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
749 750 751 752 753 754 755 756 757 758 759 760 761
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
762 763
	size_t ret;
	int i;
764

765 766
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
767 768

		down_read(&threads->lock);
769

770
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
771

772 773
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
774

775 776
			ret += thread__fprintf(pos, fp);
		}
777

778
		up_read(&threads->lock);
779
	}
780 781 782 783 784
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
785
	const char *vmlinux_name = machine->mmap_name;
786 787 788
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
789 790 791
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

792 793
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
794
	} else {
J
Jiri Olsa 已提交
795 796 797
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

798 799 800
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
801 802 803 804 805 806 807 808 809 810 811 812
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

813 814 815 816 817 818 819 820 821
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

822 823 824 825 826 827
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
828 829
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
830
{
831
	char filename[PATH_MAX];
832
	int i, err = -1;
833 834
	const char *name;
	u64 addr = 0;
835

836
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
837 838 839 840

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

841
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
842 843
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
844 845 846
			break;
	}

847 848 849
	if (err)
		return -1;

850 851
	if (symbol_name)
		*symbol_name = name;
852

853 854
	*start = addr;
	return 0;
855 856
}

857 858
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
859
{
860
	int type;
861

862 863 864
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

865 866
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
867
		struct map *map;
868

869
		machine->vmlinux_maps[type] = map__new2(0, kernel, type);
870 871 872 873 874 875
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
876
		map = __machine__kernel_map(machine, type);
877
		kmap = map__kmap(map);
878 879 880
		if (!kmap)
			return -1;

881
		kmap->kmaps = &machine->kmaps;
882
		map_groups__insert(&machine->kmaps, map);
883 884 885 886 887 888 889
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
890
	int type;
891 892 893

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
894
		struct map *map = __machine__kernel_map(machine, type);
895

896
		if (map == NULL)
897 898
			continue;

899 900
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
901
		if (kmap && kmap->ref_reloc_sym) {
902 903 904 905 906
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
907 908 909 910
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
911 912
		}

913
		map__put(machine->vmlinux_maps[type]);
914 915 916 917
		machine->vmlinux_maps[type] = NULL;
	}
}

918
int machines__create_guest_kernel_maps(struct machines *machines)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

967
void machines__destroy_kernel_maps(struct machines *machines)
968
{
969 970 971
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
972 973 974 975 976

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
977
		rb_erase(&pos->rb_node, &machines->guests);
978 979 980 981
		machine__delete(pos);
	}
}

982
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
983 984 985 986 987 988 989 990 991
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

992 993
int machine__load_kallsyms(struct machine *machine, const char *filename,
			     enum map_type type)
994
{
995
	struct map *map = machine__kernel_map(machine);
996
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

1011
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012
{
1013
	struct map *map = machine__kernel_map(machine);
1014
	int ret = dso__load_vmlinux_path(map->dso, map);
1015

1016
	if (ret > 0)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		dso__set_loaded(map->dso, type);

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1082
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1083
				const char *dir_name, int depth)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1108 1109 1110 1111 1112 1113 1114 1115 1116
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1117 1118 1119
			if (ret < 0)
				goto out;
		} else {
1120
			struct kmod_path m;
1121

1122 1123 1124
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1125

1126 1127
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1128

1129
			free(m.name);
1130

1131
			if (ret)
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1150
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1151 1152 1153
		 machine->root_dir, version);
	free(version);

1154
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1155
}
1156 1157 1158 1159 1160
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1161

1162 1163
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1164
{
1165
	struct machine *machine = arg;
1166
	struct map *map;
1167

1168 1169 1170
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1171
	map = machine__findnew_module_map(machine, start, name);
1172 1173
	if (map == NULL)
		return -1;
1174
	map->end = start + size;
1175 1176 1177 1178 1179 1180 1181 1182

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1183 1184 1185
	const char *modules;
	char path[PATH_MAX];

1186
	if (machine__is_default_guest(machine)) {
1187
		modules = symbol_conf.default_guest_modules;
1188 1189
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1190 1191 1192
		modules = path;
	}

1193
	if (symbol__restricted_filename(modules, "/proc/modules"))
1194 1195
		return -1;

1196
	if (modules__parse(modules, machine, machine__create_module))
1197 1198
		return -1;

1199 1200
	if (!machine__set_modules_path(machine))
		return 0;
1201

1202
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1203

1204
	return 0;
1205 1206
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = start;
		machine->vmlinux_maps[i]->end   = end;

		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
1220
		if (start == 0 && end == 0)
1221 1222 1223 1224
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
}

1225 1226 1227
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1228
	const char *name = NULL;
1229
	struct map *map;
1230
	u64 addr = 0;
1231 1232
	int ret;

1233
	if (kernel == NULL)
1234
		return -1;
1235

1236 1237 1238
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1250 1251 1252 1253 1254 1255
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
1268 1269
	}

1270 1271 1272 1273 1274
	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);

1275 1276 1277
	return 0;
}

1278 1279 1280 1281
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1282
	list_for_each_entry(dso, &machine->dsos.head, node) {
1283 1284 1285 1286 1287 1288 1289
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1290 1291 1292 1293 1294 1295 1296
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1297 1298 1299 1300
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1301 1302 1303 1304 1305 1306
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1307 1308
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1309 1310
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311 1312
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1313 1314 1315 1316 1317 1318
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1319
				strlen(machine->mmap_name));
1320 1321 1322 1323
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1324 1325 1326
		struct dso *kernel = NULL;
		struct dso *dso;

1327
		down_read(&machine->dsos.lock);
1328

1329
		list_for_each_entry(dso, &machine->dsos.head, node) {
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350 1351
				continue;

1352

1353 1354 1355 1356
			kernel = dso;
			break;
		}

1357
		up_read(&machine->dsos.lock);
1358

1359
		if (kernel == NULL)
1360
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1361 1362 1363 1364
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1365 1366
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1367
			goto out_problem;
1368
		}
1369

1370 1371
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372

1373 1374
		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1391
			dso__load(kernel, machine__kernel_map(machine));
1392 1393 1394 1395 1396 1397 1398
		}
	}
	return 0;
out_problem:
	return -1;
}

1399
int machine__process_mmap2_event(struct machine *machine,
1400
				 union perf_event *event,
1401
				 struct perf_sample *sample)
1402 1403 1404 1405 1406 1407 1408 1409 1410
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1411 1412
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1413 1414 1415 1416 1417 1418 1419
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1420
					event->mmap2.tid);
1421 1422 1423 1424 1425 1426 1427 1428
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1429
	map = map__new(machine, event->mmap2.start,
1430
			event->mmap2.len, event->mmap2.pgoff,
1431
			event->mmap2.maj,
1432 1433
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1434 1435
			event->mmap2.prot,
			event->mmap2.flags,
1436
			event->mmap2.filename, type, thread);
1437 1438

	if (map == NULL)
1439
		goto out_problem_map;
1440

1441 1442 1443 1444
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1445
	thread__put(thread);
1446
	map__put(map);
1447 1448
	return 0;

1449 1450
out_problem_insert:
	map__put(map);
1451 1452
out_problem_map:
	thread__put(thread);
1453 1454 1455 1456 1457
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1458
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1459
				struct perf_sample *sample)
1460 1461 1462
{
	struct thread *thread;
	struct map *map;
1463
	enum map_type type;
1464 1465 1466 1467 1468
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1469 1470
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1471 1472 1473 1474 1475 1476
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1477
	thread = machine__findnew_thread(machine, event->mmap.pid,
1478
					 event->mmap.tid);
1479 1480
	if (thread == NULL)
		goto out_problem;
1481 1482 1483 1484 1485 1486

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1487
	map = map__new(machine, event->mmap.start,
1488
			event->mmap.len, event->mmap.pgoff,
1489
			0, 0, 0, 0, 0, 0,
1490
			event->mmap.filename,
1491
			type, thread);
1492

1493
	if (map == NULL)
1494
		goto out_problem_map;
1495

1496 1497 1498 1499
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1500
	thread__put(thread);
1501
	map__put(map);
1502 1503
	return 0;

1504 1505
out_problem_insert:
	map__put(map);
1506 1507
out_problem_map:
	thread__put(thread);
1508 1509 1510 1511 1512
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1513
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1514
{
1515 1516 1517 1518
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1519

1520
	BUG_ON(refcount_read(&th->refcnt) == 0);
1521
	if (lock)
1522
		down_write(&threads->lock);
1523
	rb_erase_init(&th->rb_node, &threads->entries);
1524
	RB_CLEAR_NODE(&th->rb_node);
1525
	--threads->nr;
1526
	/*
1527 1528 1529
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1530
	 */
1531
	list_add_tail(&th->node, &threads->dead);
1532
	if (lock)
1533
		up_write(&threads->lock);
1534
	thread__put(th);
1535 1536
}

1537 1538 1539 1540 1541
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1542 1543
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1544
{
1545 1546 1547
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1548 1549 1550
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1551
	int err = 0;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1571
	/* if a thread currently exists for the thread id remove it */
1572
	if (thread != NULL) {
1573
		machine__remove_thread(machine, thread);
1574 1575
		thread__put(thread);
	}
1576

1577 1578
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1579 1580

	if (thread == NULL || parent == NULL ||
1581
	    thread__fork(thread, parent, sample->time) < 0) {
1582
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1583
		err = -1;
1584
	}
1585 1586
	thread__put(thread);
	thread__put(parent);
1587

1588
	return err;
1589 1590
}

1591 1592
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1593
{
1594 1595 1596
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1597 1598 1599 1600

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1601
	if (thread != NULL) {
1602
		thread__exited(thread);
1603 1604
		thread__put(thread);
	}
1605 1606 1607 1608

	return 0;
}

1609 1610
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1611 1612 1613 1614 1615
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1616
		ret = machine__process_comm_event(machine, event, sample); break;
1617
	case PERF_RECORD_MMAP:
1618
		ret = machine__process_mmap_event(machine, event, sample); break;
1619 1620
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1621
	case PERF_RECORD_MMAP2:
1622
		ret = machine__process_mmap2_event(machine, event, sample); break;
1623
	case PERF_RECORD_FORK:
1624
		ret = machine__process_fork_event(machine, event, sample); break;
1625
	case PERF_RECORD_EXIT:
1626
		ret = machine__process_exit_event(machine, event, sample); break;
1627
	case PERF_RECORD_LOST:
1628
		ret = machine__process_lost_event(machine, event, sample); break;
1629 1630
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1631
	case PERF_RECORD_ITRACE_START:
1632
		ret = machine__process_itrace_start_event(machine, event); break;
1633 1634
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1635 1636 1637
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1638 1639 1640 1641 1642 1643 1644
	default:
		ret = -1;
		break;
	}

	return ret;
}
1645

1646
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1647
{
1648
	if (!regexec(regex, sym->name, 0, NULL, 0))
1649 1650 1651 1652
		return 1;
	return 0;
}

1653
static void ip__resolve_ams(struct thread *thread,
1654 1655 1656 1657 1658 1659
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1660 1661 1662 1663 1664 1665 1666
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1667
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1668 1669 1670 1671 1672

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1673
	ams->phys_addr = 0;
1674 1675
}

1676
static void ip__resolve_data(struct thread *thread,
1677 1678
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1679 1680 1681 1682 1683
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1684
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1685 1686 1687 1688 1689 1690
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1691
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1692 1693
	}

1694 1695 1696 1697
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1698
	ams->phys_addr = phys_addr;
1699 1700
}

1701 1702
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1703
{
1704
	struct mem_info *mi = mem_info__new();
1705 1706 1707 1708

	if (!mi)
		return NULL;

1709
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1710 1711
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1712 1713 1714 1715 1716
	mi->data_src.val = sample->data_src;

	return mi;
}

1717 1718
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1719 1720
	char *srcline = NULL;

1721
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1722 1723 1724 1725 1726 1727 1728 1729
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1730
				      sym, show_sym, show_addr, ip);
1731 1732
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1733

1734
	return srcline;
1735 1736
}

1737 1738 1739 1740 1741
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1742
static int add_callchain_ip(struct thread *thread,
1743
			    struct callchain_cursor *cursor,
1744 1745
			    struct symbol **parent,
			    struct addr_location *root_al,
1746
			    u8 *cpumode,
1747 1748 1749
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1750
			    struct iterations *iter,
1751
			    u64 branch_from)
1752 1753
{
	struct addr_location al;
1754 1755
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1756
	const char *srcline = NULL;
1757 1758 1759

	al.filtered = 0;
	al.sym = NULL;
1760
	if (!cpumode) {
1761 1762
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1763
	} else {
1764 1765 1766
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1767
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1768 1769
				break;
			case PERF_CONTEXT_KERNEL:
1770
				*cpumode = PERF_RECORD_MISC_KERNEL;
1771 1772
				break;
			case PERF_CONTEXT_USER:
1773
				*cpumode = PERF_RECORD_MISC_USER;
1774 1775 1776 1777 1778 1779 1780 1781
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1782
				callchain_cursor_reset(cursor);
1783 1784 1785 1786
				return 1;
			}
			return 0;
		}
1787 1788
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1789 1790
	}

1791
	if (al.sym != NULL) {
1792
		if (perf_hpp_list.parent && !*parent &&
1793 1794 1795 1796 1797 1798 1799
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1800
			callchain_cursor_reset(cursor);
1801 1802 1803
		}
	}

1804 1805
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1806 1807 1808 1809 1810 1811

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1812
	srcline = callchain_srcline(al.map, al.sym, al.addr);
1813
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1814
				       branch, flags, nr_loop_iter,
1815
				       iter_cycles, branch_from, srcline);
1816 1817
}

1818 1819
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1820 1821
{
	unsigned int i;
1822 1823
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1824 1825 1826 1827 1828

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1829 1830
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1831 1832 1833 1834 1835
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1848 1849 1850 1851 1852 1853 1854
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1855 1856
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

1893 1894 1895 1896 1897 1898 1899
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1900 1901 1902 1903 1904 1905 1906 1907
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1908
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1909 1910 1911 1912
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1913
{
K
Kan Liang 已提交
1914
	struct ip_callchain *chain = sample->callchain;
1915
	int chain_nr = min(max_stack, (int)chain->nr), i;
1916
	u8 cpumode = PERF_RECORD_MISC_USER;
1917
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1927 1928 1929
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1943
			int err;
1944 1945 1946
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1947 1948 1949
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1950 1951 1952 1953 1954 1955
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1956
					ip = lbr_stack->entries[0].to;
1957 1958
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1959 1960
					branch_from =
						lbr_stack->entries[0].from;
1961
				}
K
Kan Liang 已提交
1962
			} else {
1963 1964 1965 1966 1967 1968
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1969 1970
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1971
				else {
K
Kan Liang 已提交
1972
					ip = lbr_stack->entries[0].to;
1973 1974
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1975 1976
					branch_from =
						lbr_stack->entries[0].from;
1977
				}
K
Kan Liang 已提交
1978 1979
			}

1980 1981
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
1982
					       branch, flags, NULL,
1983
					       branch_from);
K
Kan Liang 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1994
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1995 1996 1997 1998 1999 2000 2001 2002
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2003
	int chain_nr = 0;
2004
	u8 cpumode = PERF_RECORD_MISC_USER;
2005
	int i, j, err, nr_entries;
2006 2007 2008
	int skip_idx = -1;
	int first_call = 0;

2009 2010 2011
	if (chain)
		chain_nr = chain->nr;

2012
	if (perf_evsel__has_branch_callstack(evsel)) {
2013
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2014 2015 2016 2017 2018
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2019 2020 2021 2022
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2023
	skip_idx = arch_skip_callchain_idx(thread, chain);
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2040
		struct iterations iter[nr];
2041 2042 2043 2044 2045 2046 2047 2048 2049

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2050 2051 2052 2053

				if (chain == NULL)
					continue;

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2071 2072
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2073

2074
		for (i = 0; i < nr; i++) {
2075 2076 2077 2078 2079
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2080

2081
			if (!err)
2082
				err = add_callchain_ip(thread, cursor, parent, root_al,
2083 2084
						       NULL, be[i].from,
						       true, &be[i].flags,
2085
						       &iter[i], 0);
2086 2087 2088 2089 2090
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2091 2092 2093 2094

		if (chain_nr == 0)
			return 0;

2095 2096 2097 2098
		chain_nr -= nr;
	}

check_calls:
2099
	for (i = first_call, nr_entries = 0;
2100
	     i < chain_nr && nr_entries < max_stack; i++) {
2101 2102 2103
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2104
			j = i;
2105
		else
2106 2107 2108 2109 2110 2111 2112
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2113

2114 2115
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2116

2117 2118
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2119
				       false, NULL, NULL, 0);
2120 2121

		if (err)
2122
			return (err < 0) ? err : 0;
2123 2124 2125 2126 2127
	}

	return 0;
}

2128 2129 2130 2131 2132 2133
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2134
	int ret = 1;
2135 2136

	if (!symbol_conf.inline_name || !map || !sym)
2137
		return ret;
2138 2139 2140 2141 2142 2143 2144

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2145
			return ret;
2146 2147 2148 2149
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2150 2151 2152
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2153 2154 2155 2156 2157

		if (ret != 0)
			return ret;
	}

2158
	return ret;
2159 2160
}

2161 2162 2163
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2164
	const char *srcline = NULL;
2165 2166 2167

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2168

2169 2170 2171
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2172
	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2173
	return callchain_cursor_append(cursor, entry->ip,
2174
				       entry->map, entry->sym,
2175
				       false, NULL, 0, 0, 0, srcline);
2176 2177
}

2178 2179 2180 2181 2182
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2194
	return unwind__get_entries(unwind_entry, cursor,
2195
				   thread, sample, max_stack);
2196
}
2197

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2208
	callchain_cursor_reset(cursor);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2233
}
2234 2235 2236 2237 2238

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2239
	struct threads *threads;
2240 2241 2242
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2243
	int i;
2244

2245 2246 2247 2248 2249 2250 2251 2252
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2253

2254 2255 2256 2257 2258
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2259 2260 2261
	}
	return rc;
}
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2284
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2285
				  struct target *target, struct thread_map *threads,
2286
				  perf_event__handler_t process, bool data_mmap,
2287 2288
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
2289
{
2290
	if (target__has_task(target))
2291
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2292
	else if (target__has_cpu(target))
2293 2294 2295 2296
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
2297 2298 2299
	/* command specified */
	return 0;
}
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2340
	thread__put(thread);
2341 2342 2343

	return 0;
}
2344 2345 2346

int machine__get_kernel_start(struct machine *machine)
{
2347
	struct map *map = machine__kernel_map(machine);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2360
		err = map__load(map);
2361
		if (!err)
2362 2363 2364 2365
			machine->kernel_start = map->start;
	}
	return err;
}
2366 2367 2368

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2369
	return dsos__findnew(&machine->dsos, filename);
2370
}
2371 2372 2373 2374 2375

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2376
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2377 2378 2379 2380 2381 2382 2383 2384

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}