machine.c 65.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "symbol.h"
14
#include "sort.h"
15
#include "strlist.h"
16
#include "thread.h"
17
#include "vdso.h"
18
#include "util.h"
19
#include <stdbool.h>
20 21 22
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
23
#include "unwind.h"
24
#include "linux/hash.h"
25
#include "asm/bug.h"
26
#include "bpf-event.h"
27

28
#include <linux/ctype.h>
29
#include <symbol/kallsyms.h>
30
#include <linux/mman.h>
31

32 33
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

34 35 36 37
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
38
	init_rwsem(&dsos->lock);
39 40
}

41 42 43 44 45 46
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
47
		threads->entries = RB_ROOT_CACHED;
48
		init_rwsem(&threads->lock);
49 50 51 52 53 54
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

55 56
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
57 58 59 60 61 62 63
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
64 65 66 67

	return machine->mmap_name ? 0 : -ENOMEM;
}

68 69
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
70 71
	int err = -ENOMEM;

72
	memset(machine, 0, sizeof(*machine));
73
	map_groups__init(&machine->kmaps, machine);
74
	RB_CLEAR_NODE(&machine->rb_node);
75
	dsos__init(&machine->dsos);
76

77
	machine__threads_init(machine);
78

79
	machine->vdso_info = NULL;
80
	machine->env = NULL;
81

82 83
	machine->pid = pid;

84
	machine->id_hdr_size = 0;
85
	machine->kptr_restrict_warned = false;
86
	machine->comm_exec = false;
87
	machine->kernel_start = 0;
88
	machine->vmlinux_map = NULL;
89

90 91 92 93
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

94 95 96
	if (machine__set_mmap_name(machine))
		goto out;

97
	if (pid != HOST_KERNEL_ID) {
98
		struct thread *thread = machine__findnew_thread(machine, -1,
99
								pid);
100 101 102
		char comm[64];

		if (thread == NULL)
103
			goto out;
104 105

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
106
		thread__set_comm(thread, comm, 0);
107
		thread__put(thread);
108 109
	}

110
	machine->current_tid = NULL;
111
	err = 0;
112

113
out:
114
	if (err) {
115
		zfree(&machine->root_dir);
116 117
		zfree(&machine->mmap_name);
	}
118 119 120
	return 0;
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

138 139 140 141 142
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
143
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
144 145 146
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
147
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
148 149 150 151 152 153 154
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

155
static void dsos__purge(struct dsos *dsos)
156 157 158
{
	struct dso *pos, *n;

159
	down_write(&dsos->lock);
160

161
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
162
		RB_CLEAR_NODE(&pos->rb_node);
163
		pos->root = NULL;
164 165
		list_del_init(&pos->node);
		dso__put(pos);
166
	}
167

168
	up_write(&dsos->lock);
169
}
170

171 172 173
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
174
	exit_rwsem(&dsos->lock);
175 176
}

177 178
void machine__delete_threads(struct machine *machine)
{
179
	struct rb_node *nd;
180
	int i;
181

182 183
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
184
		down_write(&threads->lock);
185
		nd = rb_first_cached(&threads->entries);
186 187
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
188

189 190 191
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
192
		up_write(&threads->lock);
193 194 195
	}
}

196 197
void machine__exit(struct machine *machine)
{
198 199
	int i;

200 201 202
	if (machine == NULL)
		return;

203
	machine__destroy_kernel_maps(machine);
204
	map_groups__exit(&machine->kmaps);
205
	dsos__exit(&machine->dsos);
206
	machine__exit_vdso(machine);
207
	zfree(&machine->root_dir);
208
	zfree(&machine->mmap_name);
209
	zfree(&machine->current_tid);
210 211 212

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
213 214 215 216 217 218 219 220 221 222 223 224
		struct thread *thread, *n;
		/*
		 * Forget about the dead, at this point whatever threads were
		 * left in the dead lists better have a reference count taken
		 * by who is using them, and then, when they drop those references
		 * and it finally hits zero, thread__put() will check and see that
		 * its not in the dead threads list and will not try to remove it
		 * from there, just calling thread__delete() straight away.
		 */
		list_for_each_entry_safe(thread, n, &threads->dead, node)
			list_del_init(&thread->node);

225
		exit_rwsem(&threads->lock);
226
	}
227 228 229 230
}

void machine__delete(struct machine *machine)
{
231 232 233 234
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
235 236
}

237 238 239
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
240
	machines->guests = RB_ROOT_CACHED;
241 242 243 244 245 246 247 248 249
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
250 251
			      const char *root_dir)
{
252
	struct rb_node **p = &machines->guests.rb_root.rb_node;
253 254
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
255
	bool leftmost = true;
256 257 258 259 260 261 262 263 264 265 266 267 268 269

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
270
		else {
271
			p = &(*p)->rb_right;
272 273
			leftmost = false;
		}
274 275 276
	}

	rb_link_node(&machine->rb_node, parent, p);
277
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
278 279 280 281

	return machine;
}

282 283 284 285 286 287
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

288
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
289 290 291 292 293 294
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

295
struct machine *machines__find(struct machines *machines, pid_t pid)
296
{
297
	struct rb_node **p = &machines->guests.rb_root.rb_node;
298 299 300 301
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

302 303 304
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

321
struct machine *machines__findnew(struct machines *machines, pid_t pid)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
338
				seen = strlist__new(NULL, NULL);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

355 356
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
357 358 359
{
	struct rb_node *nd;

360
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
361 362 363 364 365
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

366
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
367 368 369 370
{
	struct rb_node *node;
	struct machine *machine;

371 372
	machines->host.id_hdr_size = id_hdr_size;

373 374
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
375 376 377 378 379 380 381
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

382 383 384 385 386 387 388 389 390 391 392 393 394
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

395
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
396 397 398 399
	if (!leader)
		goto out_err;

	if (!leader->mg)
400
		leader->mg = map_groups__new(machine);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
417
		map_groups__put(th->mg);
418 419 420
	}

	th->mg = map_groups__get(leader->mg);
421 422
out_put:
	thread__put(leader);
423 424 425
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
426
	goto out_put;
427 428
}

429
/*
430 431 432
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
433
 */
434
static struct thread*
435 436
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
437 438 439
{
	struct thread *th;

440
	th = threads->last_match;
441 442 443
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
444
			return thread__get(th);
445 446
		}

447
		threads->last_match = NULL;
448
	}
449

450 451 452
	return NULL;
}

453 454 455 456 457 458 459 460 461 462 463 464
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

465
static void
466
__threads__set_last_match(struct threads *threads, struct thread *th)
467 468 469 470
{
	threads->last_match = th;
}

471 472 473 474 475 476 477
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

478 479 480 481 482 483 484 485 486
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
487
	struct rb_node **p = &threads->entries.rb_root.rb_node;
488 489
	struct rb_node *parent = NULL;
	struct thread *th;
490
	bool leftmost = true;
491 492 493 494 495

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

496 497 498 499
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

500
		if (th->tid == tid) {
501
			threads__set_last_match(threads, th);
502
			machine__update_thread_pid(machine, th, pid);
503
			return thread__get(th);
504 505
		}

506
		if (tid < th->tid)
507
			p = &(*p)->rb_left;
508
		else {
509
			p = &(*p)->rb_right;
510 511
			leftmost = false;
		}
512 513 514 515 516
	}

	if (!create)
		return NULL;

517
	th = thread__new(pid, tid);
518 519
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
520
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
521 522 523 524 525 526 527 528 529

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
530
		if (thread__init_map_groups(th, machine)) {
531
			rb_erase_cached(&th->rb_node, &threads->entries);
532
			RB_CLEAR_NODE(&th->rb_node);
533
			thread__put(th);
534
			return NULL;
535
		}
536 537 538 539
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
540
		threads__set_last_match(threads, th);
541
		++threads->nr;
542 543 544 545 546
	}

	return th;
}

547 548
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
549
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
550 551
}

552 553
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
554
{
555
	struct threads *threads = machine__threads(machine, tid);
556 557
	struct thread *th;

558
	down_write(&threads->lock);
559
	th = __machine__findnew_thread(machine, pid, tid);
560
	up_write(&threads->lock);
561
	return th;
562 563
}

564 565
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
566
{
567
	struct threads *threads = machine__threads(machine, tid);
568
	struct thread *th;
569

570
	down_read(&threads->lock);
571
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
572
	up_read(&threads->lock);
573
	return th;
574
}
575

576 577 578 579 580 581 582 583 584
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

585 586
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
587
{
588 589 590
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
591
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
592
	int err = 0;
593

594 595 596
	if (exec)
		machine->comm_exec = true;

597 598 599
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

600 601
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
602
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
603
		err = -1;
604 605
	}

606 607 608
	thread__put(thread);

	return err;
609 610
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

642
int machine__process_lost_event(struct machine *machine __maybe_unused,
643
				union perf_event *event, struct perf_sample *sample __maybe_unused)
644 645 646 647 648 649
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

650 651 652 653 654 655 656 657
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

658 659 660
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
661 662 663
{
	struct dso *dso;

664
	down_write(&machine->dsos.lock);
665 666

	dso = __dsos__find(&machine->dsos, m->name, true);
667
	if (!dso) {
668
		dso = __dsos__addnew(&machine->dsos, m->name);
669
		if (dso == NULL)
670
			goto out_unlock;
671

672
		dso__set_module_info(dso, m, machine);
673
		dso__set_long_name(dso, strdup(filename), true);
674 675
	}

676
	dso__get(dso);
677
out_unlock:
678
	up_write(&machine->dsos.lock);
679 680 681
	return dso;
}

682 683 684 685 686 687 688 689
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

690 691 692 693 694 695 696 697
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

698 699 700 701 702 703 704 705
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (!map) {
		map = dso__new_map(event->ksymbol_event.name);
		if (!map)
			return -ENOMEM;

		map->start = event->ksymbol_event.addr;
		map->end = map->start + event->ksymbol_event.len;
		map_groups__insert(&machine->kmaps, map);
	}

724 725
	sym = symbol__new(map->map_ip(map, map->start),
			  event->ksymbol_event.len,
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
			  0, 0, event->ksymbol_event.name);
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (map)
		map_groups__remove(&machine->kmaps, map);

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

	if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

774
	dso__set_long_name(dso, dup_filename, true);
775 776
}

777 778
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
779
{
780
	struct map *map = NULL;
781
	struct dso *dso = NULL;
782
	struct kmod_path m;
783

784
	if (kmod_path__parse_name(&m, filename))
785 786
		return NULL;

787
	map = map_groups__find_by_name(&machine->kmaps, m.name);
788 789 790 791 792 793 794
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
795
		goto out;
796
	}
797

798
	dso = machine__findnew_module_dso(machine, &m, filename);
799 800 801
	if (dso == NULL)
		goto out;

802
	map = map__new2(start, dso);
803
	if (map == NULL)
804
		goto out;
805 806

	map_groups__insert(&machine->kmaps, map);
807

808 809
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
810
out:
811 812
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
813
	free(m.name);
814 815 816
	return map;
}

817
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
818 819
{
	struct rb_node *nd;
820
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
821

822
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
823
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
824
		ret += __dsos__fprintf(&pos->dsos.head, fp);
825 826 827 828 829
	}

	return ret;
}

830
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
831 832
				     bool (skip)(struct dso *dso, int parm), int parm)
{
833
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
834 835
}

836
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
837 838 839
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
840
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
841

842
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
843 844 845 846 847 848 849 850 851 852
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
853
	struct dso *kdso = machine__kernel_map(machine)->dso;
854 855 856

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
857 858
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
859 860 861 862 863 864 865 866 867 868 869 870 871
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
872 873
	size_t ret;
	int i;
874

875 876
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
877 878

		down_read(&threads->lock);
879

880
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
881

882 883
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
884
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
885

886 887
			ret += thread__fprintf(pos, fp);
		}
888

889
		up_read(&threads->lock);
890
	}
891 892 893 894 895
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
896
	const char *vmlinux_name = machine->mmap_name;
897 898 899
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
900 901 902
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

903 904
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
905
	} else {
J
Jiri Olsa 已提交
906 907 908
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

909 910 911
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
912 913 914 915 916 917 918 919 920 921 922 923
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

924 925
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
926 927 928 929 930 931 932
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

933 934 935 936 937 938
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
939
static int machine__get_running_kernel_start(struct machine *machine,
940 941
					     const char **symbol_name,
					     u64 *start, u64 *end)
942
{
943
	char filename[PATH_MAX];
944
	int i, err = -1;
945 946
	const char *name;
	u64 addr = 0;
947

948
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
949 950 951 952

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

953
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
954 955
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
956 957 958
			break;
	}

959 960 961
	if (err)
		return -1;

962 963
	if (symbol_name)
		*symbol_name = name;
964

965
	*start = addr;
966 967 968 969 970

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

971
	return 0;
972 973
}

974 975 976
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
977 978 979 980 981 982 983 984 985 986 987 988 989 990
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
991
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
992 993 994

	map_groups__insert(&machine->kmaps, map);

995 996
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1038 1039
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
1040
	int nr_cpus_avail, cpu;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1063

1064
	pgoff = find_entry_trampoline(kernel);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1081 1082
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1083 1084 1085 1086
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1087 1088 1089 1090 1091 1092 1093 1094
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1095 1096 1097
	return 0;
}

1098 1099
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1100
{
1101 1102
	struct kmap *kmap;
	struct map *map;
1103

1104 1105 1106
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1107 1108 1109
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1110

1111 1112 1113 1114 1115
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1116

1117 1118
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1119 1120 1121 1122 1123 1124

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1125 1126
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1127

1128 1129
	if (map == NULL)
		return;
1130

1131 1132 1133 1134 1135
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1136
	}
1137 1138

	map__zput(machine->vmlinux_map);
1139 1140
}

1141
int machines__create_guest_kernel_maps(struct machines *machines)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1190
void machines__destroy_kernel_maps(struct machines *machines)
1191
{
1192
	struct rb_node *next = rb_first_cached(&machines->guests);
1193 1194

	machine__destroy_kernel_maps(&machines->host);
1195 1196 1197 1198 1199

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1200
		rb_erase_cached(&pos->rb_node, &machines->guests);
1201 1202 1203 1204
		machine__delete(pos);
	}
}

1205
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1206 1207 1208 1209 1210 1211 1212 1213 1214
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1215
int machine__load_kallsyms(struct machine *machine, const char *filename)
1216
{
1217
	struct map *map = machine__kernel_map(machine);
1218
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1219 1220

	if (ret > 0) {
1221
		dso__set_loaded(map->dso);
1222 1223 1224 1225 1226
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1227
		map_groups__fixup_end(&machine->kmaps);
1228 1229 1230 1231 1232
	}

	return ret;
}

1233
int machine__load_vmlinux_path(struct machine *machine)
1234
{
1235
	struct map *map = machine__kernel_map(machine);
1236
	int ret = dso__load_vmlinux_path(map->dso, map);
1237

1238
	if (ret > 0)
1239
		dso__set_loaded(map->dso);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1258 1259
	if (!tmp)
		return NULL;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1282
	struct map *map = map_groups__find_by_name(mg, m->name);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1298
	if (m->comp && is_kmod_dso(map->dso)) {
1299
		map->dso->symtab_type++;
1300 1301
		map->dso->comp = m->comp;
	}
1302 1303 1304 1305

	return 0;
}

1306
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1307
				const char *dir_name, int depth)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1332 1333 1334 1335 1336 1337 1338 1339 1340
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1341 1342 1343
			if (ret < 0)
				goto out;
		} else {
1344
			struct kmod_path m;
1345

1346 1347 1348
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1349

1350 1351
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1352

1353
			free(m.name);
1354

1355
			if (ret)
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1374
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1375 1376 1377
		 machine->root_dir, version);
	free(version);

1378
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1379
}
1380 1381 1382 1383 1384
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1385

1386 1387
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1388
{
1389
	struct machine *machine = arg;
1390
	struct map *map;
1391

1392 1393 1394
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1395
	map = machine__findnew_module_map(machine, start, name);
1396 1397
	if (map == NULL)
		return -1;
1398
	map->end = start + size;
1399 1400 1401 1402 1403 1404 1405 1406

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1407 1408 1409
	const char *modules;
	char path[PATH_MAX];

1410
	if (machine__is_default_guest(machine)) {
1411
		modules = symbol_conf.default_guest_modules;
1412 1413
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1414 1415 1416
		modules = path;
	}

1417
	if (symbol__restricted_filename(modules, "/proc/modules"))
1418 1419
		return -1;

1420
	if (modules__parse(modules, machine, machine__create_module))
1421 1422
		return -1;

1423 1424
	if (!machine__set_modules_path(machine))
		return 0;
1425

1426
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1427

1428
	return 0;
1429 1430
}

1431 1432 1433
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1434 1435 1436 1437 1438 1439 1440 1441
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
	map_groups__remove(&machine->kmaps, map);

	machine__set_kernel_mmap(machine, start, end);

	map_groups__insert(&machine->kmaps, map);
	map__put(map);
}

1458 1459 1460
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1461
	const char *name = NULL;
1462
	struct map *map;
1463
	u64 start = 0, end = ~0ULL;
1464 1465
	int ret;

1466
	if (kernel == NULL)
1467
		return -1;
1468

1469 1470
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1471
		goto out_put;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1482
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1483
		if (name &&
1484
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1485
			machine__destroy_kernel_maps(machine);
1486 1487
			ret = -1;
			goto out_put;
1488
		}
1489

1490 1491 1492 1493
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1494
		machine__update_kernel_mmap(machine, start, end);
1495 1496
	}

1497 1498 1499
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1500 1501 1502 1503 1504 1505 1506
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1507 1508 1509
out_put:
	dso__put(kernel);
	return ret;
1510 1511
}

1512 1513 1514 1515
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1516
	list_for_each_entry(dso, &machine->dsos.head, node) {
1517 1518 1519 1520 1521 1522 1523
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1550 1551 1552 1553 1554 1555 1556
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1557 1558 1559 1560
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1561 1562 1563 1564 1565 1566
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1567 1568
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1569 1570
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1571 1572
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1573 1574 1575 1576 1577 1578
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1579
				strlen(machine->mmap_name));
1580 1581 1582 1583
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1584 1585 1586
		struct dso *kernel = NULL;
		struct dso *dso;

1587
		down_read(&machine->dsos.lock);
1588

1589
		list_for_each_entry(dso, &machine->dsos.head, node) {
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1610 1611
				continue;

1612

1613 1614 1615 1616
			kernel = dso;
			break;
		}

1617
		up_read(&machine->dsos.lock);
1618

1619
		if (kernel == NULL)
1620
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1621 1622 1623 1624
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1625 1626
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1627
			goto out_problem;
1628
		}
1629

1630 1631
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1632

1633
		machine__update_kernel_mmap(machine, event->mmap.start,
1634
					 event->mmap.start + event->mmap.len);
1635 1636 1637 1638 1639 1640 1641

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1642 1643 1644
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1645 1646 1647 1648 1649 1650
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1651
			dso__load(kernel, machine__kernel_map(machine));
1652
		}
1653 1654
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1655 1656 1657 1658 1659 1660
	}
	return 0;
out_problem:
	return -1;
}

1661
int machine__process_mmap2_event(struct machine *machine,
1662
				 union perf_event *event,
1663
				 struct perf_sample *sample)
1664 1665 1666 1667 1668 1669 1670 1671
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1672 1673
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1674 1675 1676 1677 1678 1679 1680
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1681
					event->mmap2.tid);
1682 1683 1684
	if (thread == NULL)
		goto out_problem;

1685
	map = map__new(machine, event->mmap2.start,
1686
			event->mmap2.len, event->mmap2.pgoff,
1687
			event->mmap2.maj,
1688 1689
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1690 1691
			event->mmap2.prot,
			event->mmap2.flags,
1692
			event->mmap2.filename, thread);
1693 1694

	if (map == NULL)
1695
		goto out_problem_map;
1696

1697 1698 1699 1700
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1701
	thread__put(thread);
1702
	map__put(map);
1703 1704
	return 0;

1705 1706
out_problem_insert:
	map__put(map);
1707 1708
out_problem_map:
	thread__put(thread);
1709 1710 1711 1712 1713
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1714
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1715
				struct perf_sample *sample)
1716 1717 1718
{
	struct thread *thread;
	struct map *map;
1719
	u32 prot = 0;
1720 1721 1722 1723 1724
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1725 1726
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1727 1728 1729 1730 1731 1732
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1733
	thread = machine__findnew_thread(machine, event->mmap.pid,
1734
					 event->mmap.tid);
1735 1736
	if (thread == NULL)
		goto out_problem;
1737

1738
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1739
		prot = PROT_EXEC;
1740

1741
	map = map__new(machine, event->mmap.start,
1742
			event->mmap.len, event->mmap.pgoff,
1743
			0, 0, 0, 0, prot, 0,
1744
			event->mmap.filename,
1745
			thread);
1746

1747
	if (map == NULL)
1748
		goto out_problem_map;
1749

1750 1751 1752 1753
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1754
	thread__put(thread);
1755
	map__put(map);
1756 1757
	return 0;

1758 1759
out_problem_insert:
	map__put(map);
1760 1761
out_problem_map:
	thread__put(thread);
1762 1763 1764 1765 1766
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1767
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1768
{
1769 1770 1771
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1772
		threads__set_last_match(threads, NULL);
1773

1774
	if (lock)
1775
		down_write(&threads->lock);
1776 1777 1778

	BUG_ON(refcount_read(&th->refcnt) == 0);

1779
	rb_erase_cached(&th->rb_node, &threads->entries);
1780
	RB_CLEAR_NODE(&th->rb_node);
1781
	--threads->nr;
1782
	/*
1783 1784 1785
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1786
	 */
1787
	list_add_tail(&th->node, &threads->dead);
1788 1789 1790 1791 1792 1793 1794 1795

	/*
	 * We need to do the put here because if this is the last refcount,
	 * then we will be touching the threads->dead head when removing the
	 * thread.
	 */
	thread__put(th);

1796
	if (lock)
1797
		up_write(&threads->lock);
1798 1799
}

1800 1801 1802 1803 1804
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1805 1806
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1807
{
1808 1809 1810
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1811 1812 1813
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1814
	bool do_maps_clone = true;
1815
	int err = 0;
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1835
	/* if a thread currently exists for the thread id remove it */
1836
	if (thread != NULL) {
1837
		machine__remove_thread(machine, thread);
1838 1839
		thread__put(thread);
	}
1840

1841 1842
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1859 1860

	if (thread == NULL || parent == NULL ||
1861
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1862
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1863
		err = -1;
1864
	}
1865 1866
	thread__put(thread);
	thread__put(parent);
1867

1868
	return err;
1869 1870
}

1871 1872
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1873
{
1874 1875 1876
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1877 1878 1879 1880

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1881
	if (thread != NULL) {
1882
		thread__exited(thread);
1883 1884
		thread__put(thread);
	}
1885 1886 1887 1888

	return 0;
}

1889 1890
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1891 1892 1893 1894 1895
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1896
		ret = machine__process_comm_event(machine, event, sample); break;
1897
	case PERF_RECORD_MMAP:
1898
		ret = machine__process_mmap_event(machine, event, sample); break;
1899 1900
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1901
	case PERF_RECORD_MMAP2:
1902
		ret = machine__process_mmap2_event(machine, event, sample); break;
1903
	case PERF_RECORD_FORK:
1904
		ret = machine__process_fork_event(machine, event, sample); break;
1905
	case PERF_RECORD_EXIT:
1906
		ret = machine__process_exit_event(machine, event, sample); break;
1907
	case PERF_RECORD_LOST:
1908
		ret = machine__process_lost_event(machine, event, sample); break;
1909 1910
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1911
	case PERF_RECORD_ITRACE_START:
1912
		ret = machine__process_itrace_start_event(machine, event); break;
1913 1914
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1915 1916 1917
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1918 1919
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1920 1921
	case PERF_RECORD_BPF_EVENT:
		ret = machine__process_bpf_event(machine, event, sample); break;
1922 1923 1924 1925 1926 1927 1928
	default:
		ret = -1;
		break;
	}

	return ret;
}
1929

1930
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1931
{
1932
	if (!regexec(regex, sym->name, 0, NULL, 0))
1933 1934 1935 1936
		return 1;
	return 0;
}

1937
static void ip__resolve_ams(struct thread *thread,
1938 1939 1940 1941 1942 1943
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1944 1945 1946 1947 1948 1949 1950
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1951
	thread__find_cpumode_addr_location(thread, ip, &al);
1952 1953 1954 1955 1956

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1957
	ams->phys_addr = 0;
1958 1959
}

1960
static void ip__resolve_data(struct thread *thread,
1961 1962
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1963 1964 1965 1966 1967
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1968
	thread__find_symbol(thread, m, addr, &al);
1969

1970 1971 1972 1973
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1974
	ams->phys_addr = phys_addr;
1975 1976
}

1977 1978
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1979
{
1980
	struct mem_info *mi = mem_info__new();
1981 1982 1983 1984

	if (!mi)
		return NULL;

1985
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1986 1987
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1988 1989 1990 1991 1992
	mi->data_src.val = sample->data_src;

	return mi;
}

1993 1994
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1995 1996
	char *srcline = NULL;

1997
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1998 1999 2000 2001 2002 2003 2004 2005
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2006
				      sym, show_sym, show_addr, ip);
2007 2008
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
2009

2010
	return srcline;
2011 2012
}

2013 2014 2015 2016 2017
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

2018
static int add_callchain_ip(struct thread *thread,
2019
			    struct callchain_cursor *cursor,
2020 2021
			    struct symbol **parent,
			    struct addr_location *root_al,
2022
			    u8 *cpumode,
2023 2024 2025
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2026
			    struct iterations *iter,
2027
			    u64 branch_from)
2028 2029
{
	struct addr_location al;
2030 2031
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2032
	const char *srcline = NULL;
2033 2034 2035

	al.filtered = 0;
	al.sym = NULL;
2036
	if (!cpumode) {
2037
		thread__find_cpumode_addr_location(thread, ip, &al);
2038
	} else {
2039 2040 2041
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2042
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2043 2044
				break;
			case PERF_CONTEXT_KERNEL:
2045
				*cpumode = PERF_RECORD_MISC_KERNEL;
2046 2047
				break;
			case PERF_CONTEXT_USER:
2048
				*cpumode = PERF_RECORD_MISC_USER;
2049 2050 2051 2052 2053 2054 2055 2056
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2057
				callchain_cursor_reset(cursor);
2058 2059 2060 2061
				return 1;
			}
			return 0;
		}
2062
		thread__find_symbol(thread, *cpumode, ip, &al);
2063 2064
	}

2065
	if (al.sym != NULL) {
2066
		if (perf_hpp_list.parent && !*parent &&
2067 2068 2069 2070 2071 2072 2073
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2074
			callchain_cursor_reset(cursor);
2075 2076 2077
		}
	}

2078 2079
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2080 2081 2082 2083 2084 2085

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2086
	srcline = callchain_srcline(al.map, al.sym, al.addr);
2087
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2088
				       branch, flags, nr_loop_iter,
2089
				       iter_cycles, branch_from, srcline);
2090 2091
}

2092 2093
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2094 2095
{
	unsigned int i;
2096 2097
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2098 2099 2100 2101 2102

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2103 2104
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2105 2106 2107 2108 2109
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

2110 2111 2112 2113 2114
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2115
	iter->nr_loop_iter++;
2116 2117 2118 2119 2120 2121
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2122 2123 2124 2125 2126 2127 2128
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2129 2130
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2167 2168 2169 2170 2171 2172 2173
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2174 2175 2176 2177 2178 2179 2180 2181
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2182
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2183 2184 2185 2186
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2187
{
K
Kan Liang 已提交
2188
	struct ip_callchain *chain = sample->callchain;
2189
	int chain_nr = min(max_stack, (int)chain->nr), i;
2190
	u8 cpumode = PERF_RECORD_MISC_USER;
2191
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2201 2202 2203
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2217
			int err;
2218 2219 2220
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2221 2222 2223
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2224 2225 2226 2227 2228 2229
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2230
					ip = lbr_stack->entries[0].to;
2231 2232
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2233 2234
					branch_from =
						lbr_stack->entries[0].from;
2235
				}
K
Kan Liang 已提交
2236
			} else {
2237 2238 2239 2240 2241 2242
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2243 2244
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2245
				else {
K
Kan Liang 已提交
2246
					ip = lbr_stack->entries[0].to;
2247 2248
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2249 2250
					branch_from =
						lbr_stack->entries[0].from;
2251
				}
K
Kan Liang 已提交
2252 2253
			}

2254 2255
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2256
					       branch, flags, NULL,
2257
					       branch_from);
K
Kan Liang 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2288
static int thread__resolve_callchain_sample(struct thread *thread,
2289
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2290 2291 2292 2293 2294 2295 2296 2297
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2298
	int chain_nr = 0;
2299
	u8 cpumode = PERF_RECORD_MISC_USER;
2300
	int i, j, err, nr_entries;
2301 2302 2303
	int skip_idx = -1;
	int first_call = 0;

2304 2305 2306
	if (chain)
		chain_nr = chain->nr;

2307
	if (perf_evsel__has_branch_callstack(evsel)) {
2308
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2309 2310 2311 2312 2313
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2314 2315 2316 2317
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2318
	skip_idx = arch_skip_callchain_idx(thread, chain);
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2335
		struct iterations iter[nr];
2336 2337 2338 2339 2340 2341 2342 2343 2344

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2345 2346 2347 2348

				if (chain == NULL)
					continue;

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2366 2367
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2368

2369
		for (i = 0; i < nr; i++) {
2370 2371 2372 2373 2374
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2375

2376
			if (!err)
2377
				err = add_callchain_ip(thread, cursor, parent, root_al,
2378 2379
						       NULL, be[i].from,
						       true, &be[i].flags,
2380
						       &iter[i], 0);
2381 2382 2383 2384 2385
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2386 2387 2388 2389

		if (chain_nr == 0)
			return 0;

2390 2391 2392 2393
		chain_nr -= nr;
	}

check_calls:
2394 2395 2396 2397 2398 2399
	if (callchain_param.order != ORDER_CALLEE) {
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2400
	for (i = first_call, nr_entries = 0;
2401
	     i < chain_nr && nr_entries < max_stack; i++) {
2402 2403 2404
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2405
			j = i;
2406
		else
2407 2408 2409 2410 2411 2412 2413
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2414 2415
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2416 2417 2418 2419 2420 2421 2422
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2423

2424 2425
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2426
				       false, NULL, NULL, 0);
2427 2428

		if (err)
2429
			return (err < 0) ? err : 0;
2430 2431 2432 2433 2434
	}

	return 0;
}

2435 2436 2437 2438 2439 2440
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2441
	int ret = 1;
2442 2443

	if (!symbol_conf.inline_name || !map || !sym)
2444
		return ret;
2445

2446 2447
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2448 2449 2450 2451 2452

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2453
			return ret;
2454 2455 2456 2457
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2458 2459 2460
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2461 2462 2463 2464 2465

		if (ret != 0)
			return ret;
	}

2466
	return ret;
2467 2468
}

2469 2470 2471
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2472
	const char *srcline = NULL;
2473
	u64 addr = entry->ip;
2474 2475 2476

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2477

2478 2479 2480
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2481 2482 2483 2484
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2485 2486
	if (entry->map)
		addr = map__map_ip(entry->map, entry->ip);
2487 2488

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2489
	return callchain_cursor_append(cursor, entry->ip,
2490
				       entry->map, entry->sym,
2491
				       false, NULL, 0, 0, 0, srcline);
2492 2493
}

2494 2495 2496 2497 2498
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2510
	return unwind__get_entries(unwind_entry, cursor,
2511
				   thread, sample, max_stack);
2512
}
2513

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2524
	callchain_cursor_reset(cursor);
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2549
}
2550 2551 2552 2553 2554

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2555
	struct threads *threads;
2556 2557 2558
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2559
	int i;
2560

2561 2562
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2563 2564
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2565 2566 2567 2568 2569
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2570

2571 2572 2573 2574 2575
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2576 2577 2578
	}
	return rc;
}
2579

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2591
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2592 2593 2594 2595 2596 2597 2598 2599 2600
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2601
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2602
				  struct target *target, struct thread_map *threads,
2603
				  perf_event__handler_t process, bool data_mmap,
2604
				  unsigned int nr_threads_synthesize)
2605
{
2606
	if (target__has_task(target))
2607
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2608
	else if (target__has_cpu(target))
2609 2610 2611
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      nr_threads_synthesize);
2612 2613 2614
	/* command specified */
	return 0;
}
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2655
	thread__put(thread);
2656 2657 2658

	return 0;
}
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2669 2670 2671 2672 2673
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2674 2675
int machine__get_kernel_start(struct machine *machine)
{
2676
	struct map *map = machine__kernel_map(machine);
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2689
		err = map__load(map);
2690 2691 2692 2693 2694 2695
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2696 2697 2698 2699
			machine->kernel_start = map->start;
	}
	return err;
}
2700

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2728 2729
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2730
	return dsos__findnew(&machine->dsos, filename);
2731
}
2732 2733 2734 2735 2736

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2737
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738 2739 2740 2741 2742 2743 2744 2745

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}