machine.c 54.8 KB
Newer Older
1
#include <dirent.h>
2
#include <errno.h>
3
#include <inttypes.h>
4
#include <regex.h>
5
#include "callchain.h"
6 7
#include "debug.h"
#include "event.h"
8 9
#include "evsel.h"
#include "hist.h"
10 11
#include "machine.h"
#include "map.h"
12
#include "sort.h"
13
#include "strlist.h"
14
#include "thread.h"
15
#include "vdso.h"
16
#include <stdbool.h>
17 18 19
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
20
#include "unwind.h"
21
#include "linux/hash.h"
22
#include "asm/bug.h"
23

24 25 26
#include "sane_ctype.h"
#include <symbol/kallsyms.h>

27 28
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

29 30 31 32
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
33
	pthread_rwlock_init(&dsos->lock, NULL);
34 35
}

36 37 38 39 40 41 42 43 44 45 46 47 48 49
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
		pthread_rwlock_init(&threads->lock, NULL);
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

50 51
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
52
	memset(machine, 0, sizeof(*machine));
53
	map_groups__init(&machine->kmaps, machine);
54
	RB_CLEAR_NODE(&machine->rb_node);
55
	dsos__init(&machine->dsos);
56

57
	machine__threads_init(machine);
58

59
	machine->vdso_info = NULL;
60
	machine->env = NULL;
61

62 63
	machine->pid = pid;

64
	machine->id_hdr_size = 0;
65
	machine->kptr_restrict_warned = false;
66
	machine->comm_exec = false;
67
	machine->kernel_start = 0;
68

69 70
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

71 72 73 74 75
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
76
		struct thread *thread = machine__findnew_thread(machine, -1,
77
								pid);
78 79 80 81 82 83
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
84
		thread__set_comm(thread, comm, 0);
85
		thread__put(thread);
86 87
	}

88 89
	machine->current_tid = NULL;

90 91 92
	return 0;
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

129
static void dsos__purge(struct dsos *dsos)
130 131 132
{
	struct dso *pos, *n;

133 134
	pthread_rwlock_wrlock(&dsos->lock);

135
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
136
		RB_CLEAR_NODE(&pos->rb_node);
137
		pos->root = NULL;
138 139
		list_del_init(&pos->node);
		dso__put(pos);
140
	}
141 142

	pthread_rwlock_unlock(&dsos->lock);
143
}
144

145 146 147
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
148
	pthread_rwlock_destroy(&dsos->lock);
149 150
}

151 152
void machine__delete_threads(struct machine *machine)
{
153
	struct rb_node *nd;
154
	int i;
155

156 157 158 159 160 161
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		pthread_rwlock_wrlock(&threads->lock);
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
162

163 164 165 166
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
		pthread_rwlock_unlock(&threads->lock);
167 168 169
	}
}

170 171
void machine__exit(struct machine *machine)
{
172 173
	int i;

174
	machine__destroy_kernel_maps(machine);
175
	map_groups__exit(&machine->kmaps);
176
	dsos__exit(&machine->dsos);
177
	machine__exit_vdso(machine);
178
	zfree(&machine->root_dir);
179
	zfree(&machine->current_tid);
180 181 182 183 184

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		pthread_rwlock_destroy(&threads->lock);
	}
185 186 187 188
}

void machine__delete(struct machine *machine)
{
189 190 191 192
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
193 194
}

195 196 197 198 199 200 201 202 203 204 205 206 207
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
208 209
			      const char *root_dir)
{
210
	struct rb_node **p = &machines->guests.rb_node;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
232
	rb_insert_color(&machine->rb_node, &machines->guests);
233 234 235 236

	return machine;
}

237 238 239 240 241 242 243 244 245 246 247 248 249
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

250
struct machine *machines__find(struct machines *machines, pid_t pid)
251
{
252
	struct rb_node **p = &machines->guests.rb_node;
253 254 255 256
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

257 258 259
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

276
struct machine *machines__findnew(struct machines *machines, pid_t pid)
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
293
				seen = strlist__new(NULL, NULL);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

310 311
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
312 313 314
{
	struct rb_node *nd;

315
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

335
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
336 337 338 339
{
	struct rb_node *node;
	struct machine *machine;

340 341 342
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
343 344 345 346 347 348 349
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

350 351 352 353 354 355 356 357 358 359 360 361 362
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

363
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
364 365 366 367
	if (!leader)
		goto out_err;

	if (!leader->mg)
368
		leader->mg = map_groups__new(machine);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
385
		map_groups__put(th->mg);
386 387 388
	}

	th->mg = map_groups__get(leader->mg);
389 390
out_put:
	thread__put(leader);
391 392 393
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
394
	goto out_put;
395 396
}

397
/*
398
 * Caller must eventually drop thread->refcnt returned with a successful
399 400
 * lookup/new thread inserted.
 */
401
static struct thread *____machine__findnew_thread(struct machine *machine,
402
						  struct threads *threads,
403 404
						  pid_t pid, pid_t tid,
						  bool create)
405
{
406
	struct rb_node **p = &threads->entries.rb_node;
407 408 409 410
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
411
	 * Front-end cache - TID lookups come in blocks,
412 413 414
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
415
	th = threads->last_match;
416 417 418
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
419
			return thread__get(th);
420 421
		}

422
		threads->last_match = NULL;
423
	}
424 425 426 427 428

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

429
		if (th->tid == tid) {
430
			threads->last_match = th;
431
			machine__update_thread_pid(machine, th, pid);
432
			return thread__get(th);
433 434
		}

435
		if (tid < th->tid)
436 437 438 439 440 441 442 443
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

444
	th = thread__new(pid, tid);
445 446
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
447
		rb_insert_color(&th->rb_node, &threads->entries);
448 449 450 451 452 453 454 455 456

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
457
		if (thread__init_map_groups(th, machine)) {
458
			rb_erase_init(&th->rb_node, &threads->entries);
459
			RB_CLEAR_NODE(&th->rb_node);
460
			thread__put(th);
461
			return NULL;
462
		}
463 464 465 466
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
467 468
		threads->last_match = th;
		++threads->nr;
469 470 471 472 473
	}

	return th;
}

474 475
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
476
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
477 478
}

479 480
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
481
{
482
	struct threads *threads = machine__threads(machine, tid);
483 484
	struct thread *th;

485
	pthread_rwlock_wrlock(&threads->lock);
486
	th = __machine__findnew_thread(machine, pid, tid);
487
	pthread_rwlock_unlock(&threads->lock);
488
	return th;
489 490
}

491 492
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
493
{
494
	struct threads *threads = machine__threads(machine, tid);
495
	struct thread *th;
496 497

	pthread_rwlock_rdlock(&threads->lock);
498
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
499
	pthread_rwlock_unlock(&threads->lock);
500
	return th;
501
}
502

503 504 505 506 507 508 509 510 511
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

512 513
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
514
{
515 516 517
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
518
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
519
	int err = 0;
520

521 522 523
	if (exec)
		machine->comm_exec = true;

524 525 526
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

527 528
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
529
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
530
		err = -1;
531 532
	}

533 534 535
	thread__put(thread);

	return err;
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

569
int machine__process_lost_event(struct machine *machine __maybe_unused,
570
				union perf_event *event, struct perf_sample *sample __maybe_unused)
571 572 573 574 575 576
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

577 578 579 580 581 582 583 584
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

585 586 587
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
588 589 590
{
	struct dso *dso;

591 592 593
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
594
	if (!dso) {
595
		dso = __dsos__addnew(&machine->dsos, m->name);
596
		if (dso == NULL)
597
			goto out_unlock;
598

599
		dso__set_module_info(dso, m, machine);
600
		dso__set_long_name(dso, strdup(filename), true);
601 602
	}

603
	dso__get(dso);
604 605
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
606 607 608
	return dso;
}

609 610 611 612 613 614 615 616
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

617 618 619 620 621 622 623 624
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

625 626 627 628 629 630 631 632
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

648
	dso__set_long_name(dso, dup_filename, true);
649 650
}

651 652
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
653
{
654
	struct map *map = NULL;
655
	struct dso *dso = NULL;
656
	struct kmod_path m;
657

658
	if (kmod_path__parse_name(&m, filename))
659 660
		return NULL;

661 662
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
663 664 665 666 667 668 669
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
670
		goto out;
671
	}
672

673
	dso = machine__findnew_module_dso(machine, &m, filename);
674 675 676
	if (dso == NULL)
		goto out;

677 678
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
679
		goto out;
680 681

	map_groups__insert(&machine->kmaps, map);
682

683 684
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
685
out:
686 687
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
688
	free(m.name);
689 690 691
	return map;
}

692
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
693 694
{
	struct rb_node *nd;
695
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
696

697
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
698
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
699
		ret += __dsos__fprintf(&pos->dsos.head, fp);
700 701 702 703 704
	}

	return ret;
}

705
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
706 707
				     bool (skip)(struct dso *dso, int parm), int parm)
{
708
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
709 710
}

711
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
712 713 714
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
715
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
716

717
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
718 719 720 721 722 723 724 725 726 727
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
728
	struct dso *kdso = machine__kernel_map(machine)->dso;
729 730 731

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
732 733
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
734 735 736 737 738 739 740 741 742 743 744 745 746
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
747 748
	size_t ret;
	int i;
749

750 751 752
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		pthread_rwlock_rdlock(&threads->lock);
753

754
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
755

756 757
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
758

759 760
			ret += thread__fprintf(pos, fp);
		}
761

762 763
		pthread_rwlock_unlock(&threads->lock);
	}
764 765 766 767 768 769 770 771 772 773 774
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
775
			vmlinux_name = DSO__NAME_KALLSYMS;
776

777 778
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
779 780 781 782 783 784 785 786 787
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

788 789 790
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
791 792 793 794 795 796 797 798 799 800 801 802
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

803 804 805 806 807 808 809 810 811
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

812 813 814 815 816 817
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
818 819
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
820
{
821
	char filename[PATH_MAX];
822
	int i, err = -1;
823 824
	const char *name;
	u64 addr = 0;
825

826
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
827 828 829 830

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

831
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
832 833
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
834 835 836
			break;
	}

837 838 839
	if (err)
		return -1;

840 841
	if (symbol_name)
		*symbol_name = name;
842

843 844
	*start = addr;
	return 0;
845 846 847 848
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
849
	int type;
850 851 852 853
	u64 start = 0;

	if (machine__get_running_kernel_start(machine, NULL, &start))
		return -1;
854

855 856 857
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

858 859
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
860
		struct map *map;
861 862 863 864 865 866 867 868

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
869
		map = __machine__kernel_map(machine, type);
870
		kmap = map__kmap(map);
871 872 873
		if (!kmap)
			return -1;

874
		kmap->kmaps = &machine->kmaps;
875
		map_groups__insert(&machine->kmaps, map);
876 877 878 879 880 881 882
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
883
	int type;
884 885 886

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
887
		struct map *map = __machine__kernel_map(machine, type);
888

889
		if (map == NULL)
890 891
			continue;

892 893
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
894
		if (kmap && kmap->ref_reloc_sym) {
895 896 897 898 899
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
900 901 902 903
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
904 905
		}

906
		map__put(machine->vmlinux_maps[type]);
907 908 909 910
		machine->vmlinux_maps[type] = NULL;
	}
}

911
int machines__create_guest_kernel_maps(struct machines *machines)
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

960
void machines__destroy_kernel_maps(struct machines *machines)
961
{
962 963 964
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
965 966 967 968 969

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
970
		rb_erase(&pos->rb_node, &machines->guests);
971 972 973 974
		machine__delete(pos);
	}
}

975
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
976 977 978 979 980 981 982 983 984
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

985
int __machine__load_kallsyms(struct machine *machine, const char *filename,
986
			     enum map_type type, bool no_kcore)
987
{
988
	struct map *map = machine__kernel_map(machine);
989
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

1004
int machine__load_kallsyms(struct machine *machine, const char *filename,
1005
			   enum map_type type)
1006
{
1007
	return __machine__load_kallsyms(machine, filename, type, false);
1008 1009
}

1010
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1011
{
1012
	struct map *map = machine__kernel_map(machine);
1013
	int ret = dso__load_vmlinux_path(map->dso, map);
1014

1015
	if (ret > 0)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1088
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1089
				const char *dir_name, int depth)
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1114 1115 1116 1117 1118 1119 1120 1121 1122
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1123 1124 1125
			if (ret < 0)
				goto out;
		} else {
1126
			struct kmod_path m;
1127

1128 1129 1130
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1131

1132 1133
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1134

1135
			free(m.name);
1136

1137
			if (ret)
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1156
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1157 1158 1159
		 machine->root_dir, version);
	free(version);

1160
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1161
}
1162 1163 1164 1165 1166
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1167

1168 1169
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1170
{
1171
	struct machine *machine = arg;
1172
	struct map *map;
1173

1174 1175 1176
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1177
	map = machine__findnew_module_map(machine, start, name);
1178 1179
	if (map == NULL)
		return -1;
1180
	map->end = start + size;
1181 1182 1183 1184 1185 1186 1187 1188

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1189 1190 1191
	const char *modules;
	char path[PATH_MAX];

1192
	if (machine__is_default_guest(machine)) {
1193
		modules = symbol_conf.default_guest_modules;
1194 1195
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1196 1197 1198
		modules = path;
	}

1199
	if (symbol__restricted_filename(modules, "/proc/modules"))
1200 1201
		return -1;

1202
	if (modules__parse(modules, machine, machine__create_module))
1203 1204
		return -1;

1205 1206
	if (!machine__set_modules_path(machine))
		return 0;
1207

1208
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1209

1210
	return 0;
1211 1212 1213 1214 1215
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1216 1217
	const char *name = NULL;
	u64 addr = 0;
1218 1219
	int ret;

1220
	if (kernel == NULL)
1221
		return -1;
1222

1223 1224 1225
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1241

1242 1243 1244 1245 1246 1247
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1248 1249
	}

1250 1251 1252
	return 0;
}

1253 1254 1255
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1269 1270
}

1271 1272 1273 1274
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1275
	list_for_each_entry(dso, &machine->dsos.head, node) {
1276 1277 1278 1279 1280 1281 1282
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1283 1284 1285 1286 1287 1288 1289 1290
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1291 1292 1293 1294
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1306 1307
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1319 1320 1321
		struct dso *kernel = NULL;
		struct dso *dso;

1322 1323
		pthread_rwlock_rdlock(&machine->dsos.lock);

1324
		list_for_each_entry(dso, &machine->dsos.head, node) {
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1345 1346
				continue;

1347

1348 1349 1350 1351
			kernel = dso;
			break;
		}

1352 1353
		pthread_rwlock_unlock(&machine->dsos.lock);

1354
		if (kernel == NULL)
1355
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1356 1357 1358 1359
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1360 1361
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1362
			goto out_problem;
1363
		}
1364

1365 1366
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1385
			dso__load(kernel, machine__kernel_map(machine));
1386 1387 1388 1389 1390 1391 1392
		}
	}
	return 0;
out_problem:
	return -1;
}

1393
int machine__process_mmap2_event(struct machine *machine,
1394
				 union perf_event *event,
1395
				 struct perf_sample *sample)
1396 1397 1398 1399 1400 1401 1402 1403 1404
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1405 1406
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1407 1408 1409 1410 1411 1412 1413
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1414
					event->mmap2.tid);
1415 1416 1417 1418 1419 1420 1421 1422
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1423
	map = map__new(machine, event->mmap2.start,
1424
			event->mmap2.len, event->mmap2.pgoff,
1425
			event->mmap2.maj,
1426 1427
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1428 1429
			event->mmap2.prot,
			event->mmap2.flags,
1430
			event->mmap2.filename, type, thread);
1431 1432

	if (map == NULL)
1433
		goto out_problem_map;
1434

1435 1436 1437 1438
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1439
	thread__put(thread);
1440
	map__put(map);
1441 1442
	return 0;

1443 1444
out_problem_insert:
	map__put(map);
1445 1446
out_problem_map:
	thread__put(thread);
1447 1448 1449 1450 1451
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1452
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1453
				struct perf_sample *sample)
1454 1455 1456
{
	struct thread *thread;
	struct map *map;
1457
	enum map_type type;
1458 1459 1460 1461 1462
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1463 1464
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1465 1466 1467 1468 1469 1470
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1471
	thread = machine__findnew_thread(machine, event->mmap.pid,
1472
					 event->mmap.tid);
1473 1474
	if (thread == NULL)
		goto out_problem;
1475 1476 1477 1478 1479 1480

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1481
	map = map__new(machine, event->mmap.start,
1482
			event->mmap.len, event->mmap.pgoff,
1483
			0, 0, 0, 0, 0, 0,
1484
			event->mmap.filename,
1485
			type, thread);
1486

1487
	if (map == NULL)
1488
		goto out_problem_map;
1489

1490 1491 1492 1493
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1494
	thread__put(thread);
1495
	map__put(map);
1496 1497
	return 0;

1498 1499
out_problem_insert:
	map__put(map);
1500 1501
out_problem_map:
	thread__put(thread);
1502 1503 1504 1505 1506
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1507
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1508
{
1509 1510 1511 1512
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1513

1514
	BUG_ON(refcount_read(&th->refcnt) == 0);
1515
	if (lock)
1516 1517
		pthread_rwlock_wrlock(&threads->lock);
	rb_erase_init(&th->rb_node, &threads->entries);
1518
	RB_CLEAR_NODE(&th->rb_node);
1519
	--threads->nr;
1520
	/*
1521 1522 1523
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1524
	 */
1525
	list_add_tail(&th->node, &threads->dead);
1526
	if (lock)
1527
		pthread_rwlock_unlock(&threads->lock);
1528
	thread__put(th);
1529 1530
}

1531 1532 1533 1534 1535
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1536 1537
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1538
{
1539 1540 1541
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1542 1543 1544
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1545
	int err = 0;
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1565
	/* if a thread currently exists for the thread id remove it */
1566
	if (thread != NULL) {
1567
		machine__remove_thread(machine, thread);
1568 1569
		thread__put(thread);
	}
1570

1571 1572
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1573 1574

	if (thread == NULL || parent == NULL ||
1575
	    thread__fork(thread, parent, sample->time) < 0) {
1576
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1577
		err = -1;
1578
	}
1579 1580
	thread__put(thread);
	thread__put(parent);
1581

1582
	return err;
1583 1584
}

1585 1586
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1587
{
1588 1589 1590
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1591 1592 1593 1594

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1595
	if (thread != NULL) {
1596
		thread__exited(thread);
1597 1598
		thread__put(thread);
	}
1599 1600 1601 1602

	return 0;
}

1603 1604
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1605 1606 1607 1608 1609
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1610
		ret = machine__process_comm_event(machine, event, sample); break;
1611
	case PERF_RECORD_MMAP:
1612
		ret = machine__process_mmap_event(machine, event, sample); break;
1613 1614
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1615
	case PERF_RECORD_MMAP2:
1616
		ret = machine__process_mmap2_event(machine, event, sample); break;
1617
	case PERF_RECORD_FORK:
1618
		ret = machine__process_fork_event(machine, event, sample); break;
1619
	case PERF_RECORD_EXIT:
1620
		ret = machine__process_exit_event(machine, event, sample); break;
1621
	case PERF_RECORD_LOST:
1622
		ret = machine__process_lost_event(machine, event, sample); break;
1623 1624
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1625
	case PERF_RECORD_ITRACE_START:
1626
		ret = machine__process_itrace_start_event(machine, event); break;
1627 1628
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1629 1630 1631
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1632 1633 1634 1635 1636 1637 1638
	default:
		ret = -1;
		break;
	}

	return ret;
}
1639

1640
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1641
{
1642
	if (!regexec(regex, sym->name, 0, NULL, 0))
1643 1644 1645 1646
		return 1;
	return 0;
}

1647
static void ip__resolve_ams(struct thread *thread,
1648 1649 1650 1651 1652 1653
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1654 1655 1656 1657 1658 1659 1660
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1661
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1662 1663 1664 1665 1666

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1667
	ams->phys_addr = 0;
1668 1669
}

1670
static void ip__resolve_data(struct thread *thread,
1671 1672
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1673 1674 1675 1676 1677
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1678
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1679 1680 1681 1682 1683 1684
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1685
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1686 1687
	}

1688 1689 1690 1691
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1692
	ams->phys_addr = phys_addr;
1693 1694
}

1695 1696
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1697 1698 1699 1700 1701 1702
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1703
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1704 1705
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1706 1707 1708 1709 1710
	mi->data_src.val = sample->data_src;

	return mi;
}

1711 1712 1713 1714 1715
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1716
static int add_callchain_ip(struct thread *thread,
1717
			    struct callchain_cursor *cursor,
1718 1719
			    struct symbol **parent,
			    struct addr_location *root_al,
1720
			    u8 *cpumode,
1721 1722 1723
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1724
			    struct iterations *iter,
1725
			    u64 branch_from)
1726 1727
{
	struct addr_location al;
1728 1729
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1730 1731 1732

	al.filtered = 0;
	al.sym = NULL;
1733
	if (!cpumode) {
1734 1735
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1736
	} else {
1737 1738 1739
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1740
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1741 1742
				break;
			case PERF_CONTEXT_KERNEL:
1743
				*cpumode = PERF_RECORD_MISC_KERNEL;
1744 1745
				break;
			case PERF_CONTEXT_USER:
1746
				*cpumode = PERF_RECORD_MISC_USER;
1747 1748 1749 1750 1751 1752 1753 1754
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1755
				callchain_cursor_reset(cursor);
1756 1757 1758 1759
				return 1;
			}
			return 0;
		}
1760 1761
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1762 1763
	}

1764
	if (al.sym != NULL) {
1765
		if (perf_hpp_list.parent && !*parent &&
1766 1767 1768 1769 1770 1771 1772
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1773
			callchain_cursor_reset(cursor);
1774 1775 1776
		}
	}

1777 1778
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1779 1780 1781 1782 1783 1784

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1785
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1786 1787
				       branch, flags, nr_loop_iter,
				       iter_cycles, branch_from);
1788 1789
}

1790 1791
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1792 1793
{
	unsigned int i;
1794 1795
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1796 1797 1798 1799 1800

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1801 1802
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1803 1804 1805 1806 1807
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1820 1821 1822 1823 1824 1825 1826
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1827 1828
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

1865 1866 1867 1868 1869 1870 1871
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1872 1873 1874 1875 1876 1877 1878 1879
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1880
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1881 1882 1883 1884
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1885
{
K
Kan Liang 已提交
1886
	struct ip_callchain *chain = sample->callchain;
1887
	int chain_nr = min(max_stack, (int)chain->nr), i;
1888
	u8 cpumode = PERF_RECORD_MISC_USER;
1889
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1899 1900 1901
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1915
			int err;
1916 1917 1918
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1919 1920 1921
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1922 1923 1924 1925 1926 1927
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1928
					ip = lbr_stack->entries[0].to;
1929 1930
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1931 1932
					branch_from =
						lbr_stack->entries[0].from;
1933
				}
K
Kan Liang 已提交
1934
			} else {
1935 1936 1937 1938 1939 1940
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1941 1942
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1943
				else {
K
Kan Liang 已提交
1944
					ip = lbr_stack->entries[0].to;
1945 1946
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1947 1948
					branch_from =
						lbr_stack->entries[0].from;
1949
				}
K
Kan Liang 已提交
1950 1951
			}

1952 1953
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
1954
					       branch, flags, NULL,
1955
					       branch_from);
K
Kan Liang 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1966
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1967 1968 1969 1970 1971 1972 1973 1974
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1975
	int chain_nr = 0;
1976
	u8 cpumode = PERF_RECORD_MISC_USER;
1977
	int i, j, err, nr_entries;
1978 1979 1980
	int skip_idx = -1;
	int first_call = 0;

1981 1982 1983
	if (chain)
		chain_nr = chain->nr;

1984
	if (perf_evsel__has_branch_callstack(evsel)) {
1985
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
1986 1987 1988 1989 1990
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1991 1992 1993 1994
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
1995
	skip_idx = arch_skip_callchain_idx(thread, chain);
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2012
		struct iterations iter[nr];
2013 2014 2015 2016 2017 2018 2019 2020 2021

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2022 2023 2024 2025

				if (chain == NULL)
					continue;

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2043 2044
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2045

2046
		for (i = 0; i < nr; i++) {
2047 2048 2049 2050 2051
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2052

2053
			if (!err)
2054
				err = add_callchain_ip(thread, cursor, parent, root_al,
2055 2056
						       NULL, be[i].from,
						       true, &be[i].flags,
2057
						       &iter[i], 0);
2058 2059 2060 2061 2062
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2063 2064 2065 2066

		if (chain_nr == 0)
			return 0;

2067 2068 2069 2070
		chain_nr -= nr;
	}

check_calls:
2071
	for (i = first_call, nr_entries = 0;
2072
	     i < chain_nr && nr_entries < max_stack; i++) {
2073 2074 2075
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2076
			j = i;
2077
		else
2078 2079 2080 2081 2082 2083 2084
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2085

2086 2087
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2088

2089 2090
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2091
				       false, NULL, NULL, 0);
2092 2093

		if (err)
2094
			return (err < 0) ? err : 0;
2095 2096 2097 2098 2099 2100 2101 2102
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2103 2104 2105

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2106
	return callchain_cursor_append(cursor, entry->ip,
2107
				       entry->map, entry->sym,
2108
				       false, NULL, 0, 0, 0);
2109 2110
}

2111 2112 2113 2114 2115
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2127
	return unwind__get_entries(unwind_entry, cursor,
2128
				   thread, sample, max_stack);
2129
}
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

	callchain_cursor_reset(&callchain_cursor);

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2166
}
2167 2168 2169 2170 2171

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2172
	struct threads *threads;
2173 2174 2175
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2176
	int i;
2177

2178 2179 2180 2181 2182 2183 2184 2185
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2186

2187 2188 2189 2190 2191
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2192 2193 2194
	}
	return rc;
}
2195

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2217
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2218
				  struct target *target, struct thread_map *threads,
2219 2220
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
2221
{
2222
	if (target__has_task(target))
2223
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2224
	else if (target__has_cpu(target))
2225
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2226 2227 2228
	/* command specified */
	return 0;
}
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2269
	thread__put(thread);
2270 2271 2272

	return 0;
}
2273 2274 2275

int machine__get_kernel_start(struct machine *machine)
{
2276
	struct map *map = machine__kernel_map(machine);
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2289
		err = map__load(map);
2290
		if (!err)
2291 2292 2293 2294
			machine->kernel_start = map->start;
	}
	return err;
}
2295 2296 2297

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2298
	return dsos__findnew(&machine->dsos, filename);
2299
}
2300 2301 2302 2303 2304

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2305
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2306 2307 2308 2309 2310 2311 2312 2313

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}