machine.c 65.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include <stdlib.h>
7
#include "callchain.h"
8
#include "debug.h"
9
#include "dso.h"
10
#include "env.h"
11
#include "event.h"
12 13
#include "evsel.h"
#include "hist.h"
14 15
#include "machine.h"
#include "map.h"
16 17 18
#include "map_symbol.h"
#include "branch.h"
#include "mem-events.h"
19
#include "srcline.h"
20
#include "symbol.h"
21
#include "sort.h"
22
#include "strlist.h"
23
#include "target.h"
24
#include "thread.h"
25
#include "util.h"
26
#include "vdso.h"
27
#include <stdbool.h>
28 29 30
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
31
#include "unwind.h"
32
#include "linux/hash.h"
33
#include "asm/bug.h"
34
#include "bpf-event.h"
35
#include <internal/lib.h> // page_size
36

37
#include <linux/ctype.h>
38
#include <symbol/kallsyms.h>
39
#include <linux/mman.h>
40
#include <linux/string.h>
41
#include <linux/zalloc.h>
42

43 44
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

45 46 47 48 49
static struct dso *machine__kernel_dso(struct machine *machine)
{
	return machine->vmlinux_map->dso;
}

50 51 52 53
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
54
	init_rwsem(&dsos->lock);
55 56
}

57 58 59 60 61 62
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
63
		threads->entries = RB_ROOT_CACHED;
64
		init_rwsem(&threads->lock);
65 66 67 68 69 70
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

71 72
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
73 74 75 76 77 78 79
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
80 81 82 83

	return machine->mmap_name ? 0 : -ENOMEM;
}

84 85
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
86 87
	int err = -ENOMEM;

88
	memset(machine, 0, sizeof(*machine));
89
	map_groups__init(&machine->kmaps, machine);
90
	RB_CLEAR_NODE(&machine->rb_node);
91
	dsos__init(&machine->dsos);
92

93
	machine__threads_init(machine);
94

95
	machine->vdso_info = NULL;
96
	machine->env = NULL;
97

98 99
	machine->pid = pid;

100
	machine->id_hdr_size = 0;
101
	machine->kptr_restrict_warned = false;
102
	machine->comm_exec = false;
103
	machine->kernel_start = 0;
104
	machine->vmlinux_map = NULL;
105

106 107 108 109
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

110 111 112
	if (machine__set_mmap_name(machine))
		goto out;

113
	if (pid != HOST_KERNEL_ID) {
114
		struct thread *thread = machine__findnew_thread(machine, -1,
115
								pid);
116 117 118
		char comm[64];

		if (thread == NULL)
119
			goto out;
120 121

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122
		thread__set_comm(thread, comm, 0);
123
		thread__put(thread);
124 125
	}

126
	machine->current_tid = NULL;
127
	err = 0;
128

129
out:
130
	if (err) {
131
		zfree(&machine->root_dir);
132 133
		zfree(&machine->mmap_name);
	}
134 135 136
	return 0;
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

154 155 156 157 158
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
159
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160 161 162
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
163
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164 165 166 167 168 169 170
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

171
static void dsos__purge(struct dsos *dsos)
172 173 174
{
	struct dso *pos, *n;

175
	down_write(&dsos->lock);
176

177
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
178
		RB_CLEAR_NODE(&pos->rb_node);
179
		pos->root = NULL;
180 181
		list_del_init(&pos->node);
		dso__put(pos);
182
	}
183

184
	up_write(&dsos->lock);
185
}
186

187 188 189
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
190
	exit_rwsem(&dsos->lock);
191 192
}

193 194
void machine__delete_threads(struct machine *machine)
{
195
	struct rb_node *nd;
196
	int i;
197

198 199
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
200
		down_write(&threads->lock);
201
		nd = rb_first_cached(&threads->entries);
202 203
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
204

205 206 207
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
208
		up_write(&threads->lock);
209 210 211
	}
}

212 213
void machine__exit(struct machine *machine)
{
214 215
	int i;

216 217 218
	if (machine == NULL)
		return;

219
	machine__destroy_kernel_maps(machine);
220
	map_groups__exit(&machine->kmaps);
221
	dsos__exit(&machine->dsos);
222
	machine__exit_vdso(machine);
223
	zfree(&machine->root_dir);
224
	zfree(&machine->mmap_name);
225
	zfree(&machine->current_tid);
226 227 228

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
229 230 231 232 233 234 235 236 237 238 239 240
		struct thread *thread, *n;
		/*
		 * Forget about the dead, at this point whatever threads were
		 * left in the dead lists better have a reference count taken
		 * by who is using them, and then, when they drop those references
		 * and it finally hits zero, thread__put() will check and see that
		 * its not in the dead threads list and will not try to remove it
		 * from there, just calling thread__delete() straight away.
		 */
		list_for_each_entry_safe(thread, n, &threads->dead, node)
			list_del_init(&thread->node);

241
		exit_rwsem(&threads->lock);
242
	}
243 244 245 246
}

void machine__delete(struct machine *machine)
{
247 248 249 250
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
251 252
}

253 254 255
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
256
	machines->guests = RB_ROOT_CACHED;
257 258 259 260 261 262 263 264 265
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
266 267
			      const char *root_dir)
{
268
	struct rb_node **p = &machines->guests.rb_root.rb_node;
269 270
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));
271
	bool leftmost = true;
272 273 274 275 276 277 278 279 280 281 282 283 284 285

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
286
		else {
287
			p = &(*p)->rb_right;
288 289
			leftmost = false;
		}
290 291 292
	}

	rb_link_node(&machine->rb_node, parent, p);
293
	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294 295 296 297

	return machine;
}

298 299 300 301 302 303
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

304
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305 306 307 308 309 310
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

311
struct machine *machines__find(struct machines *machines, pid_t pid)
312
{
313
	struct rb_node **p = &machines->guests.rb_root.rb_node;
314 315 316 317
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

318 319 320
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

337
struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
354
				seen = strlist__new(NULL, NULL);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

371 372
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
373 374 375
{
	struct rb_node *nd;

376
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377 378 379 380 381
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

382
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 384 385 386
{
	struct rb_node *node;
	struct machine *machine;

387 388
	machines->host.id_hdr_size = id_hdr_size;

389 390
	for (node = rb_first_cached(&machines->guests); node;
	     node = rb_next(node)) {
391 392 393 394 395 396 397
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

398 399 400 401 402 403 404 405 406 407 408 409 410
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

411
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412 413 414 415
	if (!leader)
		goto out_err;

	if (!leader->mg)
416
		leader->mg = map_groups__new(machine);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
433
		map_groups__put(th->mg);
434 435 436
	}

	th->mg = map_groups__get(leader->mg);
437 438
out_put:
	thread__put(leader);
439 440 441
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442
	goto out_put;
443 444
}

445
/*
446 447 448
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
449
 */
450
static struct thread*
451 452
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
453 454 455
{
	struct thread *th;

456
	th = threads->last_match;
457 458 459
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
460
			return thread__get(th);
461 462
		}

463
		threads->last_match = NULL;
464
	}
465

466 467 468
	return NULL;
}

469 470 471 472 473 474 475 476 477 478 479 480
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

481
static void
482
__threads__set_last_match(struct threads *threads, struct thread *th)
483 484 485 486
{
	threads->last_match = th;
}

487 488 489 490 491 492 493
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

494 495 496 497 498 499 500 501 502
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
503
	struct rb_node **p = &threads->entries.rb_root.rb_node;
504 505
	struct rb_node *parent = NULL;
	struct thread *th;
506
	bool leftmost = true;
507 508 509 510 511

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

512 513 514 515
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

516
		if (th->tid == tid) {
517
			threads__set_last_match(threads, th);
518
			machine__update_thread_pid(machine, th, pid);
519
			return thread__get(th);
520 521
		}

522
		if (tid < th->tid)
523
			p = &(*p)->rb_left;
524
		else {
525
			p = &(*p)->rb_right;
526 527
			leftmost = false;
		}
528 529 530 531 532
	}

	if (!create)
		return NULL;

533
	th = thread__new(pid, tid);
534 535
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
536
		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537 538 539 540 541 542 543 544 545

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
546
		if (thread__init_map_groups(th, machine)) {
547
			rb_erase_cached(&th->rb_node, &threads->entries);
548
			RB_CLEAR_NODE(&th->rb_node);
549
			thread__put(th);
550
			return NULL;
551
		}
552 553 554 555
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
556
		threads__set_last_match(threads, th);
557
		++threads->nr;
558 559 560 561 562
	}

	return th;
}

563 564
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
565
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 567
}

568 569
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
570
{
571
	struct threads *threads = machine__threads(machine, tid);
572 573
	struct thread *th;

574
	down_write(&threads->lock);
575
	th = __machine__findnew_thread(machine, pid, tid);
576
	up_write(&threads->lock);
577
	return th;
578 579
}

580 581
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
582
{
583
	struct threads *threads = machine__threads(machine, tid);
584
	struct thread *th;
585

586
	down_read(&threads->lock);
587
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588
	up_read(&threads->lock);
589
	return th;
590
}
591

592 593 594 595 596 597 598 599 600
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

601 602
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
603
{
604 605 606
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
607
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608
	int err = 0;
609

610 611 612
	if (exec)
		machine->comm_exec = true;

613 614 615
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

616 617
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619
		err = -1;
620 621
	}

622 623 624
	thread__put(thread);

	return err;
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

658
int machine__process_lost_event(struct machine *machine __maybe_unused,
659
				union perf_event *event, struct perf_sample *sample __maybe_unused)
660
{
661
	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
662 663 664 665
		    event->lost.id, event->lost.lost);
	return 0;
}

666 667 668
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
669
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
670 671 672 673
		    sample->id, event->lost_samples.lost);
	return 0;
}

674 675 676
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
677 678 679
{
	struct dso *dso;

680
	down_write(&machine->dsos.lock);
681 682

	dso = __dsos__find(&machine->dsos, m->name, true);
683
	if (!dso) {
684
		dso = __dsos__addnew(&machine->dsos, m->name);
685
		if (dso == NULL)
686
			goto out_unlock;
687

688
		dso__set_module_info(dso, m, machine);
689
		dso__set_long_name(dso, strdup(filename), true);
690 691
	}

692
	dso__get(dso);
693
out_unlock:
694
	up_write(&machine->dsos.lock);
695 696 697
	return dso;
}

698 699 700 701 702 703 704 705
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

706 707 708 709 710 711 712 713
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

714 715 716 717 718 719 720 721
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

722 723 724 725 726 727 728
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
	struct map *map;

729
	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
730
	if (!map) {
731
		map = dso__new_map(event->ksymbol.name);
732 733 734
		if (!map)
			return -ENOMEM;

735 736
		map->start = event->ksymbol.addr;
		map->end = map->start + event->ksymbol.len;
737 738 739
		map_groups__insert(&machine->kmaps, map);
	}

740
	sym = symbol__new(map->map_ip(map, map->start),
741 742
			  event->ksymbol.len,
			  0, 0, event->ksymbol.name);
743 744 745 746 747 748 749 750 751 752 753 754
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

755
	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
756 757 758 759 760 761 762 763 764 765 766 767 768
	if (map)
		map_groups__remove(&machine->kmaps, map);

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

769
	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
770 771 772 773 774
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

790
	dso__set_long_name(dso, dup_filename, true);
791 792
}

793 794
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
795
{
796
	struct map *map = NULL;
797
	struct dso *dso = NULL;
798
	struct kmod_path m;
799

800
	if (kmod_path__parse_name(&m, filename))
801 802
		return NULL;

803
	map = map_groups__find_by_name(&machine->kmaps, m.name);
804 805 806 807 808 809 810
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
811
		goto out;
812
	}
813

814
	dso = machine__findnew_module_dso(machine, &m, filename);
815 816 817
	if (dso == NULL)
		goto out;

818
	map = map__new2(start, dso);
819
	if (map == NULL)
820
		goto out;
821 822

	map_groups__insert(&machine->kmaps, map);
823

824 825
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
826
out:
827 828
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
829
	zfree(&m.name);
830 831 832
	return map;
}

833
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
834 835
{
	struct rb_node *nd;
836
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
837

838
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
839
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
840
		ret += __dsos__fprintf(&pos->dsos.head, fp);
841 842 843 844 845
	}

	return ret;
}

846
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
847 848
				     bool (skip)(struct dso *dso, int parm), int parm)
{
849
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
850 851
}

852
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
853 854 855
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
856
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
857

858
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
859 860 861 862 863 864 865 866 867 868
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
869
	struct dso *kdso = machine__kernel_dso(machine);
870 871 872

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
873 874
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
875 876 877 878 879 880 881 882 883 884 885 886 887
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
888 889
	size_t ret;
	int i;
890

891 892
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
893 894

		down_read(&threads->lock);
895

896
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
897

898 899
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
900
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
901

902 903
			ret += thread__fprintf(pos, fp);
		}
904

905
		up_read(&threads->lock);
906
	}
907 908 909 910 911
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
912
	const char *vmlinux_name = machine->mmap_name;
913 914 915
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
916 917 918
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

919 920
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
921
	} else {
J
Jiri Olsa 已提交
922 923 924
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

925 926 927
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
928 929 930 931 932 933 934 935 936 937 938 939
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

940 941
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
942 943 944 945 946 947 948
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

949 950 951 952 953 954
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
955
static int machine__get_running_kernel_start(struct machine *machine,
956 957
					     const char **symbol_name,
					     u64 *start, u64 *end)
958
{
959
	char filename[PATH_MAX];
960
	int i, err = -1;
961 962
	const char *name;
	u64 addr = 0;
963

964
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
965 966 967 968

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

969
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
970 971
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
972 973 974
			break;
	}

975 976 977
	if (err)
		return -1;

978 979
	if (symbol_name)
		*symbol_name = name;
980

981
	*start = addr;
982 983 984 985 986

	err = kallsyms__get_function_start(filename, "_etext", &addr);
	if (!err)
		*end = addr;

987
	return 0;
988 989
}

990 991 992
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
1007
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1008 1009 1010

	map_groups__insert(&machine->kmaps, map);

1011 1012
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1054 1055
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
1056
	int nr_cpus_avail, cpu;
1057 1058 1059 1060 1061 1062 1063 1064
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
1065
	maps__for_each_entry(maps, map) {
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1079

1080
	pgoff = find_entry_trampoline(kernel);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1097 1098
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1099 1100 1101 1102
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1103 1104 1105 1106 1107 1108 1109 1110
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1111 1112 1113
	return 0;
}

1114 1115
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1116
{
1117 1118
	struct kmap *kmap;
	struct map *map;
1119

1120 1121 1122
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1123 1124 1125
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1126

1127 1128 1129 1130 1131
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1132

1133 1134
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1135 1136 1137 1138 1139 1140

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1141 1142
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1143

1144 1145
	if (map == NULL)
		return;
1146

1147 1148 1149 1150 1151
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1152
	}
1153 1154

	map__zput(machine->vmlinux_map);
1155 1156
}

1157
int machines__create_guest_kernel_maps(struct machines *machines)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1206
void machines__destroy_kernel_maps(struct machines *machines)
1207
{
1208
	struct rb_node *next = rb_first_cached(&machines->guests);
1209 1210

	machine__destroy_kernel_maps(&machines->host);
1211 1212 1213 1214 1215

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1216
		rb_erase_cached(&pos->rb_node, &machines->guests);
1217 1218 1219 1220
		machine__delete(pos);
	}
}

1221
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1222 1223 1224 1225 1226 1227 1228 1229 1230
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1231
int machine__load_kallsyms(struct machine *machine, const char *filename)
1232
{
1233
	struct map *map = machine__kernel_map(machine);
1234
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1235 1236

	if (ret > 0) {
1237
		dso__set_loaded(map->dso);
1238 1239 1240 1241 1242
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1243
		map_groups__fixup_end(&machine->kmaps);
1244 1245 1246 1247 1248
	}

	return ret;
}

1249
int machine__load_vmlinux_path(struct machine *machine)
1250
{
1251
	struct map *map = machine__kernel_map(machine);
1252
	int ret = dso__load_vmlinux_path(map->dso, map);
1253

1254
	if (ret > 0)
1255
		dso__set_loaded(map->dso);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	tmp = fgets(version, sizeof(version), file);
	fclose(file);
1274 1275
	if (!tmp)
		return NULL;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1298
	struct map *map = map_groups__find_by_name(mg, m->name);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1314
	if (m->comp && is_kmod_dso(map->dso)) {
1315
		map->dso->symtab_type++;
1316 1317
		map->dso->comp = m->comp;
	}
1318 1319 1320 1321

	return 0;
}

1322
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1323
				const char *dir_name, int depth)
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1348 1349 1350 1351 1352 1353 1354 1355 1356
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1357 1358 1359
			if (ret < 0)
				goto out;
		} else {
1360
			struct kmod_path m;
1361

1362 1363 1364
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1365

1366 1367
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1368

1369
			zfree(&m.name);
1370

1371
			if (ret)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1390
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1391 1392 1393
		 machine->root_dir, version);
	free(version);

1394
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1395
}
1396
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1397
				u64 *size __maybe_unused,
1398 1399 1400 1401
				const char *name __maybe_unused)
{
	return 0;
}
1402

1403 1404
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1405
{
1406
	struct machine *machine = arg;
1407
	struct map *map;
1408

1409
	if (arch__fix_module_text_start(&start, &size, name) < 0)
1410 1411
		return -1;

1412
	map = machine__findnew_module_map(machine, start, name);
1413 1414
	if (map == NULL)
		return -1;
1415
	map->end = start + size;
1416 1417 1418 1419 1420 1421 1422 1423

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1424 1425 1426
	const char *modules;
	char path[PATH_MAX];

1427
	if (machine__is_default_guest(machine)) {
1428
		modules = symbol_conf.default_guest_modules;
1429 1430
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1431 1432 1433
		modules = path;
	}

1434
	if (symbol__restricted_filename(modules, "/proc/modules"))
1435 1436
		return -1;

1437
	if (modules__parse(modules, machine, machine__create_module))
1438 1439
		return -1;

1440 1441
	if (!machine__set_modules_path(machine))
		return 0;
1442

1443
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1444

1445
	return 0;
1446 1447
}

1448 1449 1450
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1451 1452 1453 1454 1455 1456 1457 1458
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static void machine__update_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
	struct map *map = machine__kernel_map(machine);

	map__get(map);
	map_groups__remove(&machine->kmaps, map);

	machine__set_kernel_mmap(machine, start, end);

	map_groups__insert(&machine->kmaps, map);
	map__put(map);
}

1475 1476 1477
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1478
	const char *name = NULL;
1479
	struct map *map;
1480
	u64 start = 0, end = ~0ULL;
1481 1482
	int ret;

1483
	if (kernel == NULL)
1484
		return -1;
1485

1486 1487
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1488
		goto out_put;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1499
	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1500
		if (name &&
1501
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1502
			machine__destroy_kernel_maps(machine);
1503 1504
			ret = -1;
			goto out_put;
1505
		}
1506

1507 1508 1509 1510
		/*
		 * we have a real start address now, so re-order the kmaps
		 * assume it's the last in the kmaps
		 */
1511
		machine__update_kernel_mmap(machine, start, end);
1512 1513
	}

1514 1515 1516
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1517 1518 1519 1520 1521 1522 1523
	if (end == ~0ULL) {
		/* update end address of the kernel map using adjacent module address */
		map = map__next(machine__kernel_map(machine));
		if (map)
			machine__set_kernel_mmap(machine, start, map->start);
	}

1524 1525 1526
out_put:
	dso__put(kernel);
	return ret;
1527 1528
}

1529 1530 1531 1532
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1533
	list_for_each_entry(dso, &machine->dsos.head, node) {
1534 1535 1536 1537 1538 1539 1540
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
1551
	struct dso *kernel = machine__kernel_dso(machine);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1566 1567 1568 1569 1570 1571 1572
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1573 1574 1575 1576
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1577 1578 1579 1580 1581 1582
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1583 1584
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1585 1586
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1587 1588
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1589 1590 1591 1592 1593 1594
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1595
				strlen(machine->mmap_name));
1596 1597 1598 1599
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1600 1601 1602
		struct dso *kernel = NULL;
		struct dso *dso;

1603
		down_read(&machine->dsos.lock);
1604

1605
		list_for_each_entry(dso, &machine->dsos.head, node) {
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1626 1627
				continue;

1628

1629 1630 1631 1632
			kernel = dso;
			break;
		}

1633
		up_read(&machine->dsos.lock);
1634

1635
		if (kernel == NULL)
1636
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1637 1638 1639 1640
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1641 1642
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1643
			goto out_problem;
1644
		}
1645

1646 1647
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1648

1649
		machine__update_kernel_mmap(machine, event->mmap.start,
1650
					 event->mmap.start + event->mmap.len);
1651 1652 1653 1654 1655 1656 1657

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1658 1659 1660
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1661 1662 1663 1664 1665 1666
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1667
			dso__load(kernel, machine__kernel_map(machine));
1668
		}
1669 1670
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1671 1672 1673 1674 1675 1676
	}
	return 0;
out_problem:
	return -1;
}

1677
int machine__process_mmap2_event(struct machine *machine,
1678
				 union perf_event *event,
1679
				 struct perf_sample *sample)
1680 1681 1682 1683 1684 1685 1686 1687
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1688 1689
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1690 1691 1692 1693 1694 1695 1696
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1697
					event->mmap2.tid);
1698 1699 1700
	if (thread == NULL)
		goto out_problem;

1701
	map = map__new(machine, event->mmap2.start,
1702
			event->mmap2.len, event->mmap2.pgoff,
1703
			event->mmap2.maj,
1704 1705
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1706 1707
			event->mmap2.prot,
			event->mmap2.flags,
1708
			event->mmap2.filename, thread);
1709 1710

	if (map == NULL)
1711
		goto out_problem_map;
1712

1713 1714 1715 1716
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1717
	thread__put(thread);
1718
	map__put(map);
1719 1720
	return 0;

1721 1722
out_problem_insert:
	map__put(map);
1723 1724
out_problem_map:
	thread__put(thread);
1725 1726 1727 1728 1729
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1730
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1731
				struct perf_sample *sample)
1732 1733 1734
{
	struct thread *thread;
	struct map *map;
1735
	u32 prot = 0;
1736 1737 1738 1739 1740
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1741 1742
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1743 1744 1745 1746 1747 1748
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1749
	thread = machine__findnew_thread(machine, event->mmap.pid,
1750
					 event->mmap.tid);
1751 1752
	if (thread == NULL)
		goto out_problem;
1753

1754
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1755
		prot = PROT_EXEC;
1756

1757
	map = map__new(machine, event->mmap.start,
1758
			event->mmap.len, event->mmap.pgoff,
1759
			0, 0, 0, 0, prot, 0,
1760
			event->mmap.filename,
1761
			thread);
1762

1763
	if (map == NULL)
1764
		goto out_problem_map;
1765

1766 1767 1768 1769
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1770
	thread__put(thread);
1771
	map__put(map);
1772 1773
	return 0;

1774 1775
out_problem_insert:
	map__put(map);
1776 1777
out_problem_map:
	thread__put(thread);
1778 1779 1780 1781 1782
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1783
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1784
{
1785 1786 1787
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1788
		threads__set_last_match(threads, NULL);
1789

1790
	if (lock)
1791
		down_write(&threads->lock);
1792 1793 1794

	BUG_ON(refcount_read(&th->refcnt) == 0);

1795
	rb_erase_cached(&th->rb_node, &threads->entries);
1796
	RB_CLEAR_NODE(&th->rb_node);
1797
	--threads->nr;
1798
	/*
1799 1800 1801
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1802
	 */
1803
	list_add_tail(&th->node, &threads->dead);
1804 1805 1806 1807 1808 1809 1810 1811

	/*
	 * We need to do the put here because if this is the last refcount,
	 * then we will be touching the threads->dead head when removing the
	 * thread.
	 */
	thread__put(th);

1812
	if (lock)
1813
		up_write(&threads->lock);
1814 1815
}

1816 1817 1818 1819 1820
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1821 1822
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1823
{
1824 1825 1826
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1827 1828 1829
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1830
	bool do_maps_clone = true;
1831
	int err = 0;
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1851
	/* if a thread currently exists for the thread id remove it */
1852
	if (thread != NULL) {
1853
		machine__remove_thread(machine, thread);
1854 1855
		thread__put(thread);
	}
1856

1857 1858
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1875 1876

	if (thread == NULL || parent == NULL ||
1877
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1878
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1879
		err = -1;
1880
	}
1881 1882
	thread__put(thread);
	thread__put(parent);
1883

1884
	return err;
1885 1886
}

1887 1888
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1889
{
1890 1891 1892
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1893 1894 1895 1896

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1897
	if (thread != NULL) {
1898
		thread__exited(thread);
1899 1900
		thread__put(thread);
	}
1901 1902 1903 1904

	return 0;
}

1905 1906
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1907 1908 1909 1910 1911
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1912
		ret = machine__process_comm_event(machine, event, sample); break;
1913
	case PERF_RECORD_MMAP:
1914
		ret = machine__process_mmap_event(machine, event, sample); break;
1915 1916
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1917
	case PERF_RECORD_MMAP2:
1918
		ret = machine__process_mmap2_event(machine, event, sample); break;
1919
	case PERF_RECORD_FORK:
1920
		ret = machine__process_fork_event(machine, event, sample); break;
1921
	case PERF_RECORD_EXIT:
1922
		ret = machine__process_exit_event(machine, event, sample); break;
1923
	case PERF_RECORD_LOST:
1924
		ret = machine__process_lost_event(machine, event, sample); break;
1925 1926
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1927
	case PERF_RECORD_ITRACE_START:
1928
		ret = machine__process_itrace_start_event(machine, event); break;
1929 1930
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1931 1932 1933
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1934 1935
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1936
	case PERF_RECORD_BPF_EVENT:
1937
		ret = machine__process_bpf(machine, event, sample); break;
1938 1939 1940 1941 1942 1943 1944
	default:
		ret = -1;
		break;
	}

	return ret;
}
1945

1946
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1947
{
1948
	if (!regexec(regex, sym->name, 0, NULL, 0))
1949 1950 1951 1952
		return 1;
	return 0;
}

1953
static void ip__resolve_ams(struct thread *thread,
1954 1955 1956 1957 1958 1959
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1960 1961 1962 1963 1964 1965 1966
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1967
	thread__find_cpumode_addr_location(thread, ip, &al);
1968 1969 1970 1971 1972

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1973
	ams->phys_addr = 0;
1974 1975
}

1976
static void ip__resolve_data(struct thread *thread,
1977 1978
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1979 1980 1981 1982 1983
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1984
	thread__find_symbol(thread, m, addr, &al);
1985

1986 1987 1988 1989
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1990
	ams->phys_addr = phys_addr;
1991 1992
}

1993 1994
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1995
{
1996
	struct mem_info *mi = mem_info__new();
1997 1998 1999 2000

	if (!mi)
		return NULL;

2001
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2002 2003
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
2004 2005 2006 2007 2008
	mi->data_src.val = sample->data_src;

	return mi;
}

2009 2010
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
2011 2012
	char *srcline = NULL;

2013
	if (!map || callchain_param.key == CCKEY_FUNCTION)
2014 2015 2016 2017 2018 2019 2020 2021
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2022
				      sym, show_sym, show_addr, ip);
2023 2024
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
2025

2026
	return srcline;
2027 2028
}

2029 2030 2031 2032 2033
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

2034
static int add_callchain_ip(struct thread *thread,
2035
			    struct callchain_cursor *cursor,
2036 2037
			    struct symbol **parent,
			    struct addr_location *root_al,
2038
			    u8 *cpumode,
2039 2040 2041
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
2042
			    struct iterations *iter,
2043
			    u64 branch_from)
2044 2045
{
	struct addr_location al;
2046 2047
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
2048
	const char *srcline = NULL;
2049 2050 2051

	al.filtered = 0;
	al.sym = NULL;
2052
	if (!cpumode) {
2053
		thread__find_cpumode_addr_location(thread, ip, &al);
2054
	} else {
2055 2056 2057
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
2058
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2059 2060
				break;
			case PERF_CONTEXT_KERNEL:
2061
				*cpumode = PERF_RECORD_MISC_KERNEL;
2062 2063
				break;
			case PERF_CONTEXT_USER:
2064
				*cpumode = PERF_RECORD_MISC_USER;
2065 2066 2067 2068 2069 2070 2071 2072
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2073
				callchain_cursor_reset(cursor);
2074 2075 2076 2077
				return 1;
			}
			return 0;
		}
2078
		thread__find_symbol(thread, *cpumode, ip, &al);
2079 2080
	}

2081
	if (al.sym != NULL) {
2082
		if (perf_hpp_list.parent && !*parent &&
2083 2084 2085 2086 2087 2088 2089
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2090
			callchain_cursor_reset(cursor);
2091 2092 2093
		}
	}

2094 2095
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2096 2097 2098 2099 2100 2101

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2102
	srcline = callchain_srcline(al.map, al.sym, al.addr);
2103
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2104
				       branch, flags, nr_loop_iter,
2105
				       iter_cycles, branch_from, srcline);
2106 2107
}

2108 2109
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2110 2111
{
	unsigned int i;
2112 2113
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2114 2115 2116 2117 2118

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2119 2120
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2121 2122 2123 2124 2125
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

2126 2127 2128 2129 2130
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2131
	iter->nr_loop_iter++;
2132 2133 2134 2135 2136 2137
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2138 2139 2140 2141 2142 2143 2144
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2145 2146
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2183 2184 2185 2186 2187 2188 2189
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2190 2191 2192 2193 2194 2195 2196 2197
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2198
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2199 2200 2201 2202
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2203
{
K
Kan Liang 已提交
2204
	struct ip_callchain *chain = sample->callchain;
2205
	int chain_nr = min(max_stack, (int)chain->nr), i;
2206
	u8 cpumode = PERF_RECORD_MISC_USER;
2207
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2217 2218 2219
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2233
			int err;
2234 2235 2236
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2237 2238 2239
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2240 2241 2242 2243 2244 2245
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2246
					ip = lbr_stack->entries[0].to;
2247 2248
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2249 2250
					branch_from =
						lbr_stack->entries[0].from;
2251
				}
K
Kan Liang 已提交
2252
			} else {
2253 2254 2255 2256 2257 2258
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2259 2260
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2261
				else {
K
Kan Liang 已提交
2262
					ip = lbr_stack->entries[0].to;
2263 2264
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2265 2266
					branch_from =
						lbr_stack->entries[0].from;
2267
				}
K
Kan Liang 已提交
2268 2269
			}

2270 2271
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2272
					       branch, flags, NULL,
2273
					       branch_from);
K
Kan Liang 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2304
static int thread__resolve_callchain_sample(struct thread *thread,
2305
					    struct callchain_cursor *cursor,
2306
					    struct evsel *evsel,
K
Kan Liang 已提交
2307 2308 2309 2310 2311 2312 2313
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2314
	int chain_nr = 0;
2315
	u8 cpumode = PERF_RECORD_MISC_USER;
2316
	int i, j, err, nr_entries;
2317 2318 2319
	int skip_idx = -1;
	int first_call = 0;

2320 2321 2322
	if (chain)
		chain_nr = chain->nr;

2323
	if (perf_evsel__has_branch_callstack(evsel)) {
2324
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2325 2326 2327 2328 2329
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2330 2331 2332 2333
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2334
	skip_idx = arch_skip_callchain_idx(thread, chain);
2335

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2351
		struct iterations iter[nr];
2352 2353 2354 2355 2356 2357 2358 2359 2360

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2361 2362 2363 2364

				if (chain == NULL)
					continue;

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2382 2383
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2384

2385
		for (i = 0; i < nr; i++) {
2386 2387 2388 2389 2390
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2391

2392
			if (!err)
2393
				err = add_callchain_ip(thread, cursor, parent, root_al,
2394 2395
						       NULL, be[i].from,
						       true, &be[i].flags,
2396
						       &iter[i], 0);
2397 2398 2399 2400 2401
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2402 2403 2404 2405

		if (chain_nr == 0)
			return 0;

2406 2407 2408 2409
		chain_nr -= nr;
	}

check_calls:
2410 2411 2412 2413 2414 2415
	if (callchain_param.order != ORDER_CALLEE) {
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2416
	for (i = first_call, nr_entries = 0;
2417
	     i < chain_nr && nr_entries < max_stack; i++) {
2418 2419 2420
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2421
			j = i;
2422
		else
2423 2424 2425 2426 2427 2428 2429
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2430 2431
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2432 2433 2434 2435 2436 2437 2438
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2439

2440 2441
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2442
				       false, NULL, NULL, 0);
2443 2444

		if (err)
2445
			return (err < 0) ? err : 0;
2446 2447 2448 2449 2450
	}

	return 0;
}

2451 2452 2453 2454 2455 2456
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2457
	int ret = 1;
2458 2459

	if (!symbol_conf.inline_name || !map || !sym)
2460
		return ret;
2461

2462 2463
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2464 2465 2466 2467 2468

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2469
			return ret;
2470 2471 2472 2473
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2474 2475 2476
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2477 2478 2479 2480 2481

		if (ret != 0)
			return ret;
	}

2482
	return ret;
2483 2484
}

2485 2486 2487
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2488
	const char *srcline = NULL;
2489
	u64 addr = entry->ip;
2490 2491 2492

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2493

2494 2495 2496
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2497 2498 2499 2500
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2501 2502
	if (entry->map)
		addr = map__map_ip(entry->map, entry->ip);
2503 2504

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2505
	return callchain_cursor_append(cursor, entry->ip,
2506
				       entry->map, entry->sym,
2507
				       false, NULL, 0, 0, 0, srcline);
2508 2509
}

2510 2511
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
2512
					    struct evsel *evsel,
2513 2514
					    struct perf_sample *sample,
					    int max_stack)
2515 2516
{
	/* Can we do dwarf post unwind? */
2517 2518
	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2519 2520 2521 2522 2523 2524 2525
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2526
	return unwind__get_entries(unwind_entry, cursor,
2527
				   thread, sample, max_stack);
2528
}
2529

2530 2531
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
2532
			      struct evsel *evsel,
2533 2534 2535 2536 2537 2538 2539
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2540
	callchain_cursor_reset(cursor);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2565
}
2566 2567 2568 2569 2570

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2571
	struct threads *threads;
2572 2573 2574
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2575
	int i;
2576

2577 2578
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
2579 2580
		for (nd = rb_first_cached(&threads->entries); nd;
		     nd = rb_next(nd)) {
2581 2582 2583 2584 2585
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2586

2587 2588 2589 2590 2591
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2592 2593 2594
	}
	return rc;
}
2595

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

2607
	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2608 2609 2610 2611 2612 2613 2614 2615 2616
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2617 2618
pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
2619 2620 2621
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);

	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2622 2623 2624 2625 2626 2627 2628 2629 2630
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;
2631
	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2632 2633 2634 2635 2636 2637 2638

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

2639
		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2640 2641
		if (!machine->current_tid)
			return -ENOMEM;
2642
		for (i = 0; i < nr_cpus; i++)
2643 2644 2645
			machine->current_tid[i] = -1;
	}

2646
	if (cpu >= nr_cpus) {
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2659
	thread__put(thread);
2660 2661 2662

	return 0;
}
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2673 2674 2675 2676 2677
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2678 2679
int machine__get_kernel_start(struct machine *machine)
{
2680
	struct map *map = machine__kernel_map(machine);
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2693
		err = map__load(map);
2694 2695 2696 2697 2698 2699
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2700 2701 2702 2703
			machine->kernel_start = map->start;
	}
	return err;
}
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2732 2733
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2734
	return dsos__findnew(&machine->dsos, filename);
2735
}
2736 2737 2738 2739 2740

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2741
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2742 2743 2744 2745 2746 2747 2748 2749

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}