machine.c 65.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include <stdlib.h>
7
#include "callchain.h"
8
#include "debug.h"
9
#include "dso.h"
10
#include "env.h"
11
#include "event.h"
12 13
#include "evsel.h"
#include "hist.h"
14 15
#include "machine.h"
#include "map.h"
16 17 18
#include "map_symbol.h"
#include "branch.h"
#include "mem-events.h"
19
#include "srcline.h"
20
#include "symbol.h"
21
#include "sort.h"
22
#include "strlist.h"
23
#include "target.h"
24
#include "thread.h"
25
#include "util.h"
26
#include "vdso.h"
27
#include <stdbool.h>
28 29 30
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
31
#include "unwind.h"
32
#include "linux/hash.h"
33
#include "asm/bug.h"
34
#include "bpf-event.h"
35
#include <internal/lib.h> // page_size
36

37
#include <linux/ctype.h>
38
#include <symbol/kallsyms.h>
39
#include <linux/mman.h>
40
#include <linux/string.h>
41
#include <linux/zalloc.h>
42

43 44
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

45 46 47 48 49
static struct dso *machine__kernel_dso(struct machine *machine)
{
	return machine->vmlinux_map->dso;
}

50 51 52 53
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
54
	init_rwsem(&dsos->lock);
55 56
}

57 58 59 60 61 62
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
63
		threads->entries = RB_ROOT_CACHED;
64
		init_rwsem(&threads->lock);
65 66 67 68 69 70
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

71 72
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
73 74 75 76 77 78 79
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
80 81 82 83

	return machine->mmap_name ? 0 : -ENOMEM;
}

84 85
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
86 87
	int err = -ENOMEM;

88
	memset(machine, 0, sizeof(*machine));
89
	maps__init(&machine->kmaps, machine);
90
	RB_CLEAR_NODE(&machine->rb_node);
91
	dsos__init(&machine->dsos);
92

93
	machine__threads_init(machine);
94

95
	machine->vdso_info = NULL;
96
	machine->env = NULL;
97

98 99
	machine->pid = pid;

100
	machine->id_hdr_size = 0;
101
	machine->kptr_restrict_warned = false;
102
	machine->comm_exec = false;
103
	machine->kernel_start = 0;
104
	machine->vmlinux_map = NULL;
105

106 107 108 109
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

110 111 112
	if (machine__set_mmap_name(machine))
		goto out;

113
	if (pid != HOST_KERNEL_ID) {
114
		struct thread *thread = machine__findnew_thread(machine, -1,
115
								pid);
116 117 118
		char comm[64];

		if (thread == NULL)
119
			goto out;
120 121

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122
		thread__set_comm(thread, comm, 0);
123
		thread__put(thread);
124 125
	}

126
	machine->current_tid = NULL;
127
	err = 0;
128

129
out:
130
	if (err) {
131
		zfree(&machine->root_dir);
132 133
		zfree(&machine->mmap_name);
	}
134 135 136
	return 0;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

154 155 156 157 158
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
159
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160 161 162
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
163
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164 165 166 167 168 169 170
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

171
static void dsos__purge(struct dsos *dsos)
172 173 174
{
	struct dso *pos, *n;

175
	down_write(&dsos->lock);
176

177
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
178
		RB_CLEAR_NODE(&pos->rb_node);
179
		pos->root = NULL;
180 181
		list_del_init(&pos->node);
		dso__put(pos);
182
	}
183

184
	up_write(&dsos->lock);
185
}
186

187 188 189
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
190
	exit_rwsem(&dsos->lock);
191 192
}

193 194
void machine__delete_threads(struct machine *machine)
{
195
	struct rb_node *nd;
196
	int i;
197

198 199
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
200
		down_write(&threads->lock);
201
		nd = rb_first_cached(&threads->entries);
202 203
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
204

205 206 207
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
208
		up_write(&threads->lock);
209 210 211
	}
}

212 213
void machine__exit(struct machine *machine)
{
214 215
	int i;

216 217 218
	if (machine == NULL)
		return;

219
	machine__destroy_kernel_maps(machine);
220
	maps__exit(&machine->kmaps);
221
	dsos__exit(&machine->dsos);
222
	machine__exit_vdso(machine);
223
	zfree(&machine->root_dir);
224
	zfree(&machine->mmap_name);
225
	zfree(&machine->current_tid);
226 227 228

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
229 230 231 232 233 234 235 236 237 238 239 240
		struct thread *thread, *n;
		/*
		 * Forget about the dead, at this point whatever threads were
		 * left in the dead lists better have a reference count taken
		 * by who is using them, and then, when they drop those references
		 * and it finally hits zero, thread__put() will check and see that
		 * its not in the dead threads list and will not try to remove it
		 * from there, just calling thread__delete() straight away.
		 */
		list_for_each_entry_safe(thread, n, &threads->dead, node)
			list_del_init(&thread->node);

241
		exit_rwsem(&threads->lock);
242
	}
243 244 245 246
}

void machine__delete(struct machine *machine)
{
247 248 249 250
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
251 252
}

253 254 255
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
256
	machines->guests = RB_ROOT_CACHED;
257 258 259 260 261 262 263 264 265
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
266 267
			      const char *root_dir)
{
268
	struct rb_node **p = &machines->guests.rb_root.rb_node;
269 270
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
271
	bool leftmost = true;
272 273 274 275 276 277 278 279 280 281 282 283 284 285

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
286
		else {
287
			p = &(*p)->rb_right;
288 289
			leftmost = false;
		}
290 291 292
	}

	rb_link_node(&machine->rb_node, parent, p);
293
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294 295 296 297

	return machine;
}

298 299 300 301 302 303
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

304
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305 306 307 308 309 310
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

311
struct machine *machines__find(struct machines *machines, pid_t pid)
312
{
313
	struct rb_node **p = &machines->guests.rb_root.rb_node;
314 315 316 317
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

318 319 320
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

337
struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
354
				seen = strlist__new(NULL, NULL);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

371 372
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
373 374 375
{
	struct rb_node *nd;

376
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377 378 379 380 381
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

382
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 384 385 386
{
	struct rb_node *node;
	struct machine *machine;

387 388
	machines->host.id_hdr_size = id_hdr_size;

389 390
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
391 392 393 394 395 396 397
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

398 399 400 401 402 403 404 405 406 407 408 409 410
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

411
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412 413 414
	if (!leader)
		goto out_err;

415 416
	if (!leader->maps)
		leader->maps = maps__new(machine);
417

418
	if (!leader->maps)
419 420
		goto out_err;

421
	if (th->maps == leader->maps)
422 423
		return;

424
	if (th->maps) {
425 426 427 428 429
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
430
		if (!maps__empty(th->maps))
431 432
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
433
		maps__put(th->maps);
434 435
	}

436
	th->maps = maps__get(leader->maps);
437 438
out_put:
	thread__put(leader);
439 440 441
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442
	goto out_put;
443 444
}

445
/*
446 447 448
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
449
 */
450
static struct thread*
451 452
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
453 454 455
{
	struct thread *th;

456
	th = threads->last_match;
457 458 459
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
460
			return thread__get(th);
461 462
		}

463
		threads->last_match = NULL;
464
	}
465

466 467 468
	return NULL;
}

469 470 471 472 473 474 475 476 477 478 479 480
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

481
static void
482
__threads__set_last_match(struct threads *threads, struct thread *th)
483 484 485 486
{
	threads->last_match = th;
}

487 488 489 490 491 492 493
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

494 495 496 497 498 499 500 501 502
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
503
	struct rb_node **p = &threads->entries.rb_root.rb_node;
504 505
	struct rb_node *parent = NULL;
	struct thread *th;
506
	bool leftmost = true;
507 508 509 510 511

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

512 513 514 515
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

516
		if (th->tid == tid) {
517
			threads__set_last_match(threads, th);
518
			machine__update_thread_pid(machine, th, pid);
519
			return thread__get(th);
520 521
		}

522
		if (tid < th->tid)
523
			p = &(*p)->rb_left;
524
		else {
525
			p = &(*p)->rb_right;
526 527
			leftmost = false;
		}
528 529 530 531 532
	}

	if (!create)
		return NULL;

533
	th = thread__new(pid, tid);
534 535
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
536
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537 538

		/*
539
		 * We have to initialize maps separately after rb tree is updated.
540 541
		 *
		 * The reason is that we call machine__findnew_thread
542
		 * within thread__init_maps to find the thread
543 544
		 * leader and that would screwed the rb tree.
		 */
545
		if (thread__init_maps(th, machine)) {
546
			rb_erase_cached(&th->rb_node, &threads->entries);
547
			RB_CLEAR_NODE(&th->rb_node);
548
			thread__put(th);
549
			return NULL;
550
		}
551 552 553 554
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
555
		threads__set_last_match(threads, th);
556
		++threads->nr;
557 558 559 560 561
	}

	return th;
}

562 563
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
564
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
565 566
}

567 568
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
569
{
570
	struct threads *threads = machine__threads(machine, tid);
571 572
	struct thread *th;

573
	down_write(&threads->lock);
574
	th = __machine__findnew_thread(machine, pid, tid);
575
	up_write(&threads->lock);
576
	return th;
577 578
}

579 580
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
581
{
582
	struct threads *threads = machine__threads(machine, tid);
583
	struct thread *th;
584

585
	down_read(&threads->lock);
586
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
587
	up_read(&threads->lock);
588
	return th;
589
}
590

591 592 593 594 595 596 597 598 599
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

600 601
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
602
{
603 604 605
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
606
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
607
	int err = 0;
608

609 610 611
	if (exec)
		machine->comm_exec = true;

612 613 614
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

615 616
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
617
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
618
		err = -1;
619 620
	}

621 622 623
	thread__put(thread);

	return err;
624 625
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

657 658 659 660 661 662 663 664 665 666
int machine__process_cgroup_event(struct machine *machine __maybe_unused,
				  union perf_event *event,
				  struct perf_sample *sample __maybe_unused)
{
	if (dump_trace)
		perf_event__fprintf_cgroup(event, stdout);

	return 0;
}

667
int machine__process_lost_event(struct machine *machine __maybe_unused,
668
				union perf_event *event, struct perf_sample *sample __maybe_unused)
669
{
670
	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
671 672 673 674
		    event->lost.id, event->lost.lost);
	return 0;
}

675 676 677
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
678
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
679 680 681 682
		    sample->id, event->lost_samples.lost);
	return 0;
}

683 684 685
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
686 687 688
{
	struct dso *dso;

689
	down_write(&machine->dsos.lock);
690 691

	dso = __dsos__find(&machine->dsos, m->name, true);
692
	if (!dso) {
693
		dso = __dsos__addnew(&machine->dsos, m->name);
694
		if (dso == NULL)
695
			goto out_unlock;
696

697
		dso__set_module_info(dso, m, machine);
698
		dso__set_long_name(dso, strdup(filename), true);
699
		dso->kernel = DSO_TYPE_KERNEL;
700 701
	}

702
	dso__get(dso);
703
out_unlock:
704
	up_write(&machine->dsos.lock);
705 706 707
	return dso;
}

708 709 710 711 712 713 714 715
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

716 717 718 719 720 721 722 723
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

724 725 726 727 728 729 730 731
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

732 733 734 735 736
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
737
	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
738 739

	if (!map) {
740 741 742 743 744 745 746 747 748
		struct dso *dso = dso__new(event->ksymbol.name);

		if (dso) {
			dso->kernel = DSO_TYPE_KERNEL;
			map = map__new2(0, dso);
		}

		if (!dso || !map) {
			dso__put(dso);
749
			return -ENOMEM;
750
		}
751

752 753
		map->start = event->ksymbol.addr;
		map->end = map->start + event->ksymbol.len;
754
		maps__insert(&machine->kmaps, map);
755 756
	}

757
	sym = symbol__new(map->map_ip(map, map->start),
758 759
			  event->ksymbol.len,
			  0, 0, event->ksymbol.name);
760 761 762 763 764 765 766 767 768 769 770 771
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

772
	map = maps__find(&machine->kmaps, event->ksymbol.addr);
773
	if (map)
774
		maps__remove(&machine->kmaps, map);
775 776 777 778 779 780 781 782 783 784 785

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

786
	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
787 788 789 790 791
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

792 793
static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
					      const char *filename)
794
{
795 796
	struct map *map = NULL;
	struct kmod_path m;
797
	struct dso *dso;
798

799
	if (kmod_path__parse_name(&m, filename))
800 801
		return NULL;

802
	dso = machine__findnew_module_dso(machine, &m, filename);
803 804 805
	if (dso == NULL)
		goto out;

806
	map = map__new2(start, dso);
807
	if (map == NULL)
808
		goto out;
809

810
	maps__insert(&machine->kmaps, map);
811

812
	/* Put the map here because maps__insert alread got it */
813
	map__put(map);
814
out:
815 816
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
817
	zfree(&m.name);
818 819 820
	return map;
}

821
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
822 823
{
	struct rb_node *nd;
824
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
825

826
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
827
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
828
		ret += __dsos__fprintf(&pos->dsos.head, fp);
829 830 831 832 833
	}

	return ret;
}

834
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
835 836
				     bool (skip)(struct dso *dso, int parm), int parm)
{
837
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
838 839
}

840
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
841 842 843
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
844
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
845

846
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
847 848 849 850 851 852 853 854 855 856
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
857
	struct dso *kdso = machine__kernel_dso(machine);
858 859 860

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
861 862
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
863 864 865 866 867 868 869 870 871 872 873 874 875
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
876 877
	size_t ret;
	int i;
878

879 880
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
881 882

		down_read(&threads->lock);
883

884
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
885

886 887
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
888
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
889

890 891
			ret += thread__fprintf(pos, fp);
		}
892

893
		up_read(&threads->lock);
894
	}
895 896 897 898 899
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
900
	const char *vmlinux_name = machine->mmap_name;
901 902 903
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
904 905 906
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

907 908
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
909
	} else {
J
Jiri Olsa 已提交
910 911 912
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

913 914 915
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
916 917 918 919 920 921 922 923 924 925 926 927
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

928 929
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
930 931 932 933 934 935 936
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

937 938 939 940 941 942
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
943
static int machine__get_running_kernel_start(struct machine *machine,
944 945
					     const char **symbol_name,
					     u64 *start, u64 *end)
946
{
947
	char filename[PATH_MAX];
948
	int i, err = -1;
949 950
	const char *name;
	u64 addr = 0;
951

952
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
953 954 955 956

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

957
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
958 959
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
960 961 962
			break;
	}

963 964 965
	if (err)
		return -1;

966 967
	if (symbol_name)
		*symbol_name = name;
968

969
	*start = addr;
970 971 972 973 974

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

975
	return 0;
976 977
}

978 979 980
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
981 982 983 984 985 986 987 988 989 990 991 992 993
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

994
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
995

996
	maps__insert(&machine->kmaps, map);
997

998 999
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1041
	struct maps *kmaps = &machine->kmaps;
1042
	int nr_cpus_avail, cpu;
1043 1044 1045 1046 1047 1048 1049 1050
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
1051
	maps__for_each_entry(kmaps, map) {
1052 1053 1054 1055 1056 1057
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

1058
		dest_map = maps__find(kmaps, map->pgoff);
1059 1060 1061 1062 1063 1064
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1065

1066
	pgoff = find_entry_trampoline(kernel);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1083 1084
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1085 1086 1087 1088
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1089 1090 1091 1092 1093 1094 1095 1096
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1097 1098 1099
	return 0;
}

1100 1101
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1102
{
1103 1104 1105
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1106 1107 1108
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1109

1110
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1111
	maps__insert(&machine->kmaps, machine->vmlinux_map);
1112 1113 1114 1115 1116
	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1117 1118
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1119

1120 1121
	if (map == NULL)
		return;
1122

1123
	kmap = map__kmap(map);
1124
	maps__remove(&machine->kmaps, map);
1125 1126 1127
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1128
	}
1129 1130

	map__zput(machine->vmlinux_map);
1131 1132
}

1133
int machines__create_guest_kernel_maps(struct machines *machines)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1182
void machines__destroy_kernel_maps(struct machines *machines)
1183
{
1184
	struct rb_node *next = rb_first_cached(&machines->guests);
1185 1186

	machine__destroy_kernel_maps(&machines->host);
1187 1188 1189 1190 1191

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1192
		rb_erase_cached(&pos->rb_node, &machines->guests);
1193 1194 1195 1196
		machine__delete(pos);
	}
}

1197
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1207
int machine__load_kallsyms(struct machine *machine, const char *filename)
1208
{
1209
	struct map *map = machine__kernel_map(machine);
1210
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1211 1212

	if (ret > 0) {
1213
		dso__set_loaded(map->dso);
1214 1215 1216 1217 1218
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1219
		maps__fixup_end(&machine->kmaps);
1220 1221 1222 1223 1224
	}

	return ret;
}

1225
int machine__load_vmlinux_path(struct machine *machine)
1226
{
1227
	struct map *map = machine__kernel_map(machine);
1228
	int ret = dso__load_vmlinux_path(map->dso, map);
1229

1230
	if (ret > 0)
1231
		dso__set_loaded(map->dso);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1250 1251
	if (!tmp)
		return NULL;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1264 1265 1266 1267 1268 1269
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

1270
static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1271 1272
{
	char *long_name;
1273
	struct map *map = maps__find_by_name(maps, m->name);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1289
	if (m->comp && is_kmod_dso(map->dso)) {
1290
		map->dso->symtab_type++;
1291 1292
		map->dso->comp = m->comp;
	}
1293 1294 1295 1296

	return 0;
}

1297
static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1322 1323 1324 1325 1326 1327 1328
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

1329
			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1330 1331 1332
			if (ret < 0)
				goto out;
		} else {
1333
			struct kmod_path m;
1334

1335 1336 1337
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1338

1339
			if (m.kmod)
1340
				ret = maps__set_module_path(maps, path, &m);
1341

1342
			zfree(&m.name);
1343

1344
			if (ret)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1363
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1364 1365 1366
		 machine->root_dir, version);
	free(version);

1367
	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1368
}
1369
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1370
				u64 *size __maybe_unused,
1371 1372 1373 1374
				const char *name __maybe_unused)
{
	return 0;
}
1375

1376 1377
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1378
{
1379
	struct machine *machine = arg;
1380
	struct map *map;
1381

1382
	if (arch__fix_module_text_start(&start, &size, name) < 0)
1383 1384
		return -1;

1385
	map = machine__addnew_module_map(machine, start, name);
1386 1387
	if (map == NULL)
		return -1;
1388
	map->end = start + size;
1389 1390 1391 1392 1393 1394 1395 1396

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1397 1398 1399
	const char *modules;
	char path[PATH_MAX];

1400
	if (machine__is_default_guest(machine)) {
1401
		modules = symbol_conf.default_guest_modules;
1402 1403
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1404 1405 1406
		modules = path;
	}

1407
	if (symbol__restricted_filename(modules, "/proc/modules"))
1408 1409
		return -1;

1410
	if (modules__parse(modules, machine, machine__create_module))
1411 1412
		return -1;

1413 1414
	if (!machine__set_modules_path(machine))
		return 0;
1415

1416
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1417

1418
	return 0;
1419 1420
}

1421 1422 1423
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1424 1425 1426 1427 1428 1429 1430 1431
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1432 1433
}

1434 1435 1436 1437 1438 1439
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
1440
	maps__remove(&machine->kmaps, map);
1441 1442 1443

	machine__set_kernel_mmap(machine, start, end);

1444
	maps__insert(&machine->kmaps, map);
1445 1446 1447
	map__put(map);
}

1448 1449 1450
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1451
	const char *name = NULL;
1452
	struct map *map;
1453
	u64 start = 0, end = ~0ULL;
1454 1455
	int ret;

1456
	if (kernel == NULL)
1457
		return -1;
1458

1459 1460
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1461
		goto out_put;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1472
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1473
		if (name &&
1474
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1475
			machine__destroy_kernel_maps(machine);
1476 1477
			ret = -1;
			goto out_put;
1478
		}
1479

1480 1481 1482 1483
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1484
		machine__update_kernel_mmap(machine, start, end);
1485 1486
	}

1487 1488 1489
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1490 1491 1492 1493 1494 1495 1496
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1497 1498 1499
out_put:
	dso__put(kernel);
	return ret;
1500 1501
}

1502 1503 1504 1505
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1506
	list_for_each_entry(dso, &machine->dsos.head, node) {
1507 1508 1509 1510 1511 1512 1513
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
1524
	struct dso *kernel = machine__kernel_dso(machine);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1539 1540 1541 1542 1543 1544 1545
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1546 1547 1548 1549
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1550 1551 1552 1553 1554 1555
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1556 1557
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1558 1559
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1560 1561
		map = machine__addnew_module_map(machine, event->mmap.start,
						 event->mmap.filename);
1562 1563 1564 1565 1566 1567
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1568
				strlen(machine->mmap_name));
1569 1570 1571 1572
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1573 1574 1575
		struct dso *kernel = NULL;
		struct dso *dso;

1576
		down_read(&machine->dsos.lock);
1577

1578
		list_for_each_entry(dso, &machine->dsos.head, node) {
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1599 1600
				continue;

1601

1602 1603 1604 1605
			kernel = dso;
			break;
		}

1606
		up_read(&machine->dsos.lock);
1607

1608
		if (kernel == NULL)
1609
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1610 1611 1612 1613
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1614 1615
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1616
			goto out_problem;
1617
		}
1618

1619 1620
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1621

1622
		machine__update_kernel_mmap(machine, event->mmap.start,
1623
					 event->mmap.start + event->mmap.len);
1624 1625 1626 1627 1628 1629 1630

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1631 1632 1633
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1634 1635 1636 1637 1638 1639
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1640
			dso__load(kernel, machine__kernel_map(machine));
1641
		}
1642 1643
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1644 1645 1646 1647 1648 1649
	}
	return 0;
out_problem:
	return -1;
}

1650
int machine__process_mmap2_event(struct machine *machine,
1651
				 union perf_event *event,
1652
				 struct perf_sample *sample)
1653 1654 1655
{
	struct thread *thread;
	struct map *map;
1656 1657 1658 1659 1660 1661
	struct dso_id dso_id = {
		.maj = event->mmap2.maj,
		.min = event->mmap2.min,
		.ino = event->mmap2.ino,
		.ino_generation = event->mmap2.ino_generation,
	};
1662 1663 1664 1665 1666
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1667 1668
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1669 1670 1671 1672 1673 1674 1675
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1676
					event->mmap2.tid);
1677 1678 1679
	if (thread == NULL)
		goto out_problem;

1680
	map = map__new(machine, event->mmap2.start,
1681
			event->mmap2.len, event->mmap2.pgoff,
1682
			&dso_id, event->mmap2.prot,
1683
			event->mmap2.flags,
1684
			event->mmap2.filename, thread);
1685 1686

	if (map == NULL)
1687
		goto out_problem_map;
1688

1689 1690 1691 1692
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1693
	thread__put(thread);
1694
	map__put(map);
1695 1696
	return 0;

1697 1698
out_problem_insert:
	map__put(map);
1699 1700
out_problem_map:
	thread__put(thread);
1701 1702 1703 1704 1705
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1706
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1707
				struct perf_sample *sample)
1708 1709 1710
{
	struct thread *thread;
	struct map *map;
1711
	u32 prot = 0;
1712 1713 1714 1715 1716
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1717 1718
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1719 1720 1721 1722 1723 1724
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1725
	thread = machine__findnew_thread(machine, event->mmap.pid,
1726
					 event->mmap.tid);
1727 1728
	if (thread == NULL)
		goto out_problem;
1729

1730
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1731
		prot = PROT_EXEC;
1732

1733
	map = map__new(machine, event->mmap.start,
1734
			event->mmap.len, event->mmap.pgoff,
1735
			NULL, prot, 0, event->mmap.filename, thread);
1736

1737
	if (map == NULL)
1738
		goto out_problem_map;
1739

1740 1741 1742 1743
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1744
	thread__put(thread);
1745
	map__put(map);
1746 1747
	return 0;

1748 1749
out_problem_insert:
	map__put(map);
1750 1751
out_problem_map:
	thread__put(thread);
1752 1753 1754 1755 1756
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1757
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1758
{
1759 1760 1761
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1762
		threads__set_last_match(threads, NULL);
1763

1764
	if (lock)
1765
		down_write(&threads->lock);
1766 1767 1768

	BUG_ON(refcount_read(&th->refcnt) == 0);

1769
	rb_erase_cached(&th->rb_node, &threads->entries);
1770
	RB_CLEAR_NODE(&th->rb_node);
1771
	--threads->nr;
1772
	/*
1773 1774 1775
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1776
	 */
1777
	list_add_tail(&th->node, &threads->dead);
1778 1779 1780 1781 1782 1783 1784 1785

	/*
	 * We need to do the put here because if this is the last refcount,
	 * then we will be touching the threads->dead head when removing the
	 * thread.
	 */
	thread__put(th);

1786
	if (lock)
1787
		up_write(&threads->lock);
1788 1789
}

1790 1791 1792 1793 1794
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1795 1796
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1797
{
1798 1799 1800
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1801 1802 1803
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1804
	bool do_maps_clone = true;
1805
	int err = 0;
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1825
	/* if a thread currently exists for the thread id remove it */
1826
	if (thread != NULL) {
1827
		machine__remove_thread(machine, thread);
1828 1829
		thread__put(thread);
	}
1830

1831 1832
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1849 1850

	if (thread == NULL || parent == NULL ||
1851
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1852
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1853
		err = -1;
1854
	}
1855 1856
	thread__put(thread);
	thread__put(parent);
1857

1858
	return err;
1859 1860
}

1861 1862
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1863
{
1864 1865 1866
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1867 1868 1869 1870

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1871
	if (thread != NULL) {
1872
		thread__exited(thread);
1873 1874
		thread__put(thread);
	}
1875 1876 1877 1878

	return 0;
}

1879 1880
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1881 1882 1883 1884 1885
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1886
		ret = machine__process_comm_event(machine, event, sample); break;
1887
	case PERF_RECORD_MMAP:
1888
		ret = machine__process_mmap_event(machine, event, sample); break;
1889 1890
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1891 1892
	case PERF_RECORD_CGROUP:
		ret = machine__process_cgroup_event(machine, event, sample); break;
1893
	case PERF_RECORD_MMAP2:
1894
		ret = machine__process_mmap2_event(machine, event, sample); break;
1895
	case PERF_RECORD_FORK:
1896
		ret = machine__process_fork_event(machine, event, sample); break;
1897
	case PERF_RECORD_EXIT:
1898
		ret = machine__process_exit_event(machine, event, sample); break;
1899
	case PERF_RECORD_LOST:
1900
		ret = machine__process_lost_event(machine, event, sample); break;
1901 1902
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1903
	case PERF_RECORD_ITRACE_START:
1904
		ret = machine__process_itrace_start_event(machine, event); break;
1905 1906
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1907 1908 1909
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1910 1911
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1912
	case PERF_RECORD_BPF_EVENT:
1913
		ret = machine__process_bpf(machine, event, sample); break;
1914 1915 1916 1917 1918 1919 1920
	default:
		ret = -1;
		break;
	}

	return ret;
}
1921

1922
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1923
{
1924
	if (!regexec(regex, sym->name, 0, NULL, 0))
1925 1926 1927 1928
		return 1;
	return 0;
}

1929
static void ip__resolve_ams(struct thread *thread,
1930 1931 1932 1933 1934 1935
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1936 1937 1938 1939 1940 1941 1942
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1943
	thread__find_cpumode_addr_location(thread, ip, &al);
1944 1945 1946

	ams->addr = ip;
	ams->al_addr = al.addr;
1947
	ams->ms.maps = al.maps;
1948 1949
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
1950
	ams->phys_addr = 0;
1951 1952
}

1953
static void ip__resolve_data(struct thread *thread,
1954 1955
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1956 1957 1958 1959 1960
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1961
	thread__find_symbol(thread, m, addr, &al);
1962

1963 1964
	ams->addr = addr;
	ams->al_addr = al.addr;
1965
	ams->ms.maps = al.maps;
1966 1967
	ams->ms.sym = al.sym;
	ams->ms.map = al.map;
1968
	ams->phys_addr = phys_addr;
1969 1970
}

1971 1972
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1973
{
1974
	struct mem_info *mi = mem_info__new();
1975 1976 1977 1978

	if (!mi)
		return NULL;

1979
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1980 1981
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1982 1983 1984 1985 1986
	mi->data_src.val = sample->data_src;

	return mi;
}

1987
static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1988
{
1989
	struct map *map = ms->map;
1990 1991
	char *srcline = NULL;

1992
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1993 1994 1995 1996 1997 1998 1999 2000
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2001
				      ms->sym, show_sym, show_addr, ip);
2002 2003
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
2004

2005
	return srcline;
2006 2007
}

2008 2009 2010 2011 2012
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

2013
static int add_callchain_ip(struct thread *thread,
2014
			    struct callchain_cursor *cursor,
2015 2016
			    struct symbol **parent,
			    struct addr_location *root_al,
2017
			    u8 *cpumode,
2018 2019 2020
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2021
			    struct iterations *iter,
2022
			    u64 branch_from)
2023
{
2024
	struct map_symbol ms;
2025
	struct addr_location al;
2026 2027
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2028
	const char *srcline = NULL;
2029 2030 2031

	al.filtered = 0;
	al.sym = NULL;
2032
	if (!cpumode) {
2033
		thread__find_cpumode_addr_location(thread, ip, &al);
2034
	} else {
2035 2036 2037
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2038
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2039 2040
				break;
			case PERF_CONTEXT_KERNEL:
2041
				*cpumode = PERF_RECORD_MISC_KERNEL;
2042 2043
				break;
			case PERF_CONTEXT_USER:
2044
				*cpumode = PERF_RECORD_MISC_USER;
2045 2046 2047 2048 2049 2050 2051 2052
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2053
				callchain_cursor_reset(cursor);
2054 2055 2056 2057
				return 1;
			}
			return 0;
		}
2058
		thread__find_symbol(thread, *cpumode, ip, &al);
2059 2060
	}

2061
	if (al.sym != NULL) {
2062
		if (perf_hpp_list.parent && !*parent &&
2063 2064 2065 2066 2067 2068 2069
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2070
			callchain_cursor_reset(cursor);
2071 2072 2073
		}
	}

2074 2075
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2076 2077 2078 2079 2080 2081

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2082
	ms.maps = al.maps;
2083 2084 2085 2086
	ms.map = al.map;
	ms.sym = al.sym;
	srcline = callchain_srcline(&ms, al.addr);
	return callchain_cursor_append(cursor, ip, &ms,
2087
				       branch, flags, nr_loop_iter,
2088
				       iter_cycles, branch_from, srcline);
2089 2090
}

2091 2092
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2093 2094
{
	unsigned int i;
2095
	const struct branch_stack *bs = sample->branch_stack;
2096
	struct branch_entry *entries = perf_sample__branch_entries(sample);
2097
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2098 2099 2100 2101 2102

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2103 2104 2105
		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
		bi[i].flags = entries[i].flags;
2106 2107 2108 2109
	}
	return bi;
}

2110 2111 2112 2113 2114
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2115
	iter->nr_loop_iter++;
2116 2117 2118 2119 2120 2121
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2122 2123 2124 2125 2126 2127 2128
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2129 2130
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2167 2168 2169 2170 2171 2172 2173
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2174 2175 2176 2177 2178 2179 2180 2181
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2182
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2183 2184 2185 2186
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2187
{
K
Kan Liang 已提交
2188
	struct ip_callchain *chain = sample->callchain;
2189
	int chain_nr = min(max_stack, (int)chain->nr), i;
2190
	u8 cpumode = PERF_RECORD_MISC_USER;
2191
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2201
		struct branch_entry *entries = perf_sample__branch_entries(sample);
2202 2203 2204
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2218
			int err;
2219 2220 2221
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2222 2223 2224
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2225 2226
				else if (j > i + 1) {
					k = j - i - 2;
2227
					ip = entries[k].from;
2228
					branch = true;
2229
					flags = &entries[k].flags;
2230
				} else {
2231
					ip = entries[0].to;
2232
					branch = true;
2233 2234
					flags = &entries[0].flags;
					branch_from = entries[0].from;
2235
				}
K
Kan Liang 已提交
2236
			} else {
2237 2238
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
2239
					ip = entries[k].from;
2240
					branch = true;
2241
					flags = &entries[k].flags;
2242
				}
K
Kan Liang 已提交
2243 2244
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2245
				else {
2246
					ip = entries[0].to;
2247
					branch = true;
2248 2249
					flags = &entries[0].flags;
					branch_from = entries[0].from;
2250
				}
K
Kan Liang 已提交
2251 2252
			}

2253 2254
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2255
					       branch, flags, NULL,
2256
					       branch_from);
K
Kan Liang 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2287
static int thread__resolve_callchain_sample(struct thread *thread,
2288
					    struct callchain_cursor *cursor,
2289
					    struct evsel *evsel,
K
Kan Liang 已提交
2290 2291 2292 2293 2294 2295
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
2296
	struct branch_entry *entries = perf_sample__branch_entries(sample);
K
Kan Liang 已提交
2297
	struct ip_callchain *chain = sample->callchain;
2298
	int chain_nr = 0;
2299
	u8 cpumode = PERF_RECORD_MISC_USER;
2300
	int i, j, err, nr_entries;
2301 2302 2303
	int skip_idx = -1;
	int first_call = 0;

2304 2305 2306
	if (chain)
		chain_nr = chain->nr;

2307
	if (perf_evsel__has_branch_callstack(evsel)) {
2308
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2309 2310 2311 2312 2313
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2314 2315 2316 2317
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2318
	skip_idx = arch_skip_callchain_idx(thread, chain);
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2335
		struct iterations iter[nr];
2336 2337 2338 2339 2340 2341 2342 2343

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
2344
				be[i] = entries[i];
2345 2346 2347 2348

				if (chain == NULL)
					continue;

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
2363
				be[i] = entries[branch->nr - i - 1];
2364 2365
		}

2366 2367
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2368

2369
		for (i = 0; i < nr; i++) {
2370 2371 2372 2373 2374
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2375

2376
			if (!err)
2377
				err = add_callchain_ip(thread, cursor, parent, root_al,
2378 2379
						       NULL, be[i].from,
						       true, &be[i].flags,
2380
						       &iter[i], 0);
2381 2382 2383 2384 2385
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2386 2387 2388 2389

		if (chain_nr == 0)
			return 0;

2390 2391 2392 2393
		chain_nr -= nr;
	}

check_calls:
2394
	if (chain && callchain_param.order != ORDER_CALLEE) {
2395 2396 2397 2398 2399
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2400
	for (i = first_call, nr_entries = 0;
2401
	     i < chain_nr && nr_entries < max_stack; i++) {
2402 2403 2404
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2405
			j = i;
2406
		else
2407 2408 2409 2410 2411 2412 2413
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2414 2415
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2416 2417 2418 2419 2420 2421 2422
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2423

2424 2425
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2426
				       false, NULL, NULL, 0);
2427 2428

		if (err)
2429
			return (err < 0) ? err : 0;
2430 2431 2432 2433 2434
	}

	return 0;
}

2435
static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2436
{
2437 2438
	struct symbol *sym = ms->sym;
	struct map *map = ms->map;
2439 2440 2441
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2442
	int ret = 1;
2443 2444

	if (!symbol_conf.inline_name || !map || !sym)
2445
		return ret;
2446

2447 2448
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2449 2450 2451 2452 2453

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2454
			return ret;
2455 2456 2457 2458
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2459
		struct map_symbol ilist_ms = {
2460
			.maps = ms->maps,
2461 2462 2463 2464
			.map = map,
			.sym = ilist->symbol,
		};
		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2465
					      NULL, 0, 0, 0, ilist->srcline);
2466 2467 2468 2469 2470

		if (ret != 0)
			return ret;
	}

2471
	return ret;
2472 2473
}

2474 2475 2476
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2477
	const char *srcline = NULL;
2478
	u64 addr = entry->ip;
2479

2480
	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2481
		return 0;
2482

2483
	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2484 2485
		return 0;

2486 2487 2488 2489
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2490 2491
	if (entry->ms.map)
		addr = map__map_ip(entry->ms.map, entry->ip);
2492

2493 2494
	srcline = callchain_srcline(&entry->ms, addr);
	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2495
				       false, NULL, 0, 0, 0, srcline);
2496 2497
}

2498 2499
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
2500
					    struct evsel *evsel,
2501 2502
					    struct perf_sample *sample,
					    int max_stack)
2503 2504
{
	/* Can we do dwarf post unwind? */
2505 2506
	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2507 2508 2509 2510 2511 2512 2513
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2514
	return unwind__get_entries(unwind_entry, cursor,
2515
				   thread, sample, max_stack);
2516
}
2517

2518 2519
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
2520
			      struct evsel *evsel,
2521 2522 2523 2524 2525 2526 2527
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2528
	callchain_cursor_reset(cursor);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2553
}
2554 2555 2556 2557 2558

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2559
	struct threads *threads;
2560 2561 2562
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2563
	int i;
2564

2565 2566
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2567 2568
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2569 2570 2571 2572 2573
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2574

2575 2576 2577 2578 2579
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2580 2581 2582
	}
	return rc;
}
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2595
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2596 2597 2598 2599 2600 2601 2602 2603 2604
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2605 2606
pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
2607 2608 2609
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);

	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2610 2611 2612 2613 2614 2615 2616 2617 2618
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;
2619
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2620 2621 2622 2623 2624 2625 2626

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

2627
		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2628 2629
		if (!machine->current_tid)
			return -ENOMEM;
2630
		for (i = 0; i < nr_cpus; i++)
2631 2632 2633
			machine->current_tid[i] = -1;
	}

2634
	if (cpu >= nr_cpus) {
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2647
	thread__put(thread);
2648 2649 2650

	return 0;
}
2651

2652 2653 2654 2655 2656 2657 2658 2659 2660
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2661 2662 2663 2664 2665
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2666 2667
int machine__get_kernel_start(struct machine *machine)
{
2668
	struct map *map = machine__kernel_map(machine);
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2681
		err = map__load(map);
2682 2683 2684 2685 2686 2687
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2688 2689 2690 2691
			machine->kernel_start = map->start;
	}
	return err;
}
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2720 2721 2722 2723 2724
struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
{
	return dsos__findnew_id(&machine->dsos, filename, id);
}

2725 2726
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2727
	return machine__findnew_dso_id(machine, filename, NULL);
2728
}
2729 2730 2731 2732 2733

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2734
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2735 2736 2737 2738 2739 2740 2741 2742

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}