machine.c 64.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <dirent.h>
3
#include <errno.h>
4
#include <inttypes.h>
5
#include <regex.h>
6
#include "callchain.h"
7 8
#include "debug.h"
#include "event.h"
9 10
#include "evsel.h"
#include "hist.h"
11 12
#include "machine.h"
#include "map.h"
13
#include "sort.h"
14
#include "strlist.h"
15
#include "thread.h"
16
#include "vdso.h"
17
#include <stdbool.h>
18 19 20
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
21
#include "unwind.h"
22
#include "linux/hash.h"
23
#include "asm/bug.h"
24
#include "bpf-event.h"
25

26 27
#include "sane_ctype.h"
#include <symbol/kallsyms.h>
28
#include <linux/mman.h>
29

30 31
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

32 33 34 35
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
36
	init_rwsem(&dsos->lock);
37 38
}

39 40 41 42 43 44 45
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
46
		init_rwsem(&threads->lock);
47 48 49 50 51 52
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

53 54
static int machine__set_mmap_name(struct machine *machine)
{
J
Jiri Olsa 已提交
55 56 57 58 59 60 61
	if (machine__is_host(machine))
		machine->mmap_name = strdup("[kernel.kallsyms]");
	else if (machine__is_default_guest(machine))
		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
			  machine->pid) < 0)
		machine->mmap_name = NULL;
62 63 64 65

	return machine->mmap_name ? 0 : -ENOMEM;
}

66 67
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
68 69
	int err = -ENOMEM;

70
	memset(machine, 0, sizeof(*machine));
71
	map_groups__init(&machine->kmaps, machine);
72
	RB_CLEAR_NODE(&machine->rb_node);
73
	dsos__init(&machine->dsos);
74

75
	machine__threads_init(machine);
76

77
	machine->vdso_info = NULL;
78
	machine->env = NULL;
79

80 81
	machine->pid = pid;

82
	machine->id_hdr_size = 0;
83
	machine->kptr_restrict_warned = false;
84
	machine->comm_exec = false;
85
	machine->kernel_start = 0;
86
	machine->vmlinux_map = NULL;
87

88 89 90 91
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

92 93 94
	if (machine__set_mmap_name(machine))
		goto out;

95
	if (pid != HOST_KERNEL_ID) {
96
		struct thread *thread = machine__findnew_thread(machine, -1,
97
								pid);
98 99 100
		char comm[64];

		if (thread == NULL)
101
			goto out;
102 103

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
104
		thread__set_comm(thread, comm, 0);
105
		thread__put(thread);
106 107
	}

108
	machine->current_tid = NULL;
109
	err = 0;
110

111
out:
112
	if (err) {
113
		zfree(&machine->root_dir);
114 115
		zfree(&machine->mmap_name);
	}
116 117 118
	return 0;
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

136 137 138 139 140
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
141
	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
142 143 144
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
145
	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
146 147 148 149 150 151 152
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

153
static void dsos__purge(struct dsos *dsos)
154 155 156
{
	struct dso *pos, *n;

157
	down_write(&dsos->lock);
158

159
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
160
		RB_CLEAR_NODE(&pos->rb_node);
161
		pos->root = NULL;
162 163
		list_del_init(&pos->node);
		dso__put(pos);
164
	}
165

166
	up_write(&dsos->lock);
167
}
168

169 170 171
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
172
	exit_rwsem(&dsos->lock);
173 174
}

175 176
void machine__delete_threads(struct machine *machine)
{
177
	struct rb_node *nd;
178
	int i;
179

180 181
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
182
		down_write(&threads->lock);
183 184 185
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
186

187 188 189
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
190
		up_write(&threads->lock);
191 192 193
	}
}

194 195
void machine__exit(struct machine *machine)
{
196 197
	int i;

198 199 200
	if (machine == NULL)
		return;

201
	machine__destroy_kernel_maps(machine);
202
	map_groups__exit(&machine->kmaps);
203
	dsos__exit(&machine->dsos);
204
	machine__exit_vdso(machine);
205
	zfree(&machine->root_dir);
206
	zfree(&machine->mmap_name);
207
	zfree(&machine->current_tid);
208 209 210

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
211
		exit_rwsem(&threads->lock);
212
	}
213 214 215 216
}

void machine__delete(struct machine *machine)
{
217 218 219 220
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
221 222
}

223 224 225 226 227 228 229 230 231 232 233 234 235
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
236 237
			      const char *root_dir)
{
238
	struct rb_node **p = &machines->guests.rb_node;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
260
	rb_insert_color(&machine->rb_node, &machines->guests);
261 262 263 264

	return machine;
}

265 266 267 268 269 270 271 272 273 274 275 276 277
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

278
struct machine *machines__find(struct machines *machines, pid_t pid)
279
{
280
	struct rb_node **p = &machines->guests.rb_node;
281 282 283 284
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

285 286 287
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

304
struct machine *machines__findnew(struct machines *machines, pid_t pid)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
321
				seen = strlist__new(NULL, NULL);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

338 339
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
340 341 342
{
	struct rb_node *nd;

343
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
344 345 346 347 348
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

349
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
350 351 352 353
{
	struct rb_node *node;
	struct machine *machine;

354 355 356
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
357 358 359 360 361 362 363
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

364 365 366 367 368 369 370 371 372 373 374 375 376
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

377
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
378 379 380 381
	if (!leader)
		goto out_err;

	if (!leader->mg)
382
		leader->mg = map_groups__new(machine);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
399
		map_groups__put(th->mg);
400 401 402
	}

	th->mg = map_groups__get(leader->mg);
403 404
out_put:
	thread__put(leader);
405 406 407
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
408
	goto out_put;
409 410
}

411
/*
412 413 414
 * Front-end cache - TID lookups come in blocks,
 * so most of the time we dont have to look up
 * the full rbtree:
415
 */
416
static struct thread*
417 418
__threads__get_last_match(struct threads *threads, struct machine *machine,
			  int pid, int tid)
419 420 421
{
	struct thread *th;

422
	th = threads->last_match;
423 424 425
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
426
			return thread__get(th);
427 428
		}

429
		threads->last_match = NULL;
430
	}
431

432 433 434
	return NULL;
}

435 436 437 438 439 440 441 442 443 444 445 446
static struct thread*
threads__get_last_match(struct threads *threads, struct machine *machine,
			int pid, int tid)
{
	struct thread *th = NULL;

	if (perf_singlethreaded)
		th = __threads__get_last_match(threads, machine, pid, tid);

	return th;
}

447
static void
448
__threads__set_last_match(struct threads *threads, struct thread *th)
449 450 451 452
{
	threads->last_match = th;
}

453 454 455 456 457 458 459
static void
threads__set_last_match(struct threads *threads, struct thread *th)
{
	if (perf_singlethreaded)
		__threads__set_last_match(threads, th);
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * Caller must eventually drop thread->refcnt returned with a successful
 * lookup/new thread inserted.
 */
static struct thread *____machine__findnew_thread(struct machine *machine,
						  struct threads *threads,
						  pid_t pid, pid_t tid,
						  bool create)
{
	struct rb_node **p = &threads->entries.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	th = threads__get_last_match(threads, machine, pid, tid);
	if (th)
		return th;

477 478 479 480
	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

481
		if (th->tid == tid) {
482
			threads__set_last_match(threads, th);
483
			machine__update_thread_pid(machine, th, pid);
484
			return thread__get(th);
485 486
		}

487
		if (tid < th->tid)
488 489 490 491 492 493 494 495
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

496
	th = thread__new(pid, tid);
497 498
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
499
		rb_insert_color(&th->rb_node, &threads->entries);
500 501 502 503 504 505 506 507 508

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
509
		if (thread__init_map_groups(th, machine)) {
510
			rb_erase_init(&th->rb_node, &threads->entries);
511
			RB_CLEAR_NODE(&th->rb_node);
512
			thread__put(th);
513
			return NULL;
514
		}
515 516 517 518
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
519
		threads__set_last_match(threads, th);
520
		++threads->nr;
521 522 523 524 525
	}

	return th;
}

526 527
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
528
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
529 530
}

531 532
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
533
{
534
	struct threads *threads = machine__threads(machine, tid);
535 536
	struct thread *th;

537
	down_write(&threads->lock);
538
	th = __machine__findnew_thread(machine, pid, tid);
539
	up_write(&threads->lock);
540
	return th;
541 542
}

543 544
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
545
{
546
	struct threads *threads = machine__threads(machine, tid);
547
	struct thread *th;
548

549
	down_read(&threads->lock);
550
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
551
	up_read(&threads->lock);
552
	return th;
553
}
554

555 556 557 558 559 560 561 562 563
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

564 565
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
566
{
567 568 569
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
570
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
571
	int err = 0;
572

573 574 575
	if (exec)
		machine->comm_exec = true;

576 577 578
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

579 580
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
581
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
582
		err = -1;
583 584
	}

585 586 587
	thread__put(thread);

	return err;
588 589
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

621
int machine__process_lost_event(struct machine *machine __maybe_unused,
622
				union perf_event *event, struct perf_sample *sample __maybe_unused)
623 624 625 626 627 628
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

629 630 631 632 633 634 635 636
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

637 638 639
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
640 641 642
{
	struct dso *dso;

643
	down_write(&machine->dsos.lock);
644 645

	dso = __dsos__find(&machine->dsos, m->name, true);
646
	if (!dso) {
647
		dso = __dsos__addnew(&machine->dsos, m->name);
648
		if (dso == NULL)
649
			goto out_unlock;
650

651
		dso__set_module_info(dso, m, machine);
652
		dso__set_long_name(dso, strdup(filename), true);
653 654
	}

655
	dso__get(dso);
656
out_unlock:
657
	up_write(&machine->dsos.lock);
658 659 660
	return dso;
}

661 662 663 664 665 666 667 668
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

669 670 671 672 673 674 675 676
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

677 678 679 680 681 682 683 684
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static int machine__process_ksymbol_register(struct machine *machine,
					     union perf_event *event,
					     struct perf_sample *sample __maybe_unused)
{
	struct symbol *sym;
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (!map) {
		map = dso__new_map(event->ksymbol_event.name);
		if (!map)
			return -ENOMEM;

		map->start = event->ksymbol_event.addr;
		map->pgoff = map->start;
		map->end = map->start + event->ksymbol_event.len;
		map_groups__insert(&machine->kmaps, map);
	}

	sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len,
			  0, 0, event->ksymbol_event.name);
	if (!sym)
		return -ENOMEM;
	dso__insert_symbol(map->dso, sym);
	return 0;
}

static int machine__process_ksymbol_unregister(struct machine *machine,
					       union perf_event *event,
					       struct perf_sample *sample __maybe_unused)
{
	struct map *map;

	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
	if (map)
		map_groups__remove(&machine->kmaps, map);

	return 0;
}

int machine__process_ksymbol(struct machine *machine __maybe_unused,
			     union perf_event *event,
			     struct perf_sample *sample)
{
	if (dump_trace)
		perf_event__fprintf_ksymbol(event, stdout);

	if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
		return machine__process_ksymbol_unregister(machine, event,
							   sample);
	return machine__process_ksymbol_register(machine, event, sample);
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

753
	dso__set_long_name(dso, dup_filename, true);
754 755
}

756 757
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
758
{
759
	struct map *map = NULL;
760
	struct dso *dso = NULL;
761
	struct kmod_path m;
762

763
	if (kmod_path__parse_name(&m, filename))
764 765
		return NULL;

766
	map = map_groups__find_by_name(&machine->kmaps, m.name);
767 768 769 770 771 772 773
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
774
		goto out;
775
	}
776

777
	dso = machine__findnew_module_dso(machine, &m, filename);
778 779 780
	if (dso == NULL)
		goto out;

781
	map = map__new2(start, dso);
782
	if (map == NULL)
783
		goto out;
784 785

	map_groups__insert(&machine->kmaps, map);
786

787 788
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
789
out:
790 791
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
792
	free(m.name);
793 794 795
	return map;
}

796
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
797 798
{
	struct rb_node *nd;
799
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
800

801
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
802
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
803
		ret += __dsos__fprintf(&pos->dsos.head, fp);
804 805 806 807 808
	}

	return ret;
}

809
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
810 811
				     bool (skip)(struct dso *dso, int parm), int parm)
{
812
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
813 814
}

815
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
816 817 818
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
819
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
820

821
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
822 823 824 825 826 827 828 829 830 831
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
832
	struct dso *kdso = machine__kernel_map(machine)->dso;
833 834 835

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
836 837
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
838 839 840 841 842 843 844 845 846 847 848 849 850
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
851 852
	size_t ret;
	int i;
853

854 855
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
856 857

		down_read(&threads->lock);
858

859
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
860

861 862
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
863

864 865
			ret += thread__fprintf(pos, fp);
		}
866

867
		up_read(&threads->lock);
868
	}
869 870 871 872 873
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
874
	const char *vmlinux_name = machine->mmap_name;
875 876 877
	struct dso *kernel;

	if (machine__is_host(machine)) {
J
Jiri Olsa 已提交
878 879 880
		if (symbol_conf.vmlinux_name)
			vmlinux_name = symbol_conf.vmlinux_name;

881 882
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
883
	} else {
J
Jiri Olsa 已提交
884 885 886
		if (symbol_conf.default_guest_vmlinux_name)
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;

887 888 889
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
890 891 892 893 894 895 896 897 898 899 900 901
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

902 903
void machine__get_kallsyms_filename(struct machine *machine, char *buf,
				    size_t bufsz)
904 905 906 907 908 909 910
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

911 912 913 914 915 916
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
917 918
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
919
{
920
	char filename[PATH_MAX];
921
	int i, err = -1;
922 923
	const char *name;
	u64 addr = 0;
924

925
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
926 927 928 929

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

930
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
931 932
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
933 934 935
			break;
	}

936 937 938
	if (err)
		return -1;

939 940
	if (symbol_name)
		*symbol_name = name;
941

942 943
	*start = addr;
	return 0;
944 945
}

946 947 948
int machine__create_extra_kernel_map(struct machine *machine,
				     struct dso *kernel,
				     struct extra_kernel_map *xm)
949 950 951 952 953 954 955 956 957 958 959 960 961 962
{
	struct kmap *kmap;
	struct map *map;

	map = map__new2(xm->start, kernel);
	if (!map)
		return -1;

	map->end   = xm->end;
	map->pgoff = xm->pgoff;

	kmap = map__kmap(map);

	kmap->kmaps = &machine->kmaps;
963
	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
964 965 966

	map_groups__insert(&machine->kmaps, map);

967 968
	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
		  kmap->name, map->start, map->end);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	map__put(map);

	return 0;
}

static u64 find_entry_trampoline(struct dso *dso)
{
	/* Duplicates are removed so lookup all aliases */
	const char *syms[] = {
		"_entry_trampoline",
		"__entry_trampoline_start",
		"entry_SYSCALL_64_trampoline",
	};
	struct symbol *sym = dso__first_symbol(dso);
	unsigned int i;

	for (; sym; sym = dso__next_symbol(sym)) {
		if (sym->binding != STB_GLOBAL)
			continue;
		for (i = 0; i < ARRAY_SIZE(syms); i++) {
			if (!strcmp(sym->name, syms[i]))
				return sym->start;
		}
	}

	return 0;
}

/*
 * These values can be used for kernels that do not have symbols for the entry
 * trampolines in kallsyms.
 */
#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
#define X86_64_ENTRY_TRAMPOLINE		0x6000

/* Map x86_64 PTI entry trampolines */
int machine__map_x86_64_entry_trampolines(struct machine *machine,
					  struct dso *kernel)
{
1010 1011
	struct map_groups *kmaps = &machine->kmaps;
	struct maps *maps = &kmaps->maps;
1012
	int nr_cpus_avail, cpu;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	bool found = false;
	struct map *map;
	u64 pgoff;

	/*
	 * In the vmlinux case, pgoff is a virtual address which must now be
	 * mapped to a vmlinux offset.
	 */
	for (map = maps__first(maps); map; map = map__next(map)) {
		struct kmap *kmap = __map__kmap(map);
		struct map *dest_map;

		if (!kmap || !is_entry_trampoline(kmap->name))
			continue;

		dest_map = map_groups__find(kmaps, map->pgoff);
		if (dest_map != map)
			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
		found = true;
	}
	if (found || machine->trampolines_mapped)
		return 0;
1035

1036
	pgoff = find_entry_trampoline(kernel);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	if (!pgoff)
		return 0;

	nr_cpus_avail = machine__nr_cpus_avail(machine);

	/* Add a 1 page map for each CPU's entry trampoline */
	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
			 X86_64_ENTRY_TRAMPOLINE;
		struct extra_kernel_map xm = {
			.start = va,
			.end   = va + page_size,
			.pgoff = pgoff,
		};

1053 1054
		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);

1055 1056 1057 1058
		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
			return -1;
	}

1059 1060 1061 1062 1063 1064 1065 1066
	machine->trampolines_mapped = nr_cpus_avail;

	return 0;
}

int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
					     struct dso *kernel __maybe_unused)
{
1067 1068 1069
	return 0;
}

1070 1071
static int
__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1072
{
1073 1074
	struct kmap *kmap;
	struct map *map;
1075

1076 1077 1078
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

1079 1080 1081
	machine->vmlinux_map = map__new2(0, kernel);
	if (machine->vmlinux_map == NULL)
		return -1;
1082

1083 1084 1085 1086 1087
	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
	map = machine__kernel_map(machine);
	kmap = map__kmap(map);
	if (!kmap)
		return -1;
1088

1089 1090
	kmap->kmaps = &machine->kmaps;
	map_groups__insert(&machine->kmaps, map);
1091 1092 1093 1094 1095 1096

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
1097 1098
	struct kmap *kmap;
	struct map *map = machine__kernel_map(machine);
1099

1100 1101
	if (map == NULL)
		return;
1102

1103 1104 1105 1106 1107
	kmap = map__kmap(map);
	map_groups__remove(&machine->kmaps, map);
	if (kmap && kmap->ref_reloc_sym) {
		zfree((char **)&kmap->ref_reloc_sym->name);
		zfree(&kmap->ref_reloc_sym);
1108
	}
1109 1110

	map__zput(machine->vmlinux_map);
1111 1112
}

1113
int machines__create_guest_kernel_maps(struct machines *machines)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

1162
void machines__destroy_kernel_maps(struct machines *machines)
1163
{
1164 1165 1166
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
1167 1168 1169 1170 1171

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
1172
		rb_erase(&pos->rb_node, &machines->guests);
1173 1174 1175 1176
		machine__delete(pos);
	}
}

1177
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1178 1179 1180 1181 1182 1183 1184 1185 1186
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

1187
int machine__load_kallsyms(struct machine *machine, const char *filename)
1188
{
1189
	struct map *map = machine__kernel_map(machine);
1190
	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1191 1192

	if (ret > 0) {
1193
		dso__set_loaded(map->dso);
1194 1195 1196 1197 1198
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
1199
		map_groups__fixup_end(&machine->kmaps);
1200 1201 1202 1203 1204
	}

	return ret;
}

1205
int machine__load_vmlinux_path(struct machine *machine)
1206
{
1207
	struct map *map = machine__kernel_map(machine);
1208
	int ret = dso__load_vmlinux_path(map->dso, map);
1209

1210
	if (ret > 0)
1211
		dso__set_loaded(map->dso);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	return ret;
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	char *long_name;
1253
	struct map *map = map_groups__find_by_name(mg, m->name);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
1269
	if (m->comp && is_kmod_dso(map->dso)) {
1270
		map->dso->symtab_type++;
1271 1272
		map->dso->comp = m->comp;
	}
1273 1274 1275 1276

	return 0;
}

1277
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1278
				const char *dir_name, int depth)
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1303 1304 1305 1306 1307 1308 1309 1310 1311
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1312 1313 1314
			if (ret < 0)
				goto out;
		} else {
1315
			struct kmod_path m;
1316

1317 1318 1319
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1320

1321 1322
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1323

1324
			free(m.name);
1325

1326
			if (ret)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1345
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1346 1347 1348
		 machine->root_dir, version);
	free(version);

1349
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1350
}
1351 1352 1353 1354 1355
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1356

1357 1358
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1359
{
1360
	struct machine *machine = arg;
1361
	struct map *map;
1362

1363 1364 1365
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1366
	map = machine__findnew_module_map(machine, start, name);
1367 1368
	if (map == NULL)
		return -1;
1369
	map->end = start + size;
1370 1371 1372 1373 1374 1375 1376 1377

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1378 1379 1380
	const char *modules;
	char path[PATH_MAX];

1381
	if (machine__is_default_guest(machine)) {
1382
		modules = symbol_conf.default_guest_modules;
1383 1384
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1385 1386 1387
		modules = path;
	}

1388
	if (symbol__restricted_filename(modules, "/proc/modules"))
1389 1390
		return -1;

1391
	if (modules__parse(modules, machine, machine__create_module))
1392 1393
		return -1;

1394 1395
	if (!machine__set_modules_path(machine))
		return 0;
1396

1397
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1398

1399
	return 0;
1400 1401
}

1402 1403 1404
static void machine__set_kernel_mmap(struct machine *machine,
				     u64 start, u64 end)
{
1405 1406 1407 1408 1409 1410 1411 1412
	machine->vmlinux_map->start = start;
	machine->vmlinux_map->end   = end;
	/*
	 * Be a bit paranoid here, some perf.data file came with
	 * a zero sized synthesized MMAP event for the kernel.
	 */
	if (start == 0 && end == 0)
		machine->vmlinux_map->end = ~0ULL;
1413 1414
}

1415 1416 1417
int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1418
	const char *name = NULL;
1419
	struct map *map;
1420
	u64 addr = 0;
1421 1422
	int ret;

1423
	if (kernel == NULL)
1424
		return -1;
1425

1426 1427
	ret = __machine__create_kernel_maps(machine, kernel);
	if (ret < 0)
1428
		goto out_put;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

1439 1440
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
1441
		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1442
			machine__destroy_kernel_maps(machine);
1443 1444
			ret = -1;
			goto out_put;
1445
		}
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		/* we have a real start address now, so re-order the kmaps */
		map = machine__kernel_map(machine);

		map__get(map);
		map_groups__remove(&machine->kmaps, map);

		/* assume it's the last in the kmaps */
		machine__set_kernel_mmap(machine, addr, ~0ULL);

		map_groups__insert(&machine->kmaps, map);
		map__put(map);
1458 1459
	}

1460 1461 1462
	if (machine__create_extra_kernel_maps(machine, kernel))
		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");

1463 1464 1465 1466
	/* update end address of the kernel map using adjacent module address */
	map = map__next(machine__kernel_map(machine));
	if (map)
		machine__set_kernel_mmap(machine, addr, map->start);
1467 1468 1469
out_put:
	dso__put(kernel);
	return ret;
1470 1471
}

1472 1473 1474 1475
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1476
	list_for_each_entry(dso, &machine->dsos.head, node) {
1477 1478 1479 1480 1481 1482 1483
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
					     union perf_event *event)
{
	return machine__is(machine, "x86_64") &&
	       is_entry_trampoline(event->mmap.filename);
}

static int machine__process_extra_kernel_map(struct machine *machine,
					     union perf_event *event)
{
	struct map *kernel_map = machine__kernel_map(machine);
	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
	struct extra_kernel_map xm = {
		.start = event->mmap.start,
		.end   = event->mmap.start + event->mmap.len,
		.pgoff = event->mmap.pgoff,
	};

	if (kernel == NULL)
		return -1;

	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);

	return machine__create_extra_kernel_map(machine, kernel, &xm);
}

1510 1511 1512 1513 1514 1515 1516
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1517 1518 1519 1520
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1521 1522 1523 1524 1525 1526
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
1527 1528
				machine->mmap_name,
				strlen(machine->mmap_name) - 1) == 0;
1529 1530
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1531 1532
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1533 1534 1535 1536 1537 1538
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
1539
				strlen(machine->mmap_name));
1540 1541 1542 1543
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1544 1545 1546
		struct dso *kernel = NULL;
		struct dso *dso;

1547
		down_read(&machine->dsos.lock);
1548

1549
		list_for_each_entry(dso, &machine->dsos.head, node) {
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1570 1571
				continue;

1572

1573 1574 1575 1576
			kernel = dso;
			break;
		}

1577
		up_read(&machine->dsos.lock);
1578

1579
		if (kernel == NULL)
1580
			kernel = machine__findnew_dso(machine, machine->mmap_name);
1581 1582 1583 1584
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1585 1586
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1587
			goto out_problem;
1588
		}
1589

1590 1591
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1592

1593 1594
		machine__set_kernel_mmap(machine, event->mmap.start,
					 event->mmap.start + event->mmap.len);
1595 1596 1597 1598 1599 1600 1601

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
1602 1603 1604
			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
							symbol_name,
							event->mmap.pgoff);
1605 1606 1607 1608 1609 1610
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1611
			dso__load(kernel, machine__kernel_map(machine));
1612
		}
1613 1614
	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
		return machine__process_extra_kernel_map(machine, event);
1615 1616 1617 1618 1619 1620
	}
	return 0;
out_problem:
	return -1;
}

1621
int machine__process_mmap2_event(struct machine *machine,
1622
				 union perf_event *event,
1623
				 struct perf_sample *sample)
1624 1625 1626 1627 1628 1629 1630 1631
{
	struct thread *thread;
	struct map *map;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1632 1633
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1634 1635 1636 1637 1638 1639 1640
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1641
					event->mmap2.tid);
1642 1643 1644
	if (thread == NULL)
		goto out_problem;

1645
	map = map__new(machine, event->mmap2.start,
1646
			event->mmap2.len, event->mmap2.pgoff,
1647
			event->mmap2.maj,
1648 1649
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1650 1651
			event->mmap2.prot,
			event->mmap2.flags,
1652
			event->mmap2.filename, thread);
1653 1654

	if (map == NULL)
1655
		goto out_problem_map;
1656

1657 1658 1659 1660
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1661
	thread__put(thread);
1662
	map__put(map);
1663 1664
	return 0;

1665 1666
out_problem_insert:
	map__put(map);
1667 1668
out_problem_map:
	thread__put(thread);
1669 1670 1671 1672 1673
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1674
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1675
				struct perf_sample *sample)
1676 1677 1678
{
	struct thread *thread;
	struct map *map;
1679
	u32 prot = 0;
1680 1681 1682 1683 1684
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1685 1686
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1687 1688 1689 1690 1691 1692
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1693
	thread = machine__findnew_thread(machine, event->mmap.pid,
1694
					 event->mmap.tid);
1695 1696
	if (thread == NULL)
		goto out_problem;
1697

1698
	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1699
		prot = PROT_EXEC;
1700

1701
	map = map__new(machine, event->mmap.start,
1702
			event->mmap.len, event->mmap.pgoff,
1703
			0, 0, 0, 0, prot, 0,
1704
			event->mmap.filename,
1705
			thread);
1706

1707
	if (map == NULL)
1708
		goto out_problem_map;
1709

1710 1711 1712 1713
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1714
	thread__put(thread);
1715
	map__put(map);
1716 1717
	return 0;

1718 1719
out_problem_insert:
	map__put(map);
1720 1721
out_problem_map:
	thread__put(thread);
1722 1723 1724 1725 1726
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1727
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1728
{
1729 1730 1731
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
1732
		threads__set_last_match(threads, NULL);
1733

1734
	BUG_ON(refcount_read(&th->refcnt) == 0);
1735
	if (lock)
1736
		down_write(&threads->lock);
1737
	rb_erase_init(&th->rb_node, &threads->entries);
1738
	RB_CLEAR_NODE(&th->rb_node);
1739
	--threads->nr;
1740
	/*
1741 1742 1743
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1744
	 */
1745
	list_add_tail(&th->node, &threads->dead);
1746
	if (lock)
1747
		up_write(&threads->lock);
1748
	thread__put(th);
1749 1750
}

1751 1752 1753 1754 1755
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1756 1757
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1758
{
1759 1760 1761
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1762 1763 1764
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1765
	bool do_maps_clone = true;
1766
	int err = 0;
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1786
	/* if a thread currently exists for the thread id remove it */
1787
	if (thread != NULL) {
1788
		machine__remove_thread(machine, thread);
1789 1790
		thread__put(thread);
	}
1791

1792 1793
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	/*
	 * When synthesizing FORK events, we are trying to create thread
	 * objects for the already running tasks on the machine.
	 *
	 * Normally, for a kernel FORK event, we want to clone the parent's
	 * maps because that is what the kernel just did.
	 *
	 * But when synthesizing, this should not be done.  If we do, we end up
	 * with overlapping maps as we process the sythesized MMAP2 events that
	 * get delivered shortly thereafter.
	 *
	 * Use the FORK event misc flags in an internal way to signal this
	 * situation, so we can elide the map clone when appropriate.
	 */
	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
		do_maps_clone = false;
1810 1811

	if (thread == NULL || parent == NULL ||
1812
	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1813
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1814
		err = -1;
1815
	}
1816 1817
	thread__put(thread);
	thread__put(parent);
1818

1819
	return err;
1820 1821
}

1822 1823
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1824
{
1825 1826 1827
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1828 1829 1830 1831

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1832
	if (thread != NULL) {
1833
		thread__exited(thread);
1834 1835
		thread__put(thread);
	}
1836 1837 1838 1839

	return 0;
}

1840 1841
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1842 1843 1844 1845 1846
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1847
		ret = machine__process_comm_event(machine, event, sample); break;
1848
	case PERF_RECORD_MMAP:
1849
		ret = machine__process_mmap_event(machine, event, sample); break;
1850 1851
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1852
	case PERF_RECORD_MMAP2:
1853
		ret = machine__process_mmap2_event(machine, event, sample); break;
1854
	case PERF_RECORD_FORK:
1855
		ret = machine__process_fork_event(machine, event, sample); break;
1856
	case PERF_RECORD_EXIT:
1857
		ret = machine__process_exit_event(machine, event, sample); break;
1858
	case PERF_RECORD_LOST:
1859
		ret = machine__process_lost_event(machine, event, sample); break;
1860 1861
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1862
	case PERF_RECORD_ITRACE_START:
1863
		ret = machine__process_itrace_start_event(machine, event); break;
1864 1865
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1866 1867 1868
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1869 1870
	case PERF_RECORD_KSYMBOL:
		ret = machine__process_ksymbol(machine, event, sample); break;
1871 1872
	case PERF_RECORD_BPF_EVENT:
		ret = machine__process_bpf_event(machine, event, sample); break;
1873 1874 1875 1876 1877 1878 1879
	default:
		ret = -1;
		break;
	}

	return ret;
}
1880

1881
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1882
{
1883
	if (!regexec(regex, sym->name, 0, NULL, 0))
1884 1885 1886 1887
		return 1;
	return 0;
}

1888
static void ip__resolve_ams(struct thread *thread,
1889 1890 1891 1892 1893 1894
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1895 1896 1897 1898 1899 1900 1901
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1902
	thread__find_cpumode_addr_location(thread, ip, &al);
1903 1904 1905 1906 1907

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1908
	ams->phys_addr = 0;
1909 1910
}

1911
static void ip__resolve_data(struct thread *thread,
1912 1913
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1914 1915 1916 1917 1918
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1919
	thread__find_symbol(thread, m, addr, &al);
1920

1921 1922 1923 1924
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1925
	ams->phys_addr = phys_addr;
1926 1927
}

1928 1929
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1930
{
1931
	struct mem_info *mi = mem_info__new();
1932 1933 1934 1935

	if (!mi)
		return NULL;

1936
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1937 1938
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1939 1940 1941 1942 1943
	mi->data_src.val = sample->data_src;

	return mi;
}

1944 1945
static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
{
1946 1947
	char *srcline = NULL;

1948
	if (!map || callchain_param.key == CCKEY_FUNCTION)
1949 1950 1951 1952 1953 1954 1955 1956
		return srcline;

	srcline = srcline__tree_find(&map->dso->srclines, ip);
	if (!srcline) {
		bool show_sym = false;
		bool show_addr = callchain_param.key == CCKEY_ADDRESS;

		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1957
				      sym, show_sym, show_addr, ip);
1958 1959
		srcline__tree_insert(&map->dso->srclines, ip, srcline);
	}
1960

1961
	return srcline;
1962 1963
}

1964 1965 1966 1967 1968
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1969
static int add_callchain_ip(struct thread *thread,
1970
			    struct callchain_cursor *cursor,
1971 1972
			    struct symbol **parent,
			    struct addr_location *root_al,
1973
			    u8 *cpumode,
1974 1975 1976
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1977
			    struct iterations *iter,
1978
			    u64 branch_from)
1979 1980
{
	struct addr_location al;
1981 1982
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1983
	const char *srcline = NULL;
1984 1985 1986

	al.filtered = 0;
	al.sym = NULL;
1987
	if (!cpumode) {
1988
		thread__find_cpumode_addr_location(thread, ip, &al);
1989
	} else {
1990 1991 1992
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1993
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1994 1995
				break;
			case PERF_CONTEXT_KERNEL:
1996
				*cpumode = PERF_RECORD_MISC_KERNEL;
1997 1998
				break;
			case PERF_CONTEXT_USER:
1999
				*cpumode = PERF_RECORD_MISC_USER;
2000 2001 2002 2003 2004 2005 2006 2007
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
2008
				callchain_cursor_reset(cursor);
2009 2010 2011 2012
				return 1;
			}
			return 0;
		}
2013
		thread__find_symbol(thread, *cpumode, ip, &al);
2014 2015
	}

2016
	if (al.sym != NULL) {
2017
		if (perf_hpp_list.parent && !*parent &&
2018 2019 2020 2021 2022 2023 2024
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
2025
			callchain_cursor_reset(cursor);
2026 2027 2028
		}
	}

2029 2030
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
2031 2032 2033 2034 2035 2036

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

2037
	srcline = callchain_srcline(al.map, al.sym, al.addr);
2038
	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2039
				       branch, flags, nr_loop_iter,
2040
				       iter_cycles, branch_from, srcline);
2041 2042
}

2043 2044
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
2045 2046
{
	unsigned int i;
2047 2048
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2049 2050 2051 2052 2053

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
2054 2055
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2056 2057 2058 2059 2060
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

2061 2062 2063 2064 2065
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

2066
	iter->nr_loop_iter++;
2067 2068 2069 2070 2071 2072
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

2073 2074 2075 2076 2077 2078 2079
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
2080 2081
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

2118 2119 2120 2121 2122 2123 2124
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
2125 2126 2127 2128 2129 2130 2131 2132
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
2133
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
2134 2135 2136 2137
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
2138
{
K
Kan Liang 已提交
2139
	struct ip_callchain *chain = sample->callchain;
2140
	int chain_nr = min(max_stack, (int)chain->nr), i;
2141
	u8 cpumode = PERF_RECORD_MISC_USER;
2142
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
2152 2153 2154
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
2168
			int err;
2169 2170 2171
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
2172 2173 2174
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
2175 2176 2177 2178 2179 2180
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
2181
					ip = lbr_stack->entries[0].to;
2182 2183
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2184 2185
					branch_from =
						lbr_stack->entries[0].from;
2186
				}
K
Kan Liang 已提交
2187
			} else {
2188 2189 2190 2191 2192 2193
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
2194 2195
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
2196
				else {
K
Kan Liang 已提交
2197
					ip = lbr_stack->entries[0].to;
2198 2199
					branch = true;
					flags = &lbr_stack->entries[0].flags;
2200 2201
					branch_from =
						lbr_stack->entries[0].from;
2202
				}
K
Kan Liang 已提交
2203 2204
			}

2205 2206
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
2207
					       branch, flags, NULL,
2208
					       branch_from);
K
Kan Liang 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
			     struct callchain_cursor *cursor,
			     struct symbol **parent,
			     struct addr_location *root_al,
			     u8 *cpumode, int ent)
{
	int err = 0;

	while (--ent >= 0) {
		u64 ip = chain->ips[ent];

		if (ip >= PERF_CONTEXT_MAX) {
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, cpumode, ip,
					       false, NULL, NULL, 0);
			break;
		}
	}
	return err;
}

K
Kan Liang 已提交
2239
static int thread__resolve_callchain_sample(struct thread *thread,
2240
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
2241 2242 2243 2244 2245 2246 2247 2248
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
2249
	int chain_nr = 0;
2250
	u8 cpumode = PERF_RECORD_MISC_USER;
2251
	int i, j, err, nr_entries;
2252 2253 2254
	int skip_idx = -1;
	int first_call = 0;

2255 2256 2257
	if (chain)
		chain_nr = chain->nr;

2258
	if (perf_evsel__has_branch_callstack(evsel)) {
2259
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
2260 2261 2262 2263 2264
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

2265 2266 2267 2268
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
2269
	skip_idx = arch_skip_callchain_idx(thread, chain);
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2286
		struct iterations iter[nr];
2287 2288 2289 2290 2291 2292 2293 2294 2295

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2296 2297 2298 2299

				if (chain == NULL)
					continue;

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2317 2318
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2319

2320
		for (i = 0; i < nr; i++) {
2321 2322 2323 2324 2325
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2326

2327
			if (!err)
2328
				err = add_callchain_ip(thread, cursor, parent, root_al,
2329 2330
						       NULL, be[i].from,
						       true, &be[i].flags,
2331
						       &iter[i], 0);
2332 2333 2334 2335 2336
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2337 2338 2339 2340

		if (chain_nr == 0)
			return 0;

2341 2342 2343 2344
		chain_nr -= nr;
	}

check_calls:
2345 2346 2347 2348 2349 2350
	if (callchain_param.order != ORDER_CALLEE) {
		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
					&cpumode, chain->nr - first_call);
		if (err)
			return (err < 0) ? err : 0;
	}
2351
	for (i = first_call, nr_entries = 0;
2352
	     i < chain_nr && nr_entries < max_stack; i++) {
2353 2354 2355
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2356
			j = i;
2357
		else
2358 2359 2360 2361 2362 2363 2364
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2365 2366
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2367 2368 2369 2370 2371 2372 2373
		else if (callchain_param.order != ORDER_CALLEE) {
			err = find_prev_cpumode(chain, thread, cursor, parent,
						root_al, &cpumode, j);
			if (err)
				return (err < 0) ? err : 0;
			continue;
		}
2374

2375 2376
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2377
				       false, NULL, NULL, 0);
2378 2379

		if (err)
2380
			return (err < 0) ? err : 0;
2381 2382 2383 2384 2385
	}

	return 0;
}

2386 2387 2388 2389 2390 2391
static int append_inlines(struct callchain_cursor *cursor,
			  struct map *map, struct symbol *sym, u64 ip)
{
	struct inline_node *inline_node;
	struct inline_list *ilist;
	u64 addr;
2392
	int ret = 1;
2393 2394

	if (!symbol_conf.inline_name || !map || !sym)
2395
		return ret;
2396

2397 2398
	addr = map__map_ip(map, ip);
	addr = map__rip_2objdump(map, addr);
2399 2400 2401 2402 2403

	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
	if (!inline_node) {
		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
		if (!inline_node)
2404
			return ret;
2405 2406 2407 2408
		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
	}

	list_for_each_entry(ilist, &inline_node->val, list) {
2409 2410 2411
		ret = callchain_cursor_append(cursor, ip, map,
					      ilist->symbol, false,
					      NULL, 0, 0, 0, ilist->srcline);
2412 2413 2414 2415 2416

		if (ret != 0)
			return ret;
	}

2417
	return ret;
2418 2419
}

2420 2421 2422
static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2423
	const char *srcline = NULL;
2424
	u64 addr = entry->ip;
2425 2426 2427

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2428

2429 2430 2431
	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
		return 0;

2432 2433 2434 2435
	/*
	 * Convert entry->ip from a virtual address to an offset in
	 * its corresponding binary.
	 */
2436 2437
	if (entry->map)
		addr = map__map_ip(entry->map, entry->ip);
2438 2439

	srcline = callchain_srcline(entry->map, entry->sym, addr);
2440
	return callchain_cursor_append(cursor, entry->ip,
2441
				       entry->map, entry->sym,
2442
				       false, NULL, 0, 0, 0, srcline);
2443 2444
}

2445 2446 2447 2448 2449
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2461
	return unwind__get_entries(unwind_entry, cursor,
2462
				   thread, sample, max_stack);
2463
}
2464

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

2475
	callchain_cursor_reset(cursor);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2500
}
2501 2502 2503 2504 2505

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2506
	struct threads *threads;
2507 2508 2509
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2510
	int i;
2511

2512 2513 2514 2515 2516 2517 2518 2519
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2520

2521 2522 2523 2524 2525
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2526 2527 2528
	}
	return rc;
}
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2551
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2552
				  struct target *target, struct thread_map *threads,
2553
				  perf_event__handler_t process, bool data_mmap,
2554
				  unsigned int nr_threads_synthesize)
2555
{
2556
	if (target__has_task(target))
2557
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2558
	else if (target__has_cpu(target))
2559 2560 2561
		return perf_event__synthesize_threads(tool, process,
						      machine, data_mmap,
						      nr_threads_synthesize);
2562 2563 2564
	/* command specified */
	return 0;
}
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2605
	thread__put(thread);
2606 2607 2608

	return 0;
}
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618
/*
 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
 * normalized arch is needed.
 */
bool machine__is(struct machine *machine, const char *arch)
{
	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
}

2619 2620 2621 2622 2623
int machine__nr_cpus_avail(struct machine *machine)
{
	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
}

2624 2625
int machine__get_kernel_start(struct machine *machine)
{
2626
	struct map *map = machine__kernel_map(machine);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2639
		err = map__load(map);
2640 2641 2642 2643 2644 2645
		/*
		 * On x86_64, PTI entry trampolines are less than the
		 * start of kernel text, but still above 2^63. So leave
		 * kernel_start = 1ULL << 63 for x86_64.
		 */
		if (!err && !machine__is(machine, "x86_64"))
2646 2647 2648 2649
			machine->kernel_start = map->start;
	}
	return err;
}
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
{
	u8 addr_cpumode = cpumode;
	bool kernel_ip;

	if (!machine->single_address_space)
		goto out;

	kernel_ip = machine__kernel_ip(machine, addr);
	switch (cpumode) {
	case PERF_RECORD_MISC_KERNEL:
	case PERF_RECORD_MISC_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
					   PERF_RECORD_MISC_USER;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
	case PERF_RECORD_MISC_GUEST_USER:
		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
					   PERF_RECORD_MISC_GUEST_USER;
		break;
	default:
		break;
	}
out:
	return addr_cpumode;
}

2678 2679
struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2680
	return dsos__findnew(&machine->dsos, filename);
2681
}
2682 2683 2684 2685 2686

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2687
	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2688 2689 2690 2691 2692 2693 2694 2695

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}