machine.c 64.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24
#include "bpf-event.h"
25

26 27
#include "sane_ctype.h"
#include <symbol/kallsyms.h>
28
#include <linux/mman.h>
29

30 31
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

32 33 34 35
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
36
	init_rwsem(&dsos->lock);
37 38
}

39 40 41 42 43 44
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
45
		threads->entries = RB_ROOT_CACHED;
46
		init_rwsem(&threads->lock);
47 48 49 50 51 52
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

53 54
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
55 56 57 58 59 60 61
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
62 63 64 65

	return machine->mmap_name ? 0 : -ENOMEM;
}

66 67
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
68 69
	int err = -ENOMEM;

70
	memset(machine, 0, sizeof(*machine));
71
	map_groups__init(&machine->kmaps, machine);
72
	RB_CLEAR_NODE(&machine->rb_node);
73
	dsos__init(&machine->dsos);
74

75
	machine__threads_init(machine);
76

77
	machine->vdso_info = NULL;
78
	machine->env = NULL;
79

80 81
	machine->pid = pid;

82
	machine->id_hdr_size = 0;
83
	machine->kptr_restrict_warned = false;
84
	machine->comm_exec = false;
85
	machine->kernel_start = 0;
86
	machine->vmlinux_map = NULL;
87

88 89 90 91
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

92 93 94
	if (machine__set_mmap_name(machine))
		goto out;

95
	if (pid != HOST_KERNEL_ID) {
96
		struct thread *thread = machine__findnew_thread(machine, -1,
97
								pid);
98 99 100
		char comm[64];

		if (thread == NULL)
101
			goto out;
102 103

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
104
		thread__set_comm(thread, comm, 0);
105
		thread__put(thread);
106 107
	}

108
	machine->current_tid = NULL;
109
	err = 0;
110

111
out:
112
	if (err) {
113
		zfree(&machine->root_dir);
114 115
		zfree(&machine->mmap_name);
	}
116 117 118
	return 0;
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

136 137 138 139 140
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
141
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
142 143 144
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
145
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
146 147 148 149 150 151 152
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

153
static void dsos__purge(struct dsos *dsos)
154 155 156
{
	struct dso *pos, *n;

157
	down_write(&dsos->lock);
158

159
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
160
		RB_CLEAR_NODE(&pos->rb_node);
161
		pos->root = NULL;
162 163
		list_del_init(&pos->node);
		dso__put(pos);
164
	}
165

166
	up_write(&dsos->lock);
167
}
168

169 170 171
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
172
	exit_rwsem(&dsos->lock);
173 174
}

175 176
void machine__delete_threads(struct machine *machine)
{
177
	struct rb_node *nd;
178
	int i;
179

180 181
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
182
		down_write(&threads->lock);
183
		nd = rb_first_cached(&threads->entries);
184 185
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
186

187 188 189
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
190
		up_write(&threads->lock);
191 192 193
	}
}

194 195
void machine__exit(struct machine *machine)
{
196 197
	int i;

198 199 200
	if (machine == NULL)
		return;

201
	machine__destroy_kernel_maps(machine);
202
	map_groups__exit(&machine->kmaps);
203
	dsos__exit(&machine->dsos);
204
	machine__exit_vdso(machine);
205
	zfree(&machine->root_dir);
206
	zfree(&machine->mmap_name);
207
	zfree(&machine->current_tid);
208 209 210

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
211
		exit_rwsem(&threads->lock);
212
	}
213 214 215 216
}

void machine__delete(struct machine *machine)
{
217 218 219 220
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
221 222
}

223 224 225
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
226
	machines->guests = RB_ROOT_CACHED;
227 228 229 230 231 232 233 234 235
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
236 237
			      const char *root_dir)
{
238
	struct rb_node **p = &machines->guests.rb_root.rb_node;
239 240
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
241
	bool leftmost = true;
242 243 244 245 246 247 248 249 250 251 252 253 254 255

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
256
		else {
257
			p = &(*p)->rb_right;
258 259
			leftmost = false;
		}
260 261 262
	}

	rb_link_node(&machine->rb_node, parent, p);
263
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
264 265 266 267

	return machine;
}

268 269 270 271 272 273
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

274
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
275 276 277 278 279 280
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

281
struct machine *machines__find(struct machines *machines, pid_t pid)
282
{
283
	struct rb_node **p = &machines->guests.rb_root.rb_node;
284 285 286 287
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

288 289 290
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

307
struct machine *machines__findnew(struct machines *machines, pid_t pid)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
324
				seen = strlist__new(NULL, NULL);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

341 342
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
343 344 345
{
	struct rb_node *nd;

346
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
347 348 349 350 351
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

352
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
353 354 355 356
{
	struct rb_node *node;
	struct machine *machine;

357 358
	machines->host.id_hdr_size = id_hdr_size;

359 360
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
361 362 363 364 365 366 367
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

368 369 370 371 372 373 374 375 376 377 378 379 380
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

381
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
382 383 384 385
	if (!leader)
		goto out_err;

	if (!leader->mg)
386
		leader->mg = map_groups__new(machine);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
403
		map_groups__put(th->mg);
404 405 406
	}

	th->mg = map_groups__get(leader->mg);
407 408
out_put:
	thread__put(leader);
409 410 411
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
412
	goto out_put;
413 414
}

415
/*
416 417 418
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
419
 */
420
static struct thread*
421 422
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
423 424 425
{
	struct thread *th;

426
	th = threads->last_match;
427 428 429
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
430
			return thread__get(th);
431 432
		}

433
		threads->last_match = NULL;
434
	}
435

436 437 438
	return NULL;
}

439 440 441 442 443 444 445 446 447 448 449 450
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

451
static void
452
__threads__set_last_match(struct threads *threads, struct thread *th)
453 454 455 456
{
	threads->last_match = th;
}

457 458 459 460 461 462 463
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

464 465 466 467 468 469 470 471 472
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
473
	struct rb_node **p = &threads->entries.rb_root.rb_node;
474 475
	struct rb_node *parent = NULL;
	struct thread *th;
476
	bool leftmost = true;
477 478 479 480 481

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

482 483 484 485
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

486
		if (th->tid == tid) {
487
			threads__set_last_match(threads, th);
488
			machine__update_thread_pid(machine, th, pid);
489
			return thread__get(th);
490 491
		}

492
		if (tid < th->tid)
493
			p = &(*p)->rb_left;
494
		else {
495
			p = &(*p)->rb_right;
496 497
			leftmost = false;
		}
498 499 500 501 502
	}

	if (!create)
		return NULL;

503
	th = thread__new(pid, tid);
504 505
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
506
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
507 508 509 510 511 512 513 514 515

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
516
		if (thread__init_map_groups(th, machine)) {
517
			rb_erase_cached(&th->rb_node, &threads->entries);
518
			RB_CLEAR_NODE(&th->rb_node);
519
			thread__put(th);
520
			return NULL;
521
		}
522 523 524 525
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
526
		threads__set_last_match(threads, th);
527
		++threads->nr;
528 529 530 531 532
	}

	return th;
}

533 534
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
535
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
536 537
}

538 539
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
540
{
541
	struct threads *threads = machine__threads(machine, tid);
542 543
	struct thread *th;

544
	down_write(&threads->lock);
545
	th = __machine__findnew_thread(machine, pid, tid);
546
	up_write(&threads->lock);
547
	return th;
548 549
}

550 551
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
552
{
553
	struct threads *threads = machine__threads(machine, tid);
554
	struct thread *th;
555

556
	down_read(&threads->lock);
557
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
558
	up_read(&threads->lock);
559
	return th;
560
}
561

562 563 564 565 566 567 568 569 570
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

571 572
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
573
{
574 575 576
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
577
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
578
	int err = 0;
579

580 581 582
	if (exec)
		machine->comm_exec = true;

583 584 585
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

586 587
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
588
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
589
		err = -1;
590 591
	}

592 593 594
	thread__put(thread);

	return err;
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

628
int machine__process_lost_event(struct machine *machine __maybe_unused,
629
				union perf_event *event, struct perf_sample *sample __maybe_unused)
630 631 632 633 634 635
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

636 637 638 639 640 641 642 643
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

644 645 646
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
647 648 649
{
	struct dso *dso;

650
	down_write(&machine->dsos.lock);
651 652

	dso = __dsos__find(&machine->dsos, m->name, true);
653
	if (!dso) {
654
		dso = __dsos__addnew(&machine->dsos, m->name);
655
		if (dso == NULL)
656
			goto out_unlock;
657

658
		dso__set_module_info(dso, m, machine);
659
		dso__set_long_name(dso, strdup(filename), true);
660 661
	}

662
	dso__get(dso);
663
out_unlock:
664
	up_write(&machine->dsos.lock);
665 666 667
	return dso;
}

668 669 670 671 672 673 674 675
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

676 677 678 679 680 681 682 683
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

684 685 686 687 688 689 690 691
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (!map) {
		map = dso__new_map(event->ksymbol_event.name);
		if (!map)
			return -ENOMEM;

		map->start = event->ksymbol_event.addr;
		map->pgoff = map->start;
		map->end = map->start + event->ksymbol_event.len;
		map_groups__insert(&machine->kmaps, map);
	}

	sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len,
			  0, 0, event->ksymbol_event.name);
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (map)
		map_groups__remove(&machine->kmaps, map);

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

	if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

760
	dso__set_long_name(dso, dup_filename, true);
761 762
}

763 764
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
765
{
766
	struct map *map = NULL;
767
	struct dso *dso = NULL;
768
	struct kmod_path m;
769

770
	if (kmod_path__parse_name(&m, filename))
771 772
		return NULL;

773
	map = map_groups__find_by_name(&machine->kmaps, m.name);
774 775 776 777 778 779 780
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
781
		goto out;
782
	}
783

784
	dso = machine__findnew_module_dso(machine, &m, filename);
785 786 787
	if (dso == NULL)
		goto out;

788
	map = map__new2(start, dso);
789
	if (map == NULL)
790
		goto out;
791 792

	map_groups__insert(&machine->kmaps, map);
793

794 795
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
796
out:
797 798
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
799
	free(m.name);
800 801 802
	return map;
}

803
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
804 805
{
	struct rb_node *nd;
806
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
807

808
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
809
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
810
		ret += __dsos__fprintf(&pos->dsos.head, fp);
811 812 813 814 815
	}

	return ret;
}

816
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
817 818
				     bool (skip)(struct dso *dso, int parm), int parm)
{
819
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
820 821
}

822
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
823 824 825
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
826
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
827

828
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
829 830 831 832 833 834 835 836 837 838
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
839
	struct dso *kdso = machine__kernel_map(machine)->dso;
840 841 842

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
843 844
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
845 846 847 848 849 850 851 852 853 854 855 856 857
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
858 859
	size_t ret;
	int i;
860

861 862
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
863 864

		down_read(&threads->lock);
865

866
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
867

868 869
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
870
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
871

872 873
			ret += thread__fprintf(pos, fp);
		}
874

875
		up_read(&threads->lock);
876
	}
877 878 879 880 881
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
882
	const char *vmlinux_name = machine->mmap_name;
883 884 885
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
886 887 888
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

889 890
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
891
	} else {
J
Jiri Olsa 已提交
892 893 894
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

895 896 897
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
898 899 900 901 902 903 904 905 906 907 908 909
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

910 911
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
912 913 914 915 916 917 918
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

919 920 921 922 923 924
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
925 926
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
927
{
928
	char filename[PATH_MAX];
929
	int i, err = -1;
930 931
	const char *name;
	u64 addr = 0;
932

933
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
934 935 936 937

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

938
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
939 940
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
941 942 943
			break;
	}

944 945 946
	if (err)
		return -1;

947 948
	if (symbol_name)
		*symbol_name = name;
949

950 951
	*start = addr;
	return 0;
952 953
}

954 955 956
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
957 958 959 960 961 962 963 964 965 966 967 968 969 970
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
971
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
972 973 974

	map_groups__insert(&machine->kmaps, map);

975 976
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1018 1019
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
1020
	int nr_cpus_avail, cpu;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1043

1044
	pgoff = find_entry_trampoline(kernel);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1061 1062
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1063 1064 1065 1066
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1067 1068 1069 1070 1071 1072 1073 1074
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1075 1076 1077
	return 0;
}

1078 1079
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1080
{
1081 1082
	struct kmap *kmap;
	struct map *map;
1083

1084 1085 1086
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1087 1088 1089
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1090

1091 1092 1093 1094 1095
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1096

1097 1098
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1099 1100 1101 1102 1103 1104

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1105 1106
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1107

1108 1109
	if (map == NULL)
		return;
1110

1111 1112 1113 1114 1115
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1116
	}
1117 1118

	map__zput(machine->vmlinux_map);
1119 1120
}

1121
int machines__create_guest_kernel_maps(struct machines *machines)
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1170
void machines__destroy_kernel_maps(struct machines *machines)
1171
{
1172
	struct rb_node *next = rb_first_cached(&machines->guests);
1173 1174

	machine__destroy_kernel_maps(&machines->host);
1175 1176 1177 1178 1179

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1180
		rb_erase_cached(&pos->rb_node, &machines->guests);
1181 1182 1183 1184
		machine__delete(pos);
	}
}

1185
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1186 1187 1188 1189 1190 1191 1192 1193 1194
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1195
int machine__load_kallsyms(struct machine *machine, const char *filename)
1196
{
1197
	struct map *map = machine__kernel_map(machine);
1198
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1199 1200

	if (ret > 0) {
1201
		dso__set_loaded(map->dso);
1202 1203 1204 1205 1206
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1207
		map_groups__fixup_end(&machine->kmaps);
1208 1209 1210 1211 1212
	}

	return ret;
}

1213
int machine__load_vmlinux_path(struct machine *machine)
1214
{
1215
	struct map *map = machine__kernel_map(machine);
1216
	int ret = dso__load_vmlinux_path(map->dso, map);
1217

1218
	if (ret > 0)
1219
		dso__set_loaded(map->dso);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1261
	struct map *map = map_groups__find_by_name(mg, m->name);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1277
	if (m->comp && is_kmod_dso(map->dso)) {
1278
		map->dso->symtab_type++;
1279 1280
		map->dso->comp = m->comp;
	}
1281 1282 1283 1284

	return 0;
}

1285
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1286
				const char *dir_name, int depth)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1311 1312 1313 1314 1315 1316 1317 1318 1319
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1320 1321 1322
			if (ret < 0)
				goto out;
		} else {
1323
			struct kmod_path m;
1324

1325 1326 1327
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1328

1329 1330
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1331

1332
			free(m.name);
1333

1334
			if (ret)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1353
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1354 1355 1356
		 machine->root_dir, version);
	free(version);

1357
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1358
}
1359 1360 1361 1362 1363
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1364

1365 1366
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1367
{
1368
	struct machine *machine = arg;
1369
	struct map *map;
1370

1371 1372 1373
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1374
	map = machine__findnew_module_map(machine, start, name);
1375 1376
	if (map == NULL)
		return -1;
1377
	map->end = start + size;
1378 1379 1380 1381 1382 1383 1384 1385

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1386 1387 1388
	const char *modules;
	char path[PATH_MAX];

1389
	if (machine__is_default_guest(machine)) {
1390
		modules = symbol_conf.default_guest_modules;
1391 1392
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1393 1394 1395
		modules = path;
	}

1396
	if (symbol__restricted_filename(modules, "/proc/modules"))
1397 1398
		return -1;

1399
	if (modules__parse(modules, machine, machine__create_module))
1400 1401
		return -1;

1402 1403
	if (!machine__set_modules_path(machine))
		return 0;
1404

1405
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1406

1407
	return 0;
1408 1409
}

1410 1411 1412
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1413 1414 1415 1416 1417 1418 1419 1420
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1421 1422
}

1423 1424 1425
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1426
	const char *name = NULL;
1427
	struct map *map;
1428
	u64 addr = 0;
1429 1430
	int ret;

1431
	if (kernel == NULL)
1432
		return -1;
1433

1434 1435
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1436
		goto out_put;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1447 1448
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
1449
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1450
			machine__destroy_kernel_maps(machine);
1451 1452
			ret = -1;
			goto out_put;
1453
		}
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
1466 1467
	}

1468 1469 1470
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1471 1472 1473 1474
	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);
1475 1476 1477
out_put:
	dso__put(kernel);
	return ret;
1478 1479
}

1480 1481 1482 1483
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1484
	list_for_each_entry(dso, &machine->dsos.head, node) {
1485 1486 1487 1488 1489 1490 1491
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1518 1519 1520 1521 1522 1523 1524
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1525 1526 1527 1528
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1529 1530 1531 1532 1533 1534
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1535 1536
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1537 1538
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1539 1540
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1541 1542 1543 1544 1545 1546
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1547
				strlen(machine->mmap_name));
1548 1549 1550 1551
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1552 1553 1554
		struct dso *kernel = NULL;
		struct dso *dso;

1555
		down_read(&machine->dsos.lock);
1556

1557
		list_for_each_entry(dso, &machine->dsos.head, node) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1578 1579
				continue;

1580

1581 1582 1583 1584
			kernel = dso;
			break;
		}

1585
		up_read(&machine->dsos.lock);
1586

1587
		if (kernel == NULL)
1588
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1589 1590 1591 1592
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1593 1594
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1595
			goto out_problem;
1596
		}
1597

1598 1599
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1600

1601 1602
		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);
1603 1604 1605 1606 1607 1608 1609

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1610 1611 1612
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1613 1614 1615 1616 1617 1618
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1619
			dso__load(kernel, machine__kernel_map(machine));
1620
		}
1621 1622
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1623 1624 1625 1626 1627 1628
	}
	return 0;
out_problem:
	return -1;
}

1629
int machine__process_mmap2_event(struct machine *machine,
1630
				 union perf_event *event,
1631
				 struct perf_sample *sample)
1632 1633 1634 1635 1636 1637 1638 1639
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1640 1641
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1642 1643 1644 1645 1646 1647 1648
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1649
					event->mmap2.tid);
1650 1651 1652
	if (thread == NULL)
		goto out_problem;

1653
	map = map__new(machine, event->mmap2.start,
1654
			event->mmap2.len, event->mmap2.pgoff,
1655
			event->mmap2.maj,
1656 1657
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1658 1659
			event->mmap2.prot,
			event->mmap2.flags,
1660
			event->mmap2.filename, thread);
1661 1662

	if (map == NULL)
1663
		goto out_problem_map;
1664

1665 1666 1667 1668
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1669
	thread__put(thread);
1670
	map__put(map);
1671 1672
	return 0;

1673 1674
out_problem_insert:
	map__put(map);
1675 1676
out_problem_map:
	thread__put(thread);
1677 1678 1679 1680 1681
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1682
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1683
				struct perf_sample *sample)
1684 1685 1686
{
	struct thread *thread;
	struct map *map;
1687
	u32 prot = 0;
1688 1689 1690 1691 1692
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1693 1694
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1695 1696 1697 1698 1699 1700
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1701
	thread = machine__findnew_thread(machine, event->mmap.pid,
1702
					 event->mmap.tid);
1703 1704
	if (thread == NULL)
		goto out_problem;
1705

1706
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1707
		prot = PROT_EXEC;
1708

1709
	map = map__new(machine, event->mmap.start,
1710
			event->mmap.len, event->mmap.pgoff,
1711
			0, 0, 0, 0, prot, 0,
1712
			event->mmap.filename,
1713
			thread);
1714

1715
	if (map == NULL)
1716
		goto out_problem_map;
1717

1718 1719 1720 1721
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1722
	thread__put(thread);
1723
	map__put(map);
1724 1725
	return 0;

1726 1727
out_problem_insert:
	map__put(map);
1728 1729
out_problem_map:
	thread__put(thread);
1730 1731 1732 1733 1734
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1735
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1736
{
1737 1738 1739
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1740
		threads__set_last_match(threads, NULL);
1741

1742
	BUG_ON(refcount_read(&th->refcnt) == 0);
1743
	if (lock)
1744
		down_write(&threads->lock);
1745
	rb_erase_cached(&th->rb_node, &threads->entries);
1746
	RB_CLEAR_NODE(&th->rb_node);
1747
	--threads->nr;
1748
	/*
1749 1750 1751
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1752
	 */
1753
	list_add_tail(&th->node, &threads->dead);
1754
	if (lock)
1755
		up_write(&threads->lock);
1756
	thread__put(th);
1757 1758
}

1759 1760 1761 1762 1763
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1764 1765
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1766
{
1767 1768 1769
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1770 1771 1772
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1773
	bool do_maps_clone = true;
1774
	int err = 0;
1775

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1794
	/* if a thread currently exists for the thread id remove it */
1795
	if (thread != NULL) {
1796
		machine__remove_thread(machine, thread);
1797 1798
		thread__put(thread);
	}
1799

1800 1801
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1818 1819

	if (thread == NULL || parent == NULL ||
1820
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1821
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1822
		err = -1;
1823
	}
1824 1825
	thread__put(thread);
	thread__put(parent);
1826

1827
	return err;
1828 1829
}

1830 1831
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1832
{
1833 1834 1835
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1836 1837 1838 1839

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1840
	if (thread != NULL) {
1841
		thread__exited(thread);
1842 1843
		thread__put(thread);
	}
1844 1845 1846 1847

	return 0;
}

1848 1849
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1850 1851 1852 1853 1854
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1855
		ret = machine__process_comm_event(machine, event, sample); break;
1856
	case PERF_RECORD_MMAP:
1857
		ret = machine__process_mmap_event(machine, event, sample); break;
1858 1859
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1860
	case PERF_RECORD_MMAP2:
1861
		ret = machine__process_mmap2_event(machine, event, sample); break;
1862
	case PERF_RECORD_FORK:
1863
		ret = machine__process_fork_event(machine, event, sample); break;
1864
	case PERF_RECORD_EXIT:
1865
		ret = machine__process_exit_event(machine, event, sample); break;
1866
	case PERF_RECORD_LOST:
1867
		ret = machine__process_lost_event(machine, event, sample); break;
1868 1869
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1870
	case PERF_RECORD_ITRACE_START:
1871
		ret = machine__process_itrace_start_event(machine, event); break;
1872 1873
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1874 1875 1876
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1877 1878
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1879 1880
	case PERF_RECORD_BPF_EVENT:
		ret = machine__process_bpf_event(machine, event, sample); break;
1881 1882 1883 1884 1885 1886 1887
	default:
		ret = -1;
		break;
	}

	return ret;
}
1888

1889
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1890
{
1891
	if (!regexec(regex, sym->name, 0, NULL, 0))
1892 1893 1894 1895
		return 1;
	return 0;
}

1896
static void ip__resolve_ams(struct thread *thread,
1897 1898 1899 1900 1901 1902
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1903 1904 1905 1906 1907 1908 1909
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1910
	thread__find_cpumode_addr_location(thread, ip, &al);
1911 1912 1913 1914 1915

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1916
	ams->phys_addr = 0;
1917 1918
}

1919
static void ip__resolve_data(struct thread *thread,
1920 1921
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1922 1923 1924 1925 1926
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1927
	thread__find_symbol(thread, m, addr, &al);
1928

1929 1930 1931 1932
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1933
	ams->phys_addr = phys_addr;
1934 1935
}

1936 1937
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1938
{
1939
	struct mem_info *mi = mem_info__new();
1940 1941 1942 1943

	if (!mi)
		return NULL;

1944
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1945 1946
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1947 1948 1949 1950 1951
	mi->data_src.val = sample->data_src;

	return mi;
}

1952 1953
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1954 1955
	char *srcline = NULL;

1956
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1957 1958 1959 1960 1961 1962 1963 1964
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1965
				      sym, show_sym, show_addr, ip);
1966 1967
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1968

1969
	return srcline;
1970 1971
}

1972 1973 1974 1975 1976
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1977
static int add_callchain_ip(struct thread *thread,
1978
			    struct callchain_cursor *cursor,
1979 1980
			    struct symbol **parent,
			    struct addr_location *root_al,
1981
			    u8 *cpumode,
1982 1983 1984
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1985
			    struct iterations *iter,
1986
			    u64 branch_from)
1987 1988
{
	struct addr_location al;
1989 1990
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1991
	const char *srcline = NULL;
1992 1993 1994

	al.filtered = 0;
	al.sym = NULL;
1995
	if (!cpumode) {
1996
		thread__find_cpumode_addr_location(thread, ip, &al);
1997
	} else {
1998 1999 2000
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2001
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2002 2003
				break;
			case PERF_CONTEXT_KERNEL:
2004
				*cpumode = PERF_RECORD_MISC_KERNEL;
2005 2006
				break;
			case PERF_CONTEXT_USER:
2007
				*cpumode = PERF_RECORD_MISC_USER;
2008 2009 2010 2011 2012 2013 2014 2015
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2016
				callchain_cursor_reset(cursor);
2017 2018 2019 2020
				return 1;
			}
			return 0;
		}
2021
		thread__find_symbol(thread, *cpumode, ip, &al);
2022 2023
	}

2024
	if (al.sym != NULL) {
2025
		if (perf_hpp_list.parent && !*parent &&
2026 2027 2028 2029 2030 2031 2032
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2033
			callchain_cursor_reset(cursor);
2034 2035 2036
		}
	}

2037 2038
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2039 2040 2041 2042 2043 2044

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2045
	srcline = callchain_srcline(al.map, al.sym, al.addr);
2046
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2047
				       branch, flags, nr_loop_iter,
2048
				       iter_cycles, branch_from, srcline);
2049 2050
}

2051 2052
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2053 2054
{
	unsigned int i;
2055 2056
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2057 2058 2059 2060 2061

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2062 2063
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2064 2065 2066 2067 2068
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

2069 2070 2071 2072 2073
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2074
	iter->nr_loop_iter++;
2075 2076 2077 2078 2079 2080
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2081 2082 2083 2084 2085 2086 2087
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2088 2089
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2126 2127 2128 2129 2130 2131 2132
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2133 2134 2135 2136 2137 2138 2139 2140
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2141
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2142 2143 2144 2145
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2146
{
K
Kan Liang 已提交
2147
	struct ip_callchain *chain = sample->callchain;
2148
	int chain_nr = min(max_stack, (int)chain->nr), i;
2149
	u8 cpumode = PERF_RECORD_MISC_USER;
2150
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2160 2161 2162
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2176
			int err;
2177 2178 2179
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2180 2181 2182
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2183 2184 2185 2186 2187 2188
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2189
					ip = lbr_stack->entries[0].to;
2190 2191
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2192 2193
					branch_from =
						lbr_stack->entries[0].from;
2194
				}
K
Kan Liang 已提交
2195
			} else {
2196 2197 2198 2199 2200 2201
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2202 2203
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2204
				else {
K
Kan Liang 已提交
2205
					ip = lbr_stack->entries[0].to;
2206 2207
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2208 2209
					branch_from =
						lbr_stack->entries[0].from;
2210
				}
K
Kan Liang 已提交
2211 2212
			}

2213 2214
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2215
					       branch, flags, NULL,
2216
					       branch_from);
K
Kan Liang 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2247
static int thread__resolve_callchain_sample(struct thread *thread,
2248
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2249 2250 2251 2252 2253 2254 2255 2256
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2257
	int chain_nr = 0;
2258
	u8 cpumode = PERF_RECORD_MISC_USER;
2259
	int i, j, err, nr_entries;
2260 2261 2262
	int skip_idx = -1;
	int first_call = 0;

2263 2264 2265
	if (chain)
		chain_nr = chain->nr;

2266
	if (perf_evsel__has_branch_callstack(evsel)) {
2267
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2268 2269 2270 2271 2272
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2273 2274 2275 2276
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2277
	skip_idx = arch_skip_callchain_idx(thread, chain);
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2294
		struct iterations iter[nr];
2295 2296 2297 2298 2299 2300 2301 2302 2303

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2304 2305 2306 2307

				if (chain == NULL)
					continue;

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2325 2326
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2327

2328
		for (i = 0; i < nr; i++) {
2329 2330 2331 2332 2333
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2334

2335
			if (!err)
2336
				err = add_callchain_ip(thread, cursor, parent, root_al,
2337 2338
						       NULL, be[i].from,
						       true, &be[i].flags,
2339
						       &iter[i], 0);
2340 2341 2342 2343 2344
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2345 2346 2347 2348

		if (chain_nr == 0)
			return 0;

2349 2350 2351 2352
		chain_nr -= nr;
	}

check_calls:
2353 2354 2355 2356 2357 2358
	if (callchain_param.order != ORDER_CALLEE) {
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2359
	for (i = first_call, nr_entries = 0;
2360
	     i < chain_nr && nr_entries < max_stack; i++) {
2361 2362 2363
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2364
			j = i;
2365
		else
2366 2367 2368 2369 2370 2371 2372
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2373 2374
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2375 2376 2377 2378 2379 2380 2381
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2382

2383 2384
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2385
				       false, NULL, NULL, 0);
2386 2387

		if (err)
2388
			return (err < 0) ? err : 0;
2389 2390 2391 2392 2393
	}

	return 0;
}

2394 2395 2396 2397 2398 2399
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2400
	int ret = 1;
2401 2402

	if (!symbol_conf.inline_name || !map || !sym)
2403
		return ret;
2404

2405 2406
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2407 2408 2409 2410 2411

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2412
			return ret;
2413 2414 2415 2416
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2417 2418 2419
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2420 2421 2422 2423 2424

		if (ret != 0)
			return ret;
	}

2425
	return ret;
2426 2427
}

2428 2429 2430
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2431
	const char *srcline = NULL;
2432
	u64 addr = entry->ip;
2433 2434 2435

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2436

2437 2438 2439
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2440 2441 2442 2443
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2444 2445
	if (entry->map)
		addr = map__map_ip(entry->map, entry->ip);
2446 2447

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2448
	return callchain_cursor_append(cursor, entry->ip,
2449
				       entry->map, entry->sym,
2450
				       false, NULL, 0, 0, 0, srcline);
2451 2452
}

2453 2454 2455 2456 2457
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2469
	return unwind__get_entries(unwind_entry, cursor,
2470
				   thread, sample, max_stack);
2471
}
2472

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2483
	callchain_cursor_reset(cursor);
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2508
}
2509 2510 2511 2512 2513

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2514
	struct threads *threads;
2515 2516 2517
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2518
	int i;
2519

2520 2521
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2522 2523
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2524 2525 2526 2527 2528
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2529

2530 2531 2532 2533 2534
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2535 2536 2537
	}
	return rc;
}
2538

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2550
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2551 2552 2553 2554 2555 2556 2557 2558 2559
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2560
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2561
				  struct target *target, struct thread_map *threads,
2562
				  perf_event__handler_t process, bool data_mmap,
2563
				  unsigned int nr_threads_synthesize)
2564
{
2565
	if (target__has_task(target))
2566
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2567
	else if (target__has_cpu(target))
2568 2569 2570
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      nr_threads_synthesize);
2571 2572 2573
	/* command specified */
	return 0;
}
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2614
	thread__put(thread);
2615 2616 2617

	return 0;
}
2618

2619 2620 2621 2622 2623 2624 2625 2626 2627
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2628 2629 2630 2631 2632
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2633 2634
int machine__get_kernel_start(struct machine *machine)
{
2635
	struct map *map = machine__kernel_map(machine);
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2648
		err = map__load(map);
2649 2650 2651 2652 2653 2654
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2655 2656 2657 2658
			machine->kernel_start = map->start;
	}
	return err;
}
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2687 2688
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2689
	return dsos__findnew(&machine->dsos, filename);
2690
}
2691 2692 2693 2694 2695

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2696
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2697 2698 2699 2700 2701 2702 2703 2704

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}