machine.c 64.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "symbol.h"
14
#include "sort.h"
15
#include "strlist.h"
16
#include "thread.h"
17
#include "vdso.h"
18
#include "util.h"
19
#include <stdbool.h>
20 21 22
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
23
#include "unwind.h"
24
#include "linux/hash.h"
25
#include "asm/bug.h"
26
#include "bpf-event.h"
27

28 29
#include "sane_ctype.h"
#include <symbol/kallsyms.h>
30
#include <linux/mman.h>
31

32 33
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

34 35 36 37
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
38
	init_rwsem(&dsos->lock);
39 40
}

41 42 43 44 45 46
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
47
		threads->entries = RB_ROOT_CACHED;
48
		init_rwsem(&threads->lock);
49 50 51 52 53 54
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

55 56
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
57 58 59 60 61 62 63
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
64 65 66 67

	return machine->mmap_name ? 0 : -ENOMEM;
}

68 69
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
70 71
	int err = -ENOMEM;

72
	memset(machine, 0, sizeof(*machine));
73
	map_groups__init(&machine->kmaps, machine);
74
	RB_CLEAR_NODE(&machine->rb_node);
75
	dsos__init(&machine->dsos);
76

77
	machine__threads_init(machine);
78

79
	machine->vdso_info = NULL;
80
	machine->env = NULL;
81

82 83
	machine->pid = pid;

84
	machine->id_hdr_size = 0;
85
	machine->kptr_restrict_warned = false;
86
	machine->comm_exec = false;
87
	machine->kernel_start = 0;
88
	machine->vmlinux_map = NULL;
89

90 91 92 93
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

94 95 96
	if (machine__set_mmap_name(machine))
		goto out;

97
	if (pid != HOST_KERNEL_ID) {
98
		struct thread *thread = machine__findnew_thread(machine, -1,
99
								pid);
100 101 102
		char comm[64];

		if (thread == NULL)
103
			goto out;
104 105

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
106
		thread__set_comm(thread, comm, 0);
107
		thread__put(thread);
108 109
	}

110
	machine->current_tid = NULL;
111
	err = 0;
112

113
out:
114
	if (err) {
115
		zfree(&machine->root_dir);
116 117
		zfree(&machine->mmap_name);
	}
118 119 120
	return 0;
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

138 139 140 141 142
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
143
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
144 145 146
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
147
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
148 149 150 151 152 153 154
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

155
static void dsos__purge(struct dsos *dsos)
156 157 158
{
	struct dso *pos, *n;

159
	down_write(&dsos->lock);
160

161
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
162
		RB_CLEAR_NODE(&pos->rb_node);
163
		pos->root = NULL;
164 165
		list_del_init(&pos->node);
		dso__put(pos);
166
	}
167

168
	up_write(&dsos->lock);
169
}
170

171 172 173
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
174
	exit_rwsem(&dsos->lock);
175 176
}

177 178
void machine__delete_threads(struct machine *machine)
{
179
	struct rb_node *nd;
180
	int i;
181

182 183
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
184
		down_write(&threads->lock);
185
		nd = rb_first_cached(&threads->entries);
186 187
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
188

189 190 191
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
192
		up_write(&threads->lock);
193 194 195
	}
}

196 197
void machine__exit(struct machine *machine)
{
198 199
	int i;

200 201 202
	if (machine == NULL)
		return;

203
	machine__destroy_kernel_maps(machine);
204
	map_groups__exit(&machine->kmaps);
205
	dsos__exit(&machine->dsos);
206
	machine__exit_vdso(machine);
207
	zfree(&machine->root_dir);
208
	zfree(&machine->mmap_name);
209
	zfree(&machine->current_tid);
210 211 212

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
213
		exit_rwsem(&threads->lock);
214
	}
215 216 217 218
}

void machine__delete(struct machine *machine)
{
219 220 221 222
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
223 224
}

225 226 227
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
228
	machines->guests = RB_ROOT_CACHED;
229 230 231 232 233 234 235 236 237
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
238 239
			      const char *root_dir)
{
240
	struct rb_node **p = &machines->guests.rb_root.rb_node;
241 242
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
243
	bool leftmost = true;
244 245 246 247 248 249 250 251 252 253 254 255 256 257

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
258
		else {
259
			p = &(*p)->rb_right;
260 261
			leftmost = false;
		}
262 263 264
	}

	rb_link_node(&machine->rb_node, parent, p);
265
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
266 267 268 269

	return machine;
}

270 271 272 273 274 275
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

276
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
277 278 279 280 281 282
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

283
struct machine *machines__find(struct machines *machines, pid_t pid)
284
{
285
	struct rb_node **p = &machines->guests.rb_root.rb_node;
286 287 288 289
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

290 291 292
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

309
struct machine *machines__findnew(struct machines *machines, pid_t pid)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
326
				seen = strlist__new(NULL, NULL);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

343 344
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
345 346 347
{
	struct rb_node *nd;

348
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
349 350 351 352 353
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

354
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
355 356 357 358
{
	struct rb_node *node;
	struct machine *machine;

359 360
	machines->host.id_hdr_size = id_hdr_size;

361 362
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
363 364 365 366 367 368 369
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

370 371 372 373 374 375 376 377 378 379 380 381 382
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

383
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
384 385 386 387
	if (!leader)
		goto out_err;

	if (!leader->mg)
388
		leader->mg = map_groups__new(machine);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
405
		map_groups__put(th->mg);
406 407 408
	}

	th->mg = map_groups__get(leader->mg);
409 410
out_put:
	thread__put(leader);
411 412 413
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
414
	goto out_put;
415 416
}

417
/*
418 419 420
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
421
 */
422
static struct thread*
423 424
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
425 426 427
{
	struct thread *th;

428
	th = threads->last_match;
429 430 431
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
432
			return thread__get(th);
433 434
		}

435
		threads->last_match = NULL;
436
	}
437

438 439 440
	return NULL;
}

441 442 443 444 445 446 447 448 449 450 451 452
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

453
static void
454
__threads__set_last_match(struct threads *threads, struct thread *th)
455 456 457 458
{
	threads->last_match = th;
}

459 460 461 462 463 464 465
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

466 467 468 469 470 471 472 473 474
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
475
	struct rb_node **p = &threads->entries.rb_root.rb_node;
476 477
	struct rb_node *parent = NULL;
	struct thread *th;
478
	bool leftmost = true;
479 480 481 482 483

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

484 485 486 487
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

488
		if (th->tid == tid) {
489
			threads__set_last_match(threads, th);
490
			machine__update_thread_pid(machine, th, pid);
491
			return thread__get(th);
492 493
		}

494
		if (tid < th->tid)
495
			p = &(*p)->rb_left;
496
		else {
497
			p = &(*p)->rb_right;
498 499
			leftmost = false;
		}
500 501 502 503 504
	}

	if (!create)
		return NULL;

505
	th = thread__new(pid, tid);
506 507
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
508
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
509 510 511 512 513 514 515 516 517

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
518
		if (thread__init_map_groups(th, machine)) {
519
			rb_erase_cached(&th->rb_node, &threads->entries);
520
			RB_CLEAR_NODE(&th->rb_node);
521
			thread__put(th);
522
			return NULL;
523
		}
524 525 526 527
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
528
		threads__set_last_match(threads, th);
529
		++threads->nr;
530 531 532 533 534
	}

	return th;
}

535 536
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
537
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
538 539
}

540 541
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
542
{
543
	struct threads *threads = machine__threads(machine, tid);
544 545
	struct thread *th;

546
	down_write(&threads->lock);
547
	th = __machine__findnew_thread(machine, pid, tid);
548
	up_write(&threads->lock);
549
	return th;
550 551
}

552 553
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
554
{
555
	struct threads *threads = machine__threads(machine, tid);
556
	struct thread *th;
557

558
	down_read(&threads->lock);
559
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
560
	up_read(&threads->lock);
561
	return th;
562
}
563

564 565 566 567 568 569 570 571 572
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

573 574
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
575
{
576 577 578
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
579
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
580
	int err = 0;
581

582 583 584
	if (exec)
		machine->comm_exec = true;

585 586 587
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

588 589
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
590
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
591
		err = -1;
592 593
	}

594 595 596
	thread__put(thread);

	return err;
597 598
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

630
int machine__process_lost_event(struct machine *machine __maybe_unused,
631
				union perf_event *event, struct perf_sample *sample __maybe_unused)
632 633 634 635 636 637
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

638 639 640 641 642 643 644 645
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

646 647 648
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
649 650 651
{
	struct dso *dso;

652
	down_write(&machine->dsos.lock);
653 654

	dso = __dsos__find(&machine->dsos, m->name, true);
655
	if (!dso) {
656
		dso = __dsos__addnew(&machine->dsos, m->name);
657
		if (dso == NULL)
658
			goto out_unlock;
659

660
		dso__set_module_info(dso, m, machine);
661
		dso__set_long_name(dso, strdup(filename), true);
662 663
	}

664
	dso__get(dso);
665
out_unlock:
666
	up_write(&machine->dsos.lock);
667 668 669
	return dso;
}

670 671 672 673 674 675 676 677
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

678 679 680 681 682 683 684 685
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

686 687 688 689 690 691 692 693
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (!map) {
		map = dso__new_map(event->ksymbol_event.name);
		if (!map)
			return -ENOMEM;

		map->start = event->ksymbol_event.addr;
		map->end = map->start + event->ksymbol_event.len;
		map_groups__insert(&machine->kmaps, map);
	}

712 713
	sym = symbol__new(map->map_ip(map, map->start),
			  event->ksymbol_event.len,
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
			  0, 0, event->ksymbol_event.name);
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (map)
		map_groups__remove(&machine->kmaps, map);

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

	if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

762
	dso__set_long_name(dso, dup_filename, true);
763 764
}

765 766
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
767
{
768
	struct map *map = NULL;
769
	struct dso *dso = NULL;
770
	struct kmod_path m;
771

772
	if (kmod_path__parse_name(&m, filename))
773 774
		return NULL;

775
	map = map_groups__find_by_name(&machine->kmaps, m.name);
776 777 778 779 780 781 782
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
783
		goto out;
784
	}
785

786
	dso = machine__findnew_module_dso(machine, &m, filename);
787 788 789
	if (dso == NULL)
		goto out;

790
	map = map__new2(start, dso);
791
	if (map == NULL)
792
		goto out;
793 794

	map_groups__insert(&machine->kmaps, map);
795

796 797
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
798
out:
799 800
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
801
	free(m.name);
802 803 804
	return map;
}

805
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
806 807
{
	struct rb_node *nd;
808
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
809

810
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
811
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
812
		ret += __dsos__fprintf(&pos->dsos.head, fp);
813 814 815 816 817
	}

	return ret;
}

818
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
819 820
				     bool (skip)(struct dso *dso, int parm), int parm)
{
821
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
822 823
}

824
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
825 826 827
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
828
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
829

830
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
831 832 833 834 835 836 837 838 839 840
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
841
	struct dso *kdso = machine__kernel_map(machine)->dso;
842 843 844

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
845 846
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
847 848 849 850 851 852 853 854 855 856 857 858 859
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
860 861
	size_t ret;
	int i;
862

863 864
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
865 866

		down_read(&threads->lock);
867

868
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
869

870 871
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
872
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
873

874 875
			ret += thread__fprintf(pos, fp);
		}
876

877
		up_read(&threads->lock);
878
	}
879 880 881 882 883
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
884
	const char *vmlinux_name = machine->mmap_name;
885 886 887
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
888 889 890
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

891 892
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
893
	} else {
J
Jiri Olsa 已提交
894 895 896
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

897 898 899
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
900 901 902 903 904 905 906 907 908 909 910 911
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

912 913
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
914 915 916 917 918 919 920
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

921 922 923 924 925 926
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
927
static int machine__get_running_kernel_start(struct machine *machine,
928 929
					     const char **symbol_name,
					     u64 *start, u64 *end)
930
{
931
	char filename[PATH_MAX];
932
	int i, err = -1;
933 934
	const char *name;
	u64 addr = 0;
935

936
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
937 938 939 940

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

941
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
942 943
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
944 945 946
			break;
	}

947 948 949
	if (err)
		return -1;

950 951
	if (symbol_name)
		*symbol_name = name;
952

953
	*start = addr;
954 955 956 957 958

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

959
	return 0;
960 961
}

962 963 964
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
965 966 967 968 969 970 971 972 973 974 975 976 977 978
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
979
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
980 981 982

	map_groups__insert(&machine->kmaps, map);

983 984
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1026 1027
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
1028
	int nr_cpus_avail, cpu;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1051

1052
	pgoff = find_entry_trampoline(kernel);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1069 1070
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1071 1072 1073 1074
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1075 1076 1077 1078 1079 1080 1081 1082
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1083 1084 1085
	return 0;
}

1086 1087
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1088
{
1089 1090
	struct kmap *kmap;
	struct map *map;
1091

1092 1093 1094
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1095 1096 1097
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1098

1099 1100 1101 1102 1103
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1104

1105 1106
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1107 1108 1109 1110 1111 1112

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1113 1114
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1115

1116 1117
	if (map == NULL)
		return;
1118

1119 1120 1121 1122 1123
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1124
	}
1125 1126

	map__zput(machine->vmlinux_map);
1127 1128
}

1129
int machines__create_guest_kernel_maps(struct machines *machines)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1178
void machines__destroy_kernel_maps(struct machines *machines)
1179
{
1180
	struct rb_node *next = rb_first_cached(&machines->guests);
1181 1182

	machine__destroy_kernel_maps(&machines->host);
1183 1184 1185 1186 1187

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1188
		rb_erase_cached(&pos->rb_node, &machines->guests);
1189 1190 1191 1192
		machine__delete(pos);
	}
}

1193
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1194 1195 1196 1197 1198 1199 1200 1201 1202
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1203
int machine__load_kallsyms(struct machine *machine, const char *filename)
1204
{
1205
	struct map *map = machine__kernel_map(machine);
1206
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1207 1208

	if (ret > 0) {
1209
		dso__set_loaded(map->dso);
1210 1211 1212 1213 1214
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1215
		map_groups__fixup_end(&machine->kmaps);
1216 1217 1218 1219 1220
	}

	return ret;
}

1221
int machine__load_vmlinux_path(struct machine *machine)
1222
{
1223
	struct map *map = machine__kernel_map(machine);
1224
	int ret = dso__load_vmlinux_path(map->dso, map);
1225

1226
	if (ret > 0)
1227
		dso__set_loaded(map->dso);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1246 1247
	if (!tmp)
		return NULL;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1270
	struct map *map = map_groups__find_by_name(mg, m->name);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1286
	if (m->comp && is_kmod_dso(map->dso)) {
1287
		map->dso->symtab_type++;
1288 1289
		map->dso->comp = m->comp;
	}
1290 1291 1292 1293

	return 0;
}

1294
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1295
				const char *dir_name, int depth)
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1320 1321 1322 1323 1324 1325 1326 1327 1328
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1329 1330 1331
			if (ret < 0)
				goto out;
		} else {
1332
			struct kmod_path m;
1333

1334 1335 1336
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1337

1338 1339
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1340

1341
			free(m.name);
1342

1343
			if (ret)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1362
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1363 1364 1365
		 machine->root_dir, version);
	free(version);

1366
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1367
}
1368 1369 1370 1371 1372
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1373

1374 1375
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1376
{
1377
	struct machine *machine = arg;
1378
	struct map *map;
1379

1380 1381 1382
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1383
	map = machine__findnew_module_map(machine, start, name);
1384 1385
	if (map == NULL)
		return -1;
1386
	map->end = start + size;
1387 1388 1389 1390 1391 1392 1393 1394

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1395 1396 1397
	const char *modules;
	char path[PATH_MAX];

1398
	if (machine__is_default_guest(machine)) {
1399
		modules = symbol_conf.default_guest_modules;
1400 1401
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1402 1403 1404
		modules = path;
	}

1405
	if (symbol__restricted_filename(modules, "/proc/modules"))
1406 1407
		return -1;

1408
	if (modules__parse(modules, machine, machine__create_module))
1409 1410
		return -1;

1411 1412
	if (!machine__set_modules_path(machine))
		return 0;
1413

1414
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1415

1416
	return 0;
1417 1418
}

1419 1420 1421
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1422 1423 1424 1425 1426 1427 1428 1429
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
	map_groups__remove(&machine->kmaps, map);

	machine__set_kernel_mmap(machine, start, end);

	map_groups__insert(&machine->kmaps, map);
	map__put(map);
}

1446 1447 1448
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1449
	const char *name = NULL;
1450
	struct map *map;
1451
	u64 start = 0, end = ~0ULL;
1452 1453
	int ret;

1454
	if (kernel == NULL)
1455
		return -1;
1456

1457 1458
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1459
		goto out_put;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1470
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1471
		if (name &&
1472
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1473
			machine__destroy_kernel_maps(machine);
1474 1475
			ret = -1;
			goto out_put;
1476
		}
1477

1478 1479 1480 1481
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1482
		machine__update_kernel_mmap(machine, start, end);
1483 1484
	}

1485 1486 1487
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1488 1489 1490 1491 1492 1493 1494
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1495 1496 1497
out_put:
	dso__put(kernel);
	return ret;
1498 1499
}

1500 1501 1502 1503
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1504
	list_for_each_entry(dso, &machine->dsos.head, node) {
1505 1506 1507 1508 1509 1510 1511
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1538 1539 1540 1541 1542 1543 1544
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1545 1546 1547 1548
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1549 1550 1551 1552 1553 1554
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1555 1556
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1557 1558
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1559 1560
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1561 1562 1563 1564 1565 1566
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1567
				strlen(machine->mmap_name));
1568 1569 1570 1571
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1572 1573 1574
		struct dso *kernel = NULL;
		struct dso *dso;

1575
		down_read(&machine->dsos.lock);
1576

1577
		list_for_each_entry(dso, &machine->dsos.head, node) {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1598 1599
				continue;

1600

1601 1602 1603 1604
			kernel = dso;
			break;
		}

1605
		up_read(&machine->dsos.lock);
1606

1607
		if (kernel == NULL)
1608
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1609 1610 1611 1612
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1613 1614
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1615
			goto out_problem;
1616
		}
1617

1618 1619
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1620

1621
		machine__update_kernel_mmap(machine, event->mmap.start,
1622
					 event->mmap.start + event->mmap.len);
1623 1624 1625 1626 1627 1628 1629

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1630 1631 1632
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1633 1634 1635 1636 1637 1638
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1639
			dso__load(kernel, machine__kernel_map(machine));
1640
		}
1641 1642
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1643 1644 1645 1646 1647 1648
	}
	return 0;
out_problem:
	return -1;
}

1649
int machine__process_mmap2_event(struct machine *machine,
1650
				 union perf_event *event,
1651
				 struct perf_sample *sample)
1652 1653 1654 1655 1656 1657 1658 1659
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1660 1661
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1662 1663 1664 1665 1666 1667 1668
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1669
					event->mmap2.tid);
1670 1671 1672
	if (thread == NULL)
		goto out_problem;

1673
	map = map__new(machine, event->mmap2.start,
1674
			event->mmap2.len, event->mmap2.pgoff,
1675
			event->mmap2.maj,
1676 1677
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1678 1679
			event->mmap2.prot,
			event->mmap2.flags,
1680
			event->mmap2.filename, thread);
1681 1682

	if (map == NULL)
1683
		goto out_problem_map;
1684

1685 1686 1687 1688
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1689
	thread__put(thread);
1690
	map__put(map);
1691 1692
	return 0;

1693 1694
out_problem_insert:
	map__put(map);
1695 1696
out_problem_map:
	thread__put(thread);
1697 1698 1699 1700 1701
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1702
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1703
				struct perf_sample *sample)
1704 1705 1706
{
	struct thread *thread;
	struct map *map;
1707
	u32 prot = 0;
1708 1709 1710 1711 1712
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1713 1714
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1715 1716 1717 1718 1719 1720
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1721
	thread = machine__findnew_thread(machine, event->mmap.pid,
1722
					 event->mmap.tid);
1723 1724
	if (thread == NULL)
		goto out_problem;
1725

1726
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1727
		prot = PROT_EXEC;
1728

1729
	map = map__new(machine, event->mmap.start,
1730
			event->mmap.len, event->mmap.pgoff,
1731
			0, 0, 0, 0, prot, 0,
1732
			event->mmap.filename,
1733
			thread);
1734

1735
	if (map == NULL)
1736
		goto out_problem_map;
1737

1738 1739 1740 1741
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1742
	thread__put(thread);
1743
	map__put(map);
1744 1745
	return 0;

1746 1747
out_problem_insert:
	map__put(map);
1748 1749
out_problem_map:
	thread__put(thread);
1750 1751 1752 1753 1754
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1755
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1756
{
1757 1758 1759
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1760
		threads__set_last_match(threads, NULL);
1761

1762
	BUG_ON(refcount_read(&th->refcnt) == 0);
1763
	if (lock)
1764
		down_write(&threads->lock);
1765
	rb_erase_cached(&th->rb_node, &threads->entries);
1766
	RB_CLEAR_NODE(&th->rb_node);
1767
	--threads->nr;
1768
	/*
1769 1770 1771
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1772
	 */
1773
	list_add_tail(&th->node, &threads->dead);
1774
	if (lock)
1775
		up_write(&threads->lock);
1776
	thread__put(th);
1777 1778
}

1779 1780 1781 1782 1783
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1784 1785
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1786
{
1787 1788 1789
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1790 1791 1792
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1793
	bool do_maps_clone = true;
1794
	int err = 0;
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1814
	/* if a thread currently exists for the thread id remove it */
1815
	if (thread != NULL) {
1816
		machine__remove_thread(machine, thread);
1817 1818
		thread__put(thread);
	}
1819

1820 1821
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1838 1839

	if (thread == NULL || parent == NULL ||
1840
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1841
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1842
		err = -1;
1843
	}
1844 1845
	thread__put(thread);
	thread__put(parent);
1846

1847
	return err;
1848 1849
}

1850 1851
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1852
{
1853 1854 1855
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1856 1857 1858 1859

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1860
	if (thread != NULL) {
1861
		thread__exited(thread);
1862 1863
		thread__put(thread);
	}
1864 1865 1866 1867

	return 0;
}

1868 1869
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1870 1871 1872 1873 1874
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1875
		ret = machine__process_comm_event(machine, event, sample); break;
1876
	case PERF_RECORD_MMAP:
1877
		ret = machine__process_mmap_event(machine, event, sample); break;
1878 1879
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1880
	case PERF_RECORD_MMAP2:
1881
		ret = machine__process_mmap2_event(machine, event, sample); break;
1882
	case PERF_RECORD_FORK:
1883
		ret = machine__process_fork_event(machine, event, sample); break;
1884
	case PERF_RECORD_EXIT:
1885
		ret = machine__process_exit_event(machine, event, sample); break;
1886
	case PERF_RECORD_LOST:
1887
		ret = machine__process_lost_event(machine, event, sample); break;
1888 1889
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1890
	case PERF_RECORD_ITRACE_START:
1891
		ret = machine__process_itrace_start_event(machine, event); break;
1892 1893
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1894 1895 1896
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1897 1898
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1899 1900
	case PERF_RECORD_BPF_EVENT:
		ret = machine__process_bpf_event(machine, event, sample); break;
1901 1902 1903 1904 1905 1906 1907
	default:
		ret = -1;
		break;
	}

	return ret;
}
1908

1909
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1910
{
1911
	if (!regexec(regex, sym->name, 0, NULL, 0))
1912 1913 1914 1915
		return 1;
	return 0;
}

1916
static void ip__resolve_ams(struct thread *thread,
1917 1918 1919 1920 1921 1922
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1923 1924 1925 1926 1927 1928 1929
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1930
	thread__find_cpumode_addr_location(thread, ip, &al);
1931 1932 1933 1934 1935

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1936
	ams->phys_addr = 0;
1937 1938
}

1939
static void ip__resolve_data(struct thread *thread,
1940 1941
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1942 1943 1944 1945 1946
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1947
	thread__find_symbol(thread, m, addr, &al);
1948

1949 1950 1951 1952
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1953
	ams->phys_addr = phys_addr;
1954 1955
}

1956 1957
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1958
{
1959
	struct mem_info *mi = mem_info__new();
1960 1961 1962 1963

	if (!mi)
		return NULL;

1964
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1965 1966
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1967 1968 1969 1970 1971
	mi->data_src.val = sample->data_src;

	return mi;
}

1972 1973
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1974 1975
	char *srcline = NULL;

1976
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1977 1978 1979 1980 1981 1982 1983 1984
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1985
				      sym, show_sym, show_addr, ip);
1986 1987
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1988

1989
	return srcline;
1990 1991
}

1992 1993 1994 1995 1996
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1997
static int add_callchain_ip(struct thread *thread,
1998
			    struct callchain_cursor *cursor,
1999 2000
			    struct symbol **parent,
			    struct addr_location *root_al,
2001
			    u8 *cpumode,
2002 2003 2004
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2005
			    struct iterations *iter,
2006
			    u64 branch_from)
2007 2008
{
	struct addr_location al;
2009 2010
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2011
	const char *srcline = NULL;
2012 2013 2014

	al.filtered = 0;
	al.sym = NULL;
2015
	if (!cpumode) {
2016
		thread__find_cpumode_addr_location(thread, ip, &al);
2017
	} else {
2018 2019 2020
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2021
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2022 2023
				break;
			case PERF_CONTEXT_KERNEL:
2024
				*cpumode = PERF_RECORD_MISC_KERNEL;
2025 2026
				break;
			case PERF_CONTEXT_USER:
2027
				*cpumode = PERF_RECORD_MISC_USER;
2028 2029 2030 2031 2032 2033 2034 2035
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2036
				callchain_cursor_reset(cursor);
2037 2038 2039 2040
				return 1;
			}
			return 0;
		}
2041
		thread__find_symbol(thread, *cpumode, ip, &al);
2042 2043
	}

2044
	if (al.sym != NULL) {
2045
		if (perf_hpp_list.parent && !*parent &&
2046 2047 2048 2049 2050 2051 2052
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2053
			callchain_cursor_reset(cursor);
2054 2055 2056
		}
	}

2057 2058
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2059 2060 2061 2062 2063 2064

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2065
	srcline = callchain_srcline(al.map, al.sym, al.addr);
2066
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2067
				       branch, flags, nr_loop_iter,
2068
				       iter_cycles, branch_from, srcline);
2069 2070
}

2071 2072
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2073 2074
{
	unsigned int i;
2075 2076
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2077 2078 2079 2080 2081

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2082 2083
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2084 2085 2086 2087 2088
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

2089 2090 2091 2092 2093
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2094
	iter->nr_loop_iter++;
2095 2096 2097 2098 2099 2100
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2101 2102 2103 2104 2105 2106 2107
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2108 2109
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2146 2147 2148 2149 2150 2151 2152
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2153 2154 2155 2156 2157 2158 2159 2160
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2161
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2162 2163 2164 2165
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2166
{
K
Kan Liang 已提交
2167
	struct ip_callchain *chain = sample->callchain;
2168
	int chain_nr = min(max_stack, (int)chain->nr), i;
2169
	u8 cpumode = PERF_RECORD_MISC_USER;
2170
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2180 2181 2182
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2196
			int err;
2197 2198 2199
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2200 2201 2202
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2203 2204 2205 2206 2207 2208
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2209
					ip = lbr_stack->entries[0].to;
2210 2211
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2212 2213
					branch_from =
						lbr_stack->entries[0].from;
2214
				}
K
Kan Liang 已提交
2215
			} else {
2216 2217 2218 2219 2220 2221
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2222 2223
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2224
				else {
K
Kan Liang 已提交
2225
					ip = lbr_stack->entries[0].to;
2226 2227
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2228 2229
					branch_from =
						lbr_stack->entries[0].from;
2230
				}
K
Kan Liang 已提交
2231 2232
			}

2233 2234
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2235
					       branch, flags, NULL,
2236
					       branch_from);
K
Kan Liang 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2267
static int thread__resolve_callchain_sample(struct thread *thread,
2268
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2269 2270 2271 2272 2273 2274 2275 2276
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2277
	int chain_nr = 0;
2278
	u8 cpumode = PERF_RECORD_MISC_USER;
2279
	int i, j, err, nr_entries;
2280 2281 2282
	int skip_idx = -1;
	int first_call = 0;

2283 2284 2285
	if (chain)
		chain_nr = chain->nr;

2286
	if (perf_evsel__has_branch_callstack(evsel)) {
2287
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2288 2289 2290 2291 2292
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2293 2294 2295 2296
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2297
	skip_idx = arch_skip_callchain_idx(thread, chain);
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2314
		struct iterations iter[nr];
2315 2316 2317 2318 2319 2320 2321 2322 2323

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2324 2325 2326 2327

				if (chain == NULL)
					continue;

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2345 2346
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2347

2348
		for (i = 0; i < nr; i++) {
2349 2350 2351 2352 2353
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2354

2355
			if (!err)
2356
				err = add_callchain_ip(thread, cursor, parent, root_al,
2357 2358
						       NULL, be[i].from,
						       true, &be[i].flags,
2359
						       &iter[i], 0);
2360 2361 2362 2363 2364
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2365 2366 2367 2368

		if (chain_nr == 0)
			return 0;

2369 2370 2371 2372
		chain_nr -= nr;
	}

check_calls:
2373 2374 2375 2376 2377 2378
	if (callchain_param.order != ORDER_CALLEE) {
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2379
	for (i = first_call, nr_entries = 0;
2380
	     i < chain_nr && nr_entries < max_stack; i++) {
2381 2382 2383
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2384
			j = i;
2385
		else
2386 2387 2388 2389 2390 2391 2392
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2393 2394
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2395 2396 2397 2398 2399 2400 2401
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2402

2403 2404
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2405
				       false, NULL, NULL, 0);
2406 2407

		if (err)
2408
			return (err < 0) ? err : 0;
2409 2410 2411 2412 2413
	}

	return 0;
}

2414 2415 2416 2417 2418 2419
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2420
	int ret = 1;
2421 2422

	if (!symbol_conf.inline_name || !map || !sym)
2423
		return ret;
2424

2425 2426
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2427 2428 2429 2430 2431

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2432
			return ret;
2433 2434 2435 2436
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2437 2438 2439
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2440 2441 2442 2443 2444

		if (ret != 0)
			return ret;
	}

2445
	return ret;
2446 2447
}

2448 2449 2450
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2451
	const char *srcline = NULL;
2452
	u64 addr = entry->ip;
2453 2454 2455

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2456

2457 2458 2459
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2460 2461 2462 2463
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2464 2465
	if (entry->map)
		addr = map__map_ip(entry->map, entry->ip);
2466 2467

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2468
	return callchain_cursor_append(cursor, entry->ip,
2469
				       entry->map, entry->sym,
2470
				       false, NULL, 0, 0, 0, srcline);
2471 2472
}

2473 2474 2475 2476 2477
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2489
	return unwind__get_entries(unwind_entry, cursor,
2490
				   thread, sample, max_stack);
2491
}
2492

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2503
	callchain_cursor_reset(cursor);
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2528
}
2529 2530 2531 2532 2533

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2534
	struct threads *threads;
2535 2536 2537
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2538
	int i;
2539

2540 2541
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2542 2543
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2544 2545 2546 2547 2548
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2549

2550 2551 2552 2553 2554
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2555 2556 2557
	}
	return rc;
}
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2570
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2571 2572 2573 2574 2575 2576 2577 2578 2579
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2580
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2581
				  struct target *target, struct thread_map *threads,
2582
				  perf_event__handler_t process, bool data_mmap,
2583
				  unsigned int nr_threads_synthesize)
2584
{
2585
	if (target__has_task(target))
2586
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2587
	else if (target__has_cpu(target))
2588 2589 2590
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      nr_threads_synthesize);
2591 2592 2593
	/* command specified */
	return 0;
}
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2634
	thread__put(thread);
2635 2636 2637

	return 0;
}
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2648 2649 2650 2651 2652
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2653 2654
int machine__get_kernel_start(struct machine *machine)
{
2655
	struct map *map = machine__kernel_map(machine);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2668
		err = map__load(map);
2669 2670 2671 2672 2673 2674
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2675 2676 2677 2678
			machine->kernel_start = map->start;
	}
	return err;
}
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2707 2708
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2709
	return dsos__findnew(&machine->dsos, filename);
2710
}
2711 2712 2713 2714 2715

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2716
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2717 2718 2719 2720 2721 2722 2723 2724

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}