machine.c 60.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24

25 26
#include "sane_ctype.h"
#include <symbol/kallsyms.h>
27
#include <linux/mman.h>
28

29 30
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

31 32 33 34
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
35
	init_rwsem(&dsos->lock);
36 37
}

38 39 40 41 42 43 44
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
45
		init_rwsem(&threads->lock);
46 47 48 49 50 51
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

52 53
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
54 55 56 57 58 59 60
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
61 62 63 64

	return machine->mmap_name ? 0 : -ENOMEM;
}

65 66
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
67 68
	int err = -ENOMEM;

69
	memset(machine, 0, sizeof(*machine));
70
	map_groups__init(&machine->kmaps, machine);
71
	RB_CLEAR_NODE(&machine->rb_node);
72
	dsos__init(&machine->dsos);
73

74
	machine__threads_init(machine);
75

76
	machine->vdso_info = NULL;
77
	machine->env = NULL;
78

79 80
	machine->pid = pid;

81
	machine->id_hdr_size = 0;
82
	machine->kptr_restrict_warned = false;
83
	machine->comm_exec = false;
84
	machine->kernel_start = 0;
85
	machine->vmlinux_map = NULL;
86

87 88 89 90
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

91 92 93
	if (machine__set_mmap_name(machine))
		goto out;

94
	if (pid != HOST_KERNEL_ID) {
95
		struct thread *thread = machine__findnew_thread(machine, -1,
96
								pid);
97 98 99
		char comm[64];

		if (thread == NULL)
100
			goto out;
101 102

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103
		thread__set_comm(thread, comm, 0);
104
		thread__put(thread);
105 106
	}

107
	machine->current_tid = NULL;
108
	err = 0;
109

110
out:
111
	if (err) {
112
		zfree(&machine->root_dir);
113 114
		zfree(&machine->mmap_name);
	}
115 116 117
	return 0;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

135 136 137 138 139
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
140
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141 142 143
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
144
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 146 147 148 149 150 151
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

152
static void dsos__purge(struct dsos *dsos)
153 154 155
{
	struct dso *pos, *n;

156
	down_write(&dsos->lock);
157

158
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
159
		RB_CLEAR_NODE(&pos->rb_node);
160
		pos->root = NULL;
161 162
		list_del_init(&pos->node);
		dso__put(pos);
163
	}
164

165
	up_write(&dsos->lock);
166
}
167

168 169 170
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
171
	exit_rwsem(&dsos->lock);
172 173
}

174 175
void machine__delete_threads(struct machine *machine)
{
176
	struct rb_node *nd;
177
	int i;
178

179 180
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
181
		down_write(&threads->lock);
182 183 184
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
185

186 187 188
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
189
		up_write(&threads->lock);
190 191 192
	}
}

193 194
void machine__exit(struct machine *machine)
{
195 196
	int i;

197 198 199
	if (machine == NULL)
		return;

200
	machine__destroy_kernel_maps(machine);
201
	map_groups__exit(&machine->kmaps);
202
	dsos__exit(&machine->dsos);
203
	machine__exit_vdso(machine);
204
	zfree(&machine->root_dir);
205
	zfree(&machine->mmap_name);
206
	zfree(&machine->current_tid);
207 208 209

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
210
		exit_rwsem(&threads->lock);
211
	}
212 213 214 215
}

void machine__delete(struct machine *machine)
{
216 217 218 219
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
235 236
			      const char *root_dir)
{
237
	struct rb_node **p = &machines->guests.rb_node;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
259
	rb_insert_color(&machine->rb_node, &machines->guests);
260 261 262 263

	return machine;
}

264 265 266 267 268 269 270 271 272 273 274 275 276
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

277
struct machine *machines__find(struct machines *machines, pid_t pid)
278
{
279
	struct rb_node **p = &machines->guests.rb_node;
280 281 282 283
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

284 285 286
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

303
struct machine *machines__findnew(struct machines *machines, pid_t pid)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
320
				seen = strlist__new(NULL, NULL);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

337 338
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
339 340 341
{
	struct rb_node *nd;

342
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 344 345 346 347
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

348
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349 350 351 352
{
	struct rb_node *node;
	struct machine *machine;

353 354 355
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 357 358 359 360 361 362
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

363 364 365 366 367 368 369 370 371 372 373 374 375
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

376
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 378 379 380
	if (!leader)
		goto out_err;

	if (!leader->mg)
381
		leader->mg = map_groups__new(machine);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
398
		map_groups__put(th->mg);
399 400 401
	}

	th->mg = map_groups__get(leader->mg);
402 403
out_put:
	thread__put(leader);
404 405 406
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407
	goto out_put;
408 409
}

410
/*
411 412 413
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
414
 */
415
static struct thread*
416 417
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
418 419 420
{
	struct thread *th;

421
	th = threads->last_match;
422 423 424
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
425
			return thread__get(th);
426 427
		}

428
		threads->last_match = NULL;
429
	}
430

431 432 433
	return NULL;
}

434 435 436 437 438 439 440 441 442 443 444 445
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

446
static void
447
__threads__set_last_match(struct threads *threads, struct thread *th)
448 449 450 451
{
	threads->last_match = th;
}

452 453 454 455 456 457 458
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
	struct rb_node **p = &threads->entries.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

476 477 478 479
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

480
		if (th->tid == tid) {
481
			threads__set_last_match(threads, th);
482
			machine__update_thread_pid(machine, th, pid);
483
			return thread__get(th);
484 485
		}

486
		if (tid < th->tid)
487 488 489 490 491 492 493 494
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

495
	th = thread__new(pid, tid);
496 497
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
498
		rb_insert_color(&th->rb_node, &threads->entries);
499 500 501 502 503 504 505 506 507

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
508
		if (thread__init_map_groups(th, machine)) {
509
			rb_erase_init(&th->rb_node, &threads->entries);
510
			RB_CLEAR_NODE(&th->rb_node);
511
			thread__put(th);
512
			return NULL;
513
		}
514 515 516 517
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
518
		threads__set_last_match(threads, th);
519
		++threads->nr;
520 521 522 523 524
	}

	return th;
}

525 526
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
527
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
528 529
}

530 531
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
532
{
533
	struct threads *threads = machine__threads(machine, tid);
534 535
	struct thread *th;

536
	down_write(&threads->lock);
537
	th = __machine__findnew_thread(machine, pid, tid);
538
	up_write(&threads->lock);
539
	return th;
540 541
}

542 543
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
544
{
545
	struct threads *threads = machine__threads(machine, tid);
546
	struct thread *th;
547

548
	down_read(&threads->lock);
549
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
550
	up_read(&threads->lock);
551
	return th;
552
}
553

554 555 556 557 558 559 560 561 562
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

563 564
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
565
{
566 567 568
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
569
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
570
	int err = 0;
571

572 573 574
	if (exec)
		machine->comm_exec = true;

575 576 577
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

578 579
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
580
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
581
		err = -1;
582 583
	}

584 585 586
	thread__put(thread);

	return err;
587 588
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

620
int machine__process_lost_event(struct machine *machine __maybe_unused,
621
				union perf_event *event, struct perf_sample *sample __maybe_unused)
622 623 624 625 626 627
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

628 629 630 631 632 633 634 635
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

636 637 638
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
639 640 641
{
	struct dso *dso;

642
	down_write(&machine->dsos.lock);
643 644

	dso = __dsos__find(&machine->dsos, m->name, true);
645
	if (!dso) {
646
		dso = __dsos__addnew(&machine->dsos, m->name);
647
		if (dso == NULL)
648
			goto out_unlock;
649

650
		dso__set_module_info(dso, m, machine);
651
		dso__set_long_name(dso, strdup(filename), true);
652 653
	}

654
	dso__get(dso);
655
out_unlock:
656
	up_write(&machine->dsos.lock);
657 658 659
	return dso;
}

660 661 662 663 664 665 666 667
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

668 669 670 671 672 673 674 675
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

676 677 678 679 680 681 682 683
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

699
	dso__set_long_name(dso, dup_filename, true);
700 701
}

702 703
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
704
{
705
	struct map *map = NULL;
706
	struct dso *dso = NULL;
707
	struct kmod_path m;
708

709
	if (kmod_path__parse_name(&m, filename))
710 711
		return NULL;

712
	map = map_groups__find_by_name(&machine->kmaps, m.name);
713 714 715 716 717 718 719
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
720
		goto out;
721
	}
722

723
	dso = machine__findnew_module_dso(machine, &m, filename);
724 725 726
	if (dso == NULL)
		goto out;

727
	map = map__new2(start, dso);
728
	if (map == NULL)
729
		goto out;
730 731

	map_groups__insert(&machine->kmaps, map);
732

733 734
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
735
out:
736 737
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
738
	free(m.name);
739 740 741
	return map;
}

742
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
743 744
{
	struct rb_node *nd;
745
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
746

747
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
748
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
749
		ret += __dsos__fprintf(&pos->dsos.head, fp);
750 751 752 753 754
	}

	return ret;
}

755
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
756 757
				     bool (skip)(struct dso *dso, int parm), int parm)
{
758
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
759 760
}

761
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
762 763 764
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
765
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
766

767
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
768 769 770 771 772 773 774 775 776 777
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
778
	struct dso *kdso = machine__kernel_map(machine)->dso;
779 780 781

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
782 783
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
784 785 786 787 788 789 790 791 792 793 794 795 796
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
797 798
	size_t ret;
	int i;
799

800 801
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
802 803

		down_read(&threads->lock);
804

805
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
806

807 808
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
809

810 811
			ret += thread__fprintf(pos, fp);
		}
812

813
		up_read(&threads->lock);
814
	}
815 816 817 818 819
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
820
	const char *vmlinux_name = machine->mmap_name;
821 822 823
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
824 825 826
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

827 828
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
829
	} else {
J
Jiri Olsa 已提交
830 831 832
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

833 834 835
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
836 837 838 839 840 841 842 843 844 845 846 847
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

848 849
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
850 851 852 853 854 855 856
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

857 858 859 860 861 862
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
863 864
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
865
{
866
	char filename[PATH_MAX];
867
	int i, err = -1;
868 869
	const char *name;
	u64 addr = 0;
870

871
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
872 873 874 875

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

876
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
877 878
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
879 880 881
			break;
	}

882 883 884
	if (err)
		return -1;

885 886
	if (symbol_name)
		*symbol_name = name;
887

888 889
	*start = addr;
	return 0;
890 891
}

892 893 894
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
895 896 897 898 899 900 901 902 903 904 905 906 907 908
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
909
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
910 911 912

	map_groups__insert(&machine->kmaps, map);

913 914
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
956 957
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
958
	int nr_cpus_avail, cpu;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
981

982
	pgoff = find_entry_trampoline(kernel);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

999 1000
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1001 1002 1003 1004
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1005 1006 1007 1008 1009 1010 1011 1012
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1013 1014 1015
	return 0;
}

1016 1017
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1018
{
1019 1020
	struct kmap *kmap;
	struct map *map;
1021

1022 1023 1024
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1025 1026 1027
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1028

1029 1030 1031 1032 1033
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1034

1035 1036
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1037 1038 1039 1040 1041 1042

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1043 1044
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1045

1046 1047
	if (map == NULL)
		return;
1048

1049 1050 1051 1052 1053
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1054
	}
1055 1056

	map__zput(machine->vmlinux_map);
1057 1058
}

1059
int machines__create_guest_kernel_maps(struct machines *machines)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1108
void machines__destroy_kernel_maps(struct machines *machines)
1109
{
1110 1111 1112
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
1113 1114 1115 1116 1117

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1118
		rb_erase(&pos->rb_node, &machines->guests);
1119 1120 1121 1122
		machine__delete(pos);
	}
}

1123
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1124 1125 1126 1127 1128 1129 1130 1131 1132
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1133
int machine__load_kallsyms(struct machine *machine, const char *filename)
1134
{
1135
	struct map *map = machine__kernel_map(machine);
1136
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1137 1138

	if (ret > 0) {
1139
		dso__set_loaded(map->dso);
1140 1141 1142 1143 1144
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1145
		map_groups__fixup_end(&machine->kmaps);
1146 1147 1148 1149 1150
	}

	return ret;
}

1151
int machine__load_vmlinux_path(struct machine *machine)
1152
{
1153
	struct map *map = machine__kernel_map(machine);
1154
	int ret = dso__load_vmlinux_path(map->dso, map);
1155

1156
	if (ret > 0)
1157
		dso__set_loaded(map->dso);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1199
	struct map *map = map_groups__find_by_name(mg, m->name);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1215
	if (m->comp && is_kmod_dso(map->dso)) {
1216
		map->dso->symtab_type++;
1217 1218
		map->dso->comp = m->comp;
	}
1219 1220 1221 1222

	return 0;
}

1223
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1224
				const char *dir_name, int depth)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1249 1250 1251 1252 1253 1254 1255 1256 1257
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1258 1259 1260
			if (ret < 0)
				goto out;
		} else {
1261
			struct kmod_path m;
1262

1263 1264 1265
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1266

1267 1268
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1269

1270
			free(m.name);
1271

1272
			if (ret)
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1291
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1292 1293 1294
		 machine->root_dir, version);
	free(version);

1295
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1296
}
1297 1298 1299 1300 1301
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1302

1303 1304
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1305
{
1306
	struct machine *machine = arg;
1307
	struct map *map;
1308

1309 1310 1311
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1312
	map = machine__findnew_module_map(machine, start, name);
1313 1314
	if (map == NULL)
		return -1;
1315
	map->end = start + size;
1316 1317 1318 1319 1320 1321 1322 1323

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1324 1325 1326
	const char *modules;
	char path[PATH_MAX];

1327
	if (machine__is_default_guest(machine)) {
1328
		modules = symbol_conf.default_guest_modules;
1329 1330
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1331 1332 1333
		modules = path;
	}

1334
	if (symbol__restricted_filename(modules, "/proc/modules"))
1335 1336
		return -1;

1337
	if (modules__parse(modules, machine, machine__create_module))
1338 1339
		return -1;

1340 1341
	if (!machine__set_modules_path(machine))
		return 0;
1342

1343
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1344

1345
	return 0;
1346 1347
}

1348 1349 1350
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1351 1352 1353 1354 1355 1356 1357 1358
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1359 1360
}

1361 1362 1363
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1364
	const char *name = NULL;
1365
	struct map *map;
1366
	u64 addr = 0;
1367 1368
	int ret;

1369
	if (kernel == NULL)
1370
		return -1;
1371

1372 1373
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1374
		goto out_put;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1385 1386
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
1387
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1388
			machine__destroy_kernel_maps(machine);
1389 1390
			ret = -1;
			goto out_put;
1391
		}
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
1404 1405
	}

1406 1407 1408
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1409 1410 1411 1412
	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);
1413 1414 1415
out_put:
	dso__put(kernel);
	return ret;
1416 1417
}

1418 1419 1420 1421
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1422
	list_for_each_entry(dso, &machine->dsos.head, node) {
1423 1424 1425 1426 1427 1428 1429
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1456 1457 1458 1459 1460 1461 1462
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1463 1464 1465 1466
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1467 1468 1469 1470 1471 1472
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1473 1474
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1475 1476
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1477 1478
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1479 1480 1481 1482 1483 1484
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1485
				strlen(machine->mmap_name));
1486 1487 1488 1489
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1490 1491 1492
		struct dso *kernel = NULL;
		struct dso *dso;

1493
		down_read(&machine->dsos.lock);
1494

1495
		list_for_each_entry(dso, &machine->dsos.head, node) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1516 1517
				continue;

1518

1519 1520 1521 1522
			kernel = dso;
			break;
		}

1523
		up_read(&machine->dsos.lock);
1524

1525
		if (kernel == NULL)
1526
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1527 1528 1529 1530
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1531 1532
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1533
			goto out_problem;
1534
		}
1535

1536 1537
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1538

1539 1540
		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);
1541 1542 1543 1544 1545 1546 1547

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1548 1549 1550
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1551 1552 1553 1554 1555 1556
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1557
			dso__load(kernel, machine__kernel_map(machine));
1558
		}
1559 1560
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1561 1562 1563 1564 1565 1566
	}
	return 0;
out_problem:
	return -1;
}

1567
int machine__process_mmap2_event(struct machine *machine,
1568
				 union perf_event *event,
1569
				 struct perf_sample *sample)
1570 1571 1572 1573 1574 1575 1576 1577
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1578 1579
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1580 1581 1582 1583 1584 1585 1586
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1587
					event->mmap2.tid);
1588 1589 1590
	if (thread == NULL)
		goto out_problem;

1591
	map = map__new(machine, event->mmap2.start,
1592
			event->mmap2.len, event->mmap2.pgoff,
1593
			event->mmap2.maj,
1594 1595
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1596 1597
			event->mmap2.prot,
			event->mmap2.flags,
1598
			event->mmap2.filename, thread);
1599 1600

	if (map == NULL)
1601
		goto out_problem_map;
1602

1603 1604 1605 1606
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1607
	thread__put(thread);
1608
	map__put(map);
1609 1610
	return 0;

1611 1612
out_problem_insert:
	map__put(map);
1613 1614
out_problem_map:
	thread__put(thread);
1615 1616 1617 1618 1619
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1620
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1621
				struct perf_sample *sample)
1622 1623 1624
{
	struct thread *thread;
	struct map *map;
1625
	u32 prot = 0;
1626 1627 1628 1629 1630
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1631 1632
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1633 1634 1635 1636 1637 1638
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1639
	thread = machine__findnew_thread(machine, event->mmap.pid,
1640
					 event->mmap.tid);
1641 1642
	if (thread == NULL)
		goto out_problem;
1643

1644
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1645
		prot = PROT_EXEC;
1646

1647
	map = map__new(machine, event->mmap.start,
1648
			event->mmap.len, event->mmap.pgoff,
1649
			0, 0, 0, 0, prot, 0,
1650
			event->mmap.filename,
1651
			thread);
1652

1653
	if (map == NULL)
1654
		goto out_problem_map;
1655

1656 1657 1658 1659
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1660
	thread__put(thread);
1661
	map__put(map);
1662 1663
	return 0;

1664 1665
out_problem_insert:
	map__put(map);
1666 1667
out_problem_map:
	thread__put(thread);
1668 1669 1670 1671 1672
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1673
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1674
{
1675 1676 1677
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1678
		threads__set_last_match(threads, NULL);
1679

1680
	BUG_ON(refcount_read(&th->refcnt) == 0);
1681
	if (lock)
1682
		down_write(&threads->lock);
1683
	rb_erase_init(&th->rb_node, &threads->entries);
1684
	RB_CLEAR_NODE(&th->rb_node);
1685
	--threads->nr;
1686
	/*
1687 1688 1689
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1690
	 */
1691
	list_add_tail(&th->node, &threads->dead);
1692
	if (lock)
1693
		up_write(&threads->lock);
1694
	thread__put(th);
1695 1696
}

1697 1698 1699 1700 1701
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1702 1703
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1704
{
1705 1706 1707
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1708 1709 1710
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1711
	int err = 0;
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1731
	/* if a thread currently exists for the thread id remove it */
1732
	if (thread != NULL) {
1733
		machine__remove_thread(machine, thread);
1734 1735
		thread__put(thread);
	}
1736

1737 1738
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1739 1740

	if (thread == NULL || parent == NULL ||
1741
	    thread__fork(thread, parent, sample->time) < 0) {
1742
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1743
		err = -1;
1744
	}
1745 1746
	thread__put(thread);
	thread__put(parent);
1747

1748
	return err;
1749 1750
}

1751 1752
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1753
{
1754 1755 1756
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1757 1758 1759 1760

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1761
	if (thread != NULL) {
1762
		thread__exited(thread);
1763 1764
		thread__put(thread);
	}
1765 1766 1767 1768

	return 0;
}

1769 1770
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1771 1772 1773 1774 1775
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1776
		ret = machine__process_comm_event(machine, event, sample); break;
1777
	case PERF_RECORD_MMAP:
1778
		ret = machine__process_mmap_event(machine, event, sample); break;
1779 1780
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1781
	case PERF_RECORD_MMAP2:
1782
		ret = machine__process_mmap2_event(machine, event, sample); break;
1783
	case PERF_RECORD_FORK:
1784
		ret = machine__process_fork_event(machine, event, sample); break;
1785
	case PERF_RECORD_EXIT:
1786
		ret = machine__process_exit_event(machine, event, sample); break;
1787
	case PERF_RECORD_LOST:
1788
		ret = machine__process_lost_event(machine, event, sample); break;
1789 1790
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1791
	case PERF_RECORD_ITRACE_START:
1792
		ret = machine__process_itrace_start_event(machine, event); break;
1793 1794
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1795 1796 1797
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1798 1799 1800 1801 1802 1803 1804
	default:
		ret = -1;
		break;
	}

	return ret;
}
1805

1806
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1807
{
1808
	if (!regexec(regex, sym->name, 0, NULL, 0))
1809 1810 1811 1812
		return 1;
	return 0;
}

1813
static void ip__resolve_ams(struct thread *thread,
1814 1815 1816 1817 1818 1819
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1820 1821 1822 1823 1824 1825 1826
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1827
	thread__find_cpumode_addr_location(thread, ip, &al);
1828 1829 1830 1831 1832

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1833
	ams->phys_addr = 0;
1834 1835
}

1836
static void ip__resolve_data(struct thread *thread,
1837 1838
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1839 1840 1841 1842 1843
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1844
	thread__find_symbol(thread, m, addr, &al);
1845

1846 1847 1848 1849
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1850
	ams->phys_addr = phys_addr;
1851 1852
}

1853 1854
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1855
{
1856
	struct mem_info *mi = mem_info__new();
1857 1858 1859 1860

	if (!mi)
		return NULL;

1861
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1862 1863
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1864 1865 1866 1867 1868
	mi->data_src.val = sample->data_src;

	return mi;
}

1869 1870
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1871 1872
	char *srcline = NULL;

1873
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1874 1875 1876 1877 1878 1879 1880 1881
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1882
				      sym, show_sym, show_addr, ip);
1883 1884
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1885

1886
	return srcline;
1887 1888
}

1889 1890 1891 1892 1893
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1894
static int add_callchain_ip(struct thread *thread,
1895
			    struct callchain_cursor *cursor,
1896 1897
			    struct symbol **parent,
			    struct addr_location *root_al,
1898
			    u8 *cpumode,
1899 1900 1901
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1902
			    struct iterations *iter,
1903
			    u64 branch_from)
1904 1905
{
	struct addr_location al;
1906 1907
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1908
	const char *srcline = NULL;
1909 1910 1911

	al.filtered = 0;
	al.sym = NULL;
1912
	if (!cpumode) {
1913
		thread__find_cpumode_addr_location(thread, ip, &al);
1914
	} else {
1915 1916 1917
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1918
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1919 1920
				break;
			case PERF_CONTEXT_KERNEL:
1921
				*cpumode = PERF_RECORD_MISC_KERNEL;
1922 1923
				break;
			case PERF_CONTEXT_USER:
1924
				*cpumode = PERF_RECORD_MISC_USER;
1925 1926 1927 1928 1929 1930 1931 1932
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1933
				callchain_cursor_reset(cursor);
1934 1935 1936 1937
				return 1;
			}
			return 0;
		}
1938
		thread__find_symbol(thread, *cpumode, ip, &al);
1939 1940
	}

1941
	if (al.sym != NULL) {
1942
		if (perf_hpp_list.parent && !*parent &&
1943 1944 1945 1946 1947 1948 1949
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1950
			callchain_cursor_reset(cursor);
1951 1952 1953
		}
	}

1954 1955
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1956 1957 1958 1959 1960 1961

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1962
	srcline = callchain_srcline(al.map, al.sym, al.addr);
1963
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
1964
				       branch, flags, nr_loop_iter,
1965
				       iter_cycles, branch_from, srcline);
1966 1967
}

1968 1969
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1970 1971
{
	unsigned int i;
1972 1973
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1974 1975 1976 1977 1978

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1979 1980
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1981 1982 1983 1984 1985
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1998 1999 2000 2001 2002 2003 2004
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2005 2006
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2043 2044 2045 2046 2047 2048 2049
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2050 2051 2052 2053 2054 2055 2056 2057
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2058
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2059 2060 2061 2062
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2063
{
K
Kan Liang 已提交
2064
	struct ip_callchain *chain = sample->callchain;
2065
	int chain_nr = min(max_stack, (int)chain->nr), i;
2066
	u8 cpumode = PERF_RECORD_MISC_USER;
2067
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2077 2078 2079
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2093
			int err;
2094 2095 2096
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2097 2098 2099
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2100 2101 2102 2103 2104 2105
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2106
					ip = lbr_stack->entries[0].to;
2107 2108
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2109 2110
					branch_from =
						lbr_stack->entries[0].from;
2111
				}
K
Kan Liang 已提交
2112
			} else {
2113 2114 2115 2116 2117 2118
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2119 2120
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2121
				else {
K
Kan Liang 已提交
2122
					ip = lbr_stack->entries[0].to;
2123 2124
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2125 2126
					branch_from =
						lbr_stack->entries[0].from;
2127
				}
K
Kan Liang 已提交
2128 2129
			}

2130 2131
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2132
					       branch, flags, NULL,
2133
					       branch_from);
K
Kan Liang 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
2144
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2145 2146 2147 2148 2149 2150 2151 2152
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2153
	int chain_nr = 0;
2154
	u8 cpumode = PERF_RECORD_MISC_USER;
2155
	int i, j, err, nr_entries;
2156 2157 2158
	int skip_idx = -1;
	int first_call = 0;

2159 2160 2161
	if (chain)
		chain_nr = chain->nr;

2162
	if (perf_evsel__has_branch_callstack(evsel)) {
2163
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2164 2165 2166 2167 2168
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2169 2170 2171 2172
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2173
	skip_idx = arch_skip_callchain_idx(thread, chain);
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2190
		struct iterations iter[nr];
2191 2192 2193 2194 2195 2196 2197 2198 2199

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2200 2201 2202 2203

				if (chain == NULL)
					continue;

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2221 2222
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2223

2224
		for (i = 0; i < nr; i++) {
2225 2226 2227 2228 2229
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2230

2231
			if (!err)
2232
				err = add_callchain_ip(thread, cursor, parent, root_al,
2233 2234
						       NULL, be[i].from,
						       true, &be[i].flags,
2235
						       &iter[i], 0);
2236 2237 2238 2239 2240
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2241 2242 2243 2244

		if (chain_nr == 0)
			return 0;

2245 2246 2247 2248
		chain_nr -= nr;
	}

check_calls:
2249
	for (i = first_call, nr_entries = 0;
2250
	     i < chain_nr && nr_entries < max_stack; i++) {
2251 2252 2253
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2254
			j = i;
2255
		else
2256 2257 2258 2259 2260 2261 2262
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2263

2264 2265
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2266

2267 2268
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2269
				       false, NULL, NULL, 0);
2270 2271

		if (err)
2272
			return (err < 0) ? err : 0;
2273 2274 2275 2276 2277
	}

	return 0;
}

2278 2279 2280 2281 2282 2283
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2284
	int ret = 1;
2285 2286

	if (!symbol_conf.inline_name || !map || !sym)
2287
		return ret;
2288 2289 2290 2291 2292 2293 2294

	addr = map__rip_2objdump(map, ip);

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2295
			return ret;
2296 2297 2298 2299
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2300 2301 2302
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2303 2304 2305 2306 2307

		if (ret != 0)
			return ret;
	}

2308
	return ret;
2309 2310
}

2311 2312 2313
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2314
	const char *srcline = NULL;
2315
	u64 addr = entry->ip;
2316 2317 2318

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2319

2320 2321 2322
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2323 2324 2325 2326
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2327 2328
	if (entry->map)
		addr = map__map_ip(entry->map, entry->ip);
2329 2330

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2331
	return callchain_cursor_append(cursor, entry->ip,
2332
				       entry->map, entry->sym,
2333
				       false, NULL, 0, 0, 0, srcline);
2334 2335
}

2336 2337 2338 2339 2340
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2352
	return unwind__get_entries(unwind_entry, cursor,
2353
				   thread, sample, max_stack);
2354
}
2355

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2366
	callchain_cursor_reset(cursor);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2391
}
2392 2393 2394 2395 2396

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2397
	struct threads *threads;
2398 2399 2400
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2401
	int i;
2402

2403 2404 2405 2406 2407 2408 2409 2410
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2411

2412 2413 2414 2415 2416
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2417 2418 2419
	}
	return rc;
}
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2442
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2443
				  struct target *target, struct thread_map *threads,
2444
				  perf_event__handler_t process, bool data_mmap,
2445 2446
				  unsigned int proc_map_timeout,
				  unsigned int nr_threads_synthesize)
2447
{
2448
	if (target__has_task(target))
2449
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2450
	else if (target__has_cpu(target))
2451 2452 2453 2454
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      proc_map_timeout,
						      nr_threads_synthesize);
2455 2456 2457
	/* command specified */
	return 0;
}
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2498
	thread__put(thread);
2499 2500 2501

	return 0;
}
2502

2503 2504 2505 2506 2507 2508 2509 2510 2511
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2512 2513 2514 2515 2516
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2517 2518
int machine__get_kernel_start(struct machine *machine)
{
2519
	struct map *map = machine__kernel_map(machine);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2532
		err = map__load(map);
2533 2534 2535 2536 2537 2538
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2539 2540 2541 2542
			machine->kernel_start = map->start;
	}
	return err;
}
2543 2544 2545

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2546
	return dsos__findnew(&machine->dsos, filename);
2547
}
2548 2549 2550 2551 2552

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2553
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2554 2555 2556 2557 2558 2559 2560 2561

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}