machine.c 50.4 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	memset(machine, 0, sizeof(*machine));
29
	map_groups__init(&machine->kmaps, machine);
30
	RB_CLEAR_NODE(&machine->rb_node);
31
	dsos__init(&machine->dsos);
32 33

	machine->threads = RB_ROOT;
34
	pthread_rwlock_init(&machine->threads_lock, NULL);
35
	machine->nr_threads = 0;
36 37 38
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

39
	machine->vdso_info = NULL;
40
	machine->env = NULL;
41

42 43
	machine->pid = pid;

44
	machine->symbol_filter = NULL;
45
	machine->id_hdr_size = 0;
46
	machine->comm_exec = false;
47
	machine->kernel_start = 0;
48

49 50
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

51 52 53 54 55
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
56
		struct thread *thread = machine__findnew_thread(machine, -1,
57
								pid);
58 59 60 61 62 63
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64
		thread__set_comm(thread, comm, 0);
65
		thread__put(thread);
66 67
	}

68 69
	machine->current_tid = NULL;

70 71 72
	return 0;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

90
static void dsos__purge(struct dsos *dsos)
91 92 93
{
	struct dso *pos, *n;

94 95
	pthread_rwlock_wrlock(&dsos->lock);

96
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
97
		RB_CLEAR_NODE(&pos->rb_node);
98
		pos->root = NULL;
99 100
		list_del_init(&pos->node);
		dso__put(pos);
101
	}
102 103

	pthread_rwlock_unlock(&dsos->lock);
104
}
105

106 107 108
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
109
	pthread_rwlock_destroy(&dsos->lock);
110 111
}

112 113
void machine__delete_threads(struct machine *machine)
{
114
	struct rb_node *nd;
115

116 117
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
118 119 120 121
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
122
		__machine__remove_thread(machine, t, false);
123
	}
124
	pthread_rwlock_unlock(&machine->threads_lock);
125 126
}

127 128
void machine__exit(struct machine *machine)
{
129
	machine__destroy_kernel_maps(machine);
130
	map_groups__exit(&machine->kmaps);
131
	dsos__exit(&machine->dsos);
132
	machine__exit_vdso(machine);
133
	zfree(&machine->root_dir);
134
	zfree(&machine->current_tid);
135
	pthread_rwlock_destroy(&machine->threads_lock);
136 137 138 139 140 141 142 143
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

144 145 146 147
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
148
	machines->symbol_filter = NULL;
149 150 151 152 153 154 155 156 157
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
158 159
			      const char *root_dir)
{
160
	struct rb_node **p = &machines->guests.rb_node;
161 162 163 164 165 166 167 168 169 170 171
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

172 173
	machine->symbol_filter = machines->symbol_filter;

174 175 176 177 178 179 180 181 182 183
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
184
	rb_insert_color(&machine->rb_node, &machines->guests);
185 186 187 188

	return machine;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

204 205 206 207 208 209 210 211 212 213 214 215 216
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

217
struct machine *machines__find(struct machines *machines, pid_t pid)
218
{
219
	struct rb_node **p = &machines->guests.rb_node;
220 221 222 223
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

224 225 226
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

243
struct machine *machines__findnew(struct machines *machines, pid_t pid)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
260
				seen = strlist__new(NULL, NULL);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

277 278
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
279 280 281
{
	struct rb_node *nd;

282
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

302
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
303 304 305 306
{
	struct rb_node *node;
	struct machine *machine;

307 308 309
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
310 311 312 313 314 315 316
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

317 318 319 320 321 322 323 324 325 326 327 328 329
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

330
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
331 332 333 334
	if (!leader)
		goto out_err;

	if (!leader->mg)
335
		leader->mg = map_groups__new(machine);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
352
		map_groups__put(th->mg);
353 354 355
	}

	th->mg = map_groups__get(leader->mg);
356 357
out_put:
	thread__put(leader);
358 359 360
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
361
	goto out_put;
362 363
}

364 365 366 367
/*
 * Caller must eventually drop thread->refcnt returned with a successfull
 * lookup/new thread inserted.
 */
368 369 370
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
371 372 373 374 375 376
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
377
	 * Front-end cache - TID lookups come in blocks,
378 379 380
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
381
	th = machine->last_match;
382 383 384
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
385
			return thread__get(th);
386 387
		}

388
		machine->last_match = NULL;
389
	}
390 391 392 393 394

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

395
		if (th->tid == tid) {
396
			machine->last_match = th;
397
			machine__update_thread_pid(machine, th, pid);
398
			return thread__get(th);
399 400
		}

401
		if (tid < th->tid)
402 403 404 405 406 407 408 409
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

410
	th = thread__new(pid, tid);
411 412 413
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
414 415 416 417 418 419 420 421 422

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
423
		if (thread__init_map_groups(th, machine)) {
424
			rb_erase_init(&th->rb_node, &machine->threads);
425
			RB_CLEAR_NODE(&th->rb_node);
426
			thread__put(th);
427
			return NULL;
428
		}
429 430 431 432
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
433
		machine->last_match = th;
434
		++machine->nr_threads;
435 436 437 438 439
	}

	return th;
}

440 441 442 443 444
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

445 446
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
447
{
448 449 450
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
451
	th = __machine__findnew_thread(machine, pid, tid);
452 453
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
454 455
}

456 457
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
458
{
459 460
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
461
	th =  ____machine__findnew_thread(machine, pid, tid, false);
462 463
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
464
}
465

466 467 468 469 470 471 472 473 474
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

475 476
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
477
{
478 479 480
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
481
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
482
	int err = 0;
483

484 485 486
	if (exec)
		machine->comm_exec = true;

487 488 489
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

490 491
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
492
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
493
		err = -1;
494 495
	}

496 497 498
	thread__put(thread);

	return err;
499 500 501
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
502
				union perf_event *event, struct perf_sample *sample __maybe_unused)
503 504 505 506 507 508
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

509 510 511 512 513 514 515 516
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

517 518 519
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
520 521 522
{
	struct dso *dso;

523 524 525
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
526
	if (!dso) {
527
		dso = __dsos__addnew(&machine->dsos, m->name);
528
		if (dso == NULL)
529
			goto out_unlock;
530 531 532 533 534 535 536

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
537
		if (m->kmod && m->comp)
538
			dso->symtab_type++;
539 540 541

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
542 543
	}

544
	dso__get(dso);
545 546
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
547 548 549
	return dso;
}

550 551 552 553 554 555 556 557
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

558 559 560 561 562 563 564 565
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

566 567 568 569 570 571 572 573
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

589
	dso__set_long_name(dso, dup_filename, true);
590 591
}

592 593
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
594
{
595
	struct map *map = NULL;
596
	struct dso *dso = NULL;
597
	struct kmod_path m;
598

599
	if (kmod_path__parse_name(&m, filename))
600 601
		return NULL;

602 603
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
604 605 606 607 608 609 610
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
611
		goto out;
612
	}
613

614
	dso = machine__findnew_module_dso(machine, &m, filename);
615 616 617
	if (dso == NULL)
		goto out;

618 619
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
620
		goto out;
621 622

	map_groups__insert(&machine->kmaps, map);
623

624 625
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
626
out:
627 628
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
629
	free(m.name);
630 631 632
	return map;
}

633
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
634 635
{
	struct rb_node *nd;
636
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
637

638
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
639
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
640
		ret += __dsos__fprintf(&pos->dsos.head, fp);
641 642 643 644 645
	}

	return ret;
}

646
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
647 648
				     bool (skip)(struct dso *dso, int parm), int parm)
{
649
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
650 651
}

652
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
653 654 655
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
656
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
657

658
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
659 660 661 662 663 664 665 666 667 668
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
669
	struct dso *kdso = machine__kernel_map(machine)->dso;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
686
	size_t ret;
687 688
	struct rb_node *nd;

689 690
	pthread_rwlock_rdlock(&machine->threads_lock);

691 692
	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);

693 694 695 696 697 698
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

699 700
	pthread_rwlock_unlock(&machine->threads_lock);

701 702 703 704 705 706 707 708 709 710 711 712 713
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

714 715
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
716 717 718 719 720 721 722 723 724
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

725 726 727
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
728 729 730 731 732 733 734 735 736 737 738 739
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

740 741 742 743 744 745 746 747 748
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

749 750 751 752 753 754
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
755 756
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
757
{
758
	char filename[PATH_MAX];
759 760 761
	int i;
	const char *name;
	u64 addr = 0;
762

763
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
764 765 766 767

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

768 769 770 771 772 773 774 775
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
776

777
	return addr;
778 779 780 781 782
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
783
	u64 start = machine__get_running_kernel_start(machine, NULL);
784

785 786 787
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

788 789
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
790
		struct map *map;
791 792 793 794 795 796 797 798

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
799
		map = __machine__kernel_map(machine, type);
800
		kmap = map__kmap(map);
801 802 803
		if (!kmap)
			return -1;

804
		kmap->kmaps = &machine->kmaps;
805
		map_groups__insert(&machine->kmaps, map);
806 807 808 809 810 811 812 813 814 815 816
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
817
		struct map *map = __machine__kernel_map(machine, type);
818

819
		if (map == NULL)
820 821
			continue;

822 823
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
824
		if (kmap && kmap->ref_reloc_sym) {
825 826 827 828 829
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
830 831 832 833
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
834 835
		}

836
		map__put(machine->vmlinux_maps[type]);
837 838 839 840
		machine->vmlinux_maps[type] = NULL;
	}
}

841
int machines__create_guest_kernel_maps(struct machines *machines)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

890
void machines__destroy_kernel_maps(struct machines *machines)
891
{
892 893 894
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
895 896 897 898 899

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
900
		rb_erase(&pos->rb_node, &machines->guests);
901 902 903 904
		machine__delete(pos);
	}
}

905
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
906 907 908 909 910 911 912 913 914
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

915 916
int __machine__load_kallsyms(struct machine *machine, const char *filename,
			     enum map_type type, bool no_kcore, symbol_filter_t filter)
917
{
918
	struct map *map = machine__kernel_map(machine);
919
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
920 921 922 923 924 925 926 927 928 929 930 931 932 933

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

934 935 936 937 938 939
int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
	return __machine__load_kallsyms(machine, filename, type, false, filter);
}

940 941 942
int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
943
	struct map *map = machine__kernel_map(machine);
944 945
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

946
	if (ret > 0)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1019
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1020
				const char *dir_name, int depth)
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1045 1046 1047 1048 1049 1050 1051 1052 1053
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1054 1055 1056
			if (ret < 0)
				goto out;
		} else {
1057
			struct kmod_path m;
1058

1059 1060 1061
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1062

1063 1064
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1065

1066
			free(m.name);
1067

1068
			if (ret)
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1087
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1088 1089 1090
		 machine->root_dir, version);
	free(version);

1091
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1092 1093
}

1094
static int machine__create_module(void *arg, const char *name, u64 start)
1095
{
1096
	struct machine *machine = arg;
1097
	struct map *map;
1098

1099
	map = machine__findnew_module_map(machine, start, name);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1110 1111 1112
	const char *modules;
	char path[PATH_MAX];

1113
	if (machine__is_default_guest(machine)) {
1114
		modules = symbol_conf.default_guest_modules;
1115 1116
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1117 1118 1119
		modules = path;
	}

1120
	if (symbol__restricted_filename(modules, "/proc/modules"))
1121 1122
		return -1;

1123
	if (modules__parse(modules, machine, machine__create_module))
1124 1125
		return -1;

1126 1127
	if (!machine__set_modules_path(machine))
		return 0;
1128

1129
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1130

1131
	return 0;
1132 1133 1134 1135 1136
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1137
	const char *name;
1138
	u64 addr = machine__get_running_kernel_start(machine, &name);
1139 1140 1141
	int ret;

	if (!addr || kernel == NULL)
1142
		return -1;
1143

1144 1145 1146
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1162 1163 1164 1165 1166 1167 1168

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1169 1170 1171
	return 0;
}

1172 1173 1174
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1188 1189
}

1190 1191 1192 1193
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1194
	list_for_each_entry(dso, &machine->dsos.head, node) {
1195 1196 1197 1198 1199 1200 1201
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1202 1203 1204 1205 1206 1207 1208 1209
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1210 1211 1212 1213
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1225 1226
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1238 1239 1240
		struct dso *kernel = NULL;
		struct dso *dso;

1241 1242
		pthread_rwlock_rdlock(&machine->dsos.lock);

1243
		list_for_each_entry(dso, &machine->dsos.head, node) {
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1264 1265
				continue;

1266

1267 1268 1269 1270
			kernel = dso;
			break;
		}

1271 1272
		pthread_rwlock_unlock(&machine->dsos.lock);

1273
		if (kernel == NULL)
1274
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1275 1276 1277 1278
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1279 1280
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1281
			goto out_problem;
1282
		}
1283

1284 1285
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1304
			dso__load(kernel, machine__kernel_map(machine), NULL);
1305 1306 1307 1308 1309 1310 1311
		}
	}
	return 0;
out_problem:
	return -1;
}

1312
int machine__process_mmap2_event(struct machine *machine,
1313
				 union perf_event *event,
1314
				 struct perf_sample *sample)
1315 1316 1317 1318 1319 1320 1321 1322 1323
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1324 1325
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1326 1327 1328 1329 1330 1331 1332
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1333
					event->mmap2.tid);
1334 1335 1336 1337 1338 1339 1340 1341
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1342
	map = map__new(machine, event->mmap2.start,
1343 1344 1345 1346
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1347 1348
			event->mmap2.prot,
			event->mmap2.flags,
1349
			event->mmap2.filename, type, thread);
1350 1351

	if (map == NULL)
1352
		goto out_problem_map;
1353 1354

	thread__insert_map(thread, map);
1355
	thread__put(thread);
1356
	map__put(map);
1357 1358
	return 0;

1359 1360
out_problem_map:
	thread__put(thread);
1361 1362 1363 1364 1365
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1366
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1367
				struct perf_sample *sample)
1368 1369 1370
{
	struct thread *thread;
	struct map *map;
1371
	enum map_type type;
1372 1373 1374 1375 1376
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1377 1378
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1379 1380 1381 1382 1383 1384
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1385
	thread = machine__findnew_thread(machine, event->mmap.pid,
1386
					 event->mmap.tid);
1387 1388
	if (thread == NULL)
		goto out_problem;
1389 1390 1391 1392 1393 1394

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1395
	map = map__new(machine, event->mmap.start,
1396
			event->mmap.len, event->mmap.pgoff,
1397
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1398
			event->mmap.filename,
1399
			type, thread);
1400

1401
	if (map == NULL)
1402
		goto out_problem_map;
1403 1404

	thread__insert_map(thread, map);
1405
	thread__put(thread);
1406
	map__put(map);
1407 1408
	return 0;

1409 1410
out_problem_map:
	thread__put(thread);
1411 1412 1413 1414 1415
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1416
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1417
{
1418
	if (machine->last_match == th)
1419
		machine->last_match = NULL;
1420

1421
	BUG_ON(atomic_read(&th->refcnt) == 0);
1422 1423
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1424
	rb_erase_init(&th->rb_node, &machine->threads);
1425
	RB_CLEAR_NODE(&th->rb_node);
1426
	--machine->nr_threads;
1427
	/*
1428 1429 1430
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1431 1432
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1433 1434
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1435
	thread__put(th);
1436 1437
}

1438 1439 1440 1441 1442
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1443 1444
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1445
{
1446 1447 1448
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1449 1450 1451
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1452
	int err = 0;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1472
	/* if a thread currently exists for the thread id remove it */
1473
	if (thread != NULL) {
1474
		machine__remove_thread(machine, thread);
1475 1476
		thread__put(thread);
	}
1477

1478 1479
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1480 1481

	if (thread == NULL || parent == NULL ||
1482
	    thread__fork(thread, parent, sample->time) < 0) {
1483
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1484
		err = -1;
1485
	}
1486 1487
	thread__put(thread);
	thread__put(parent);
1488

1489
	return err;
1490 1491
}

1492 1493
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1494
{
1495 1496 1497
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1498 1499 1500 1501

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1502
	if (thread != NULL) {
1503
		thread__exited(thread);
1504 1505
		thread__put(thread);
	}
1506 1507 1508 1509

	return 0;
}

1510 1511
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1512 1513 1514 1515 1516
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1517
		ret = machine__process_comm_event(machine, event, sample); break;
1518
	case PERF_RECORD_MMAP:
1519
		ret = machine__process_mmap_event(machine, event, sample); break;
1520
	case PERF_RECORD_MMAP2:
1521
		ret = machine__process_mmap2_event(machine, event, sample); break;
1522
	case PERF_RECORD_FORK:
1523
		ret = machine__process_fork_event(machine, event, sample); break;
1524
	case PERF_RECORD_EXIT:
1525
		ret = machine__process_exit_event(machine, event, sample); break;
1526
	case PERF_RECORD_LOST:
1527
		ret = machine__process_lost_event(machine, event, sample); break;
1528 1529
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1530
	case PERF_RECORD_ITRACE_START:
1531
		ret = machine__process_itrace_start_event(machine, event); break;
1532 1533
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1534 1535 1536
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1537 1538 1539 1540 1541 1542 1543
	default:
		ret = -1;
		break;
	}

	return ret;
}
1544

1545
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1546
{
1547
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1548 1549 1550 1551
		return 1;
	return 0;
}

1552
static void ip__resolve_ams(struct thread *thread,
1553 1554 1555 1556 1557 1558
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1559 1560 1561 1562 1563 1564 1565
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1566
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1567 1568 1569 1570 1571 1572 1573

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1574
static void ip__resolve_data(struct thread *thread,
1575 1576 1577 1578 1579 1580
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1581
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1582 1583 1584 1585 1586 1587
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1588
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1589 1590
	}

1591 1592 1593 1594 1595 1596
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1597 1598
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1599 1600 1601 1602 1603 1604
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1605 1606
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1607 1608 1609 1610 1611
	mi->data_src.val = sample->data_src;

	return mi;
}

1612
static int add_callchain_ip(struct thread *thread,
1613
			    struct callchain_cursor *cursor,
1614 1615
			    struct symbol **parent,
			    struct addr_location *root_al,
1616
			    u8 *cpumode,
1617 1618 1619 1620 1621 1622
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1623
	if (!cpumode) {
1624 1625
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1626
	} else {
1627 1628 1629
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1630
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1631 1632
				break;
			case PERF_CONTEXT_KERNEL:
1633
				*cpumode = PERF_RECORD_MISC_KERNEL;
1634 1635
				break;
			case PERF_CONTEXT_USER:
1636
				*cpumode = PERF_RECORD_MISC_USER;
1637 1638 1639 1640 1641 1642 1643 1644
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1645
				callchain_cursor_reset(cursor);
1646 1647 1648 1649
				return 1;
			}
			return 0;
		}
1650 1651
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1652 1653
	}

1654
	if (al.sym != NULL) {
1655
		if (perf_hpp_list.parent && !*parent &&
1656 1657 1658 1659 1660 1661 1662
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1663
			callchain_cursor_reset(cursor);
1664 1665 1666
		}
	}

1667 1668
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1669
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1670 1671
}

1672 1673
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1674 1675
{
	unsigned int i;
1676 1677
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1678 1679 1680 1681 1682

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1683 1684
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1685 1686 1687 1688 1689
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1731 1732 1733 1734 1735 1736 1737 1738
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1739
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1740 1741 1742 1743
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1744
{
K
Kan Liang 已提交
1745 1746
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1747
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

1772
		if (mix_chain_nr > (int)sysctl_perf_event_max_stack + PERF_MAX_BRANCH_DEPTH) {
K
Kan Liang 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1794
			err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1805
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1806 1807 1808 1809 1810 1811 1812 1813
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1814
	int chain_nr = min(max_stack, (int)chain->nr);
1815
	u8 cpumode = PERF_RECORD_MISC_USER;
1816
	int i, j, err;
1817 1818 1819
	int skip_idx = -1;
	int first_call = 0;

1820
	callchain_cursor_reset(cursor);
K
Kan Liang 已提交
1821

1822
	if (perf_evsel__has_branch_callstack(evsel)) {
1823
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
1824 1825 1826 1827 1828
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1829 1830 1831 1832
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
1833
	if (chain->nr < sysctl_perf_event_max_stack)
1834
		skip_idx = arch_skip_callchain_idx(thread, chain);
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
1880
			err = add_callchain_ip(thread, cursor, parent, root_al,
1881
					       NULL, be[i].to);
1882
			if (!err)
1883
				err = add_callchain_ip(thread, cursor, parent, root_al,
1884
						       NULL, be[i].from);
1885 1886 1887 1888 1889 1890 1891 1892 1893
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1894
	if (chain->nr > sysctl_perf_event_max_stack && (int)chain->nr > max_stack) {
1895 1896 1897 1898
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1899
	for (i = first_call; i < chain_nr; i++) {
1900 1901 1902
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1903
			j = i;
1904
		else
1905 1906 1907 1908 1909 1910 1911
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1912

1913
		err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1914 1915

		if (err)
1916
			return (err < 0) ? err : 0;
1917 1918 1919 1920 1921 1922 1923 1924
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
1925 1926 1927

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
1928 1929 1930 1931
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1932
int thread__resolve_callchain(struct thread *thread,
1933
			      struct callchain_cursor *cursor,
1934 1935 1936 1937 1938
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1939
{
1940
	int ret = thread__resolve_callchain_sample(thread, cursor, evsel,
K
Kan Liang 已提交
1941 1942
						   sample, parent,
						   root_al, max_stack);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1956
	return unwind__get_entries(unwind_entry, cursor,
1957
				   thread, sample, max_stack);
1958 1959

}
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2005
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2006
				  struct target *target, struct thread_map *threads,
2007 2008
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
2009
{
2010
	if (target__has_task(target))
2011
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2012
	else if (target__has_cpu(target))
2013
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2014 2015 2016
	/* command specified */
	return 0;
}
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2057
	thread__put(thread);
2058 2059 2060

	return 0;
}
2061 2062 2063

int machine__get_kernel_start(struct machine *machine)
{
2064
	struct map *map = machine__kernel_map(machine);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2083 2084 2085

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2086
	return dsos__findnew(&machine->dsos, filename);
2087
}
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}