compression.c 44.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
11
#include <linux/pagevec.h>
C
Chris Mason 已提交
12
#include <linux/highmem.h>
13
#include <linux/kthread.h>
C
Chris Mason 已提交
14 15 16 17 18
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
19
#include <linux/psi.h>
20
#include <linux/slab.h>
21
#include <linux/sched/mm.h>
22
#include <linux/log2.h>
23
#include <crypto/hash.h>
24
#include "misc.h"
C
Chris Mason 已提交
25
#include "ctree.h"
26
#include "fs.h"
C
Chris Mason 已提交
27 28 29
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
30
#include "bio.h"
C
Chris Mason 已提交
31 32 33 34
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
35
#include "subpage.h"
36
#include "zoned.h"
37
#include "file-item.h"
38
#include "super.h"
C
Chris Mason 已提交
39

40 41 42 43 44 45 46 47 48 49
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
50 51
	default:
		break;
52 53 54 55 56
	}

	return NULL;
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
91 92 93 94 95 96 97
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
98
		 */
99
		*out_pages = 0;
100 101 102 103
		return -E2BIG;
	}
}

104 105
static int compression_decompress_bio(struct list_head *ws,
				      struct compressed_bio *cb)
106
{
107
	switch (cb->compress_type) {
108 109 110 111 112 113 114 115 116 117 118 119 120 121
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
122
               const u8 *data_in, struct page *dest_page,
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

142
static int btrfs_decompress_bio(struct compressed_bio *cb);
143

144
static void finish_compressed_bio_read(struct compressed_bio *cb)
145 146 147 148
{
	unsigned int index;
	struct page *page;

149 150 151
	if (cb->status == BLK_STS_OK)
		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));

152 153 154 155 156 157 158 159
	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
160
	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
161 162 163 164 165 166

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

167
static void end_compressed_bio_read(struct btrfs_bio *bbio)
C
Chris Mason 已提交
168
{
169
	struct compressed_bio *cb = bbio->private;
170

171 172
	if (bbio->bio.bi_status)
		cb->status = bbio->bio.bi_status;
173

174 175
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_read(cb);
176
	bio_put(&bbio->bio);
C
Chris Mason 已提交
177 178 179 180 181 182
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
183 184
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
185
{
186
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 188
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
189
	struct folio_batch fbatch;
190
	const int errno = blk_status_to_errno(cb->status);
C
Chris Mason 已提交
191 192 193
	int i;
	int ret;

194 195
	if (errno)
		mapping_set_error(inode->i_mapping, errno);
196

197 198 199 200 201 202 203 204
	folio_batch_init(&fbatch);
	while (index <= end_index) {
		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
				&fbatch);

		if (ret == 0)
			return;

C
Chris Mason 已提交
205
		for (i = 0; i < ret; i++) {
206 207
			struct folio *folio = fbatch.folios[i];

208
			if (errno)
209 210
				folio_set_error(folio);
			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
211
							 cb->start, cb->len);
C
Chris Mason 已提交
212
		}
213
		folio_batch_release(&fbatch);
C
Chris Mason 已提交
214 215 216 217
	}
	/* the inode may be gone now */
}

218
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
219
{
220
	struct inode *inode = cb->inode;
221
	unsigned int index;
C
Chris Mason 已提交
222

223 224 225
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
226
	 */
227
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
228
			cb->start, cb->start + cb->len - 1,
229
			cb->status == BLK_STS_OK);
C
Chris Mason 已提交
230

231 232
	if (cb->writeback)
		end_compressed_writeback(inode, cb);
233
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
234 235

	/*
236
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
237 238 239
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
240 241
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
242
		page->mapping = NULL;
243
		put_page(page);
C
Chris Mason 已提交
244 245
	}

246
	/* Finally free the cb struct */
C
Chris Mason 已提交
247 248
	kfree(cb->compressed_pages);
	kfree(cb);
249 250
}

251 252 253 254 255 256 257 258
static void btrfs_finish_compressed_write_work(struct work_struct *work)
{
	struct compressed_bio *cb =
		container_of(work, struct compressed_bio, write_end_work);

	finish_compressed_bio_write(cb);
}

259 260 261 262 263 264 265
/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
266
static void end_compressed_bio_write(struct btrfs_bio *bbio)
267
{
268
	struct compressed_bio *cb = bbio->private;
269

270 271
	if (bbio->bio.bi_status)
		cb->status = bbio->bio.bi_status;
272

273
	if (refcount_dec_and_test(&cb->pending_ios)) {
274
		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
275

276 277
		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
	}
278
	bio_put(&bbio->bio);
C
Chris Mason 已提交
279 280
}

281
/*
282 283 284 285 286 287 288 289 290 291 292 293 294
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
295
 */
296 297


298
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
299 300
					blk_opf_t opf,
					btrfs_bio_end_io_t endio_func,
301
					u64 *next_stripe_start)
302
{
303 304 305
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
306
	struct bio *bio;
307
	int ret;
308

309 310
	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, BTRFS_I(cb->inode), endio_func,
			      cb);
311 312
	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;

313 314 315 316 317
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
318

319 320 321 322 323 324 325 326
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
327
	}
328
	*next_stripe_start = disk_bytenr + geom.len;
329
	refcount_inc(&cb->pending_ios);
330 331 332
	return bio;
}

C
Chris Mason 已提交
333 334 335 336 337 338 339 340 341
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
342
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
343 344
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
345
				 struct page **compressed_pages,
346
				 unsigned int nr_pages,
347
				 blk_opf_t write_flags,
348 349
				 struct cgroup_subsys_state *blkcg_css,
				 bool writeback)
C
Chris Mason 已提交
350
{
351
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
352 353
	struct bio *bio = NULL;
	struct compressed_bio *cb;
354
	u64 cur_disk_bytenr = disk_start;
355
	u64 next_stripe_start;
356
	blk_status_t ret = BLK_STS_OK;
357
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
358 359
	const enum req_op bio_op = REQ_BTRFS_ONE_ORDERED |
				   (use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE);
C
Chris Mason 已提交
360

361 362
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
363
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
364
	if (!cb)
365
		return BLK_STS_RESOURCE;
366
	refcount_set(&cb->pending_ios, 1);
367
	cb->status = BLK_STS_OK;
368
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
369 370 371 372
	cb->start = start;
	cb->len = len;
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
373
	cb->writeback = writeback;
374
	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
C
Chris Mason 已提交
375 376
	cb->nr_pages = nr_pages;

377 378 379
	if (blkcg_css)
		kthread_associate_blkcg(blkcg_css);

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
395
				break;
396
			}
397
			btrfs_bio(bio)->file_offset = start;
398 399
			if (blkcg_css)
				bio->bi_opf |= REQ_CGROUP_PUNT;
400
		}
401
		/*
402 403
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
404
		 */
405
		ASSERT(cur_disk_bytenr != next_stripe_start);
C
Chris Mason 已提交
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
438
			ASSERT(bio->bi_iter.bi_size);
439
			btrfs_submit_bio(fs_info, bio, 0);
440
			bio = NULL;
C
Chris Mason 已提交
441
		}
442
		cond_resched();
C
Chris Mason 已提交
443
	}
444

445 446 447
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

448 449
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_write(cb);
450
	return ret;
C
Chris Mason 已提交
451 452
}

453 454
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
455
	struct bio_vec *last = bio_last_bvec_all(bio);
456 457 458 459

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

460 461 462 463 464 465 466 467 468 469 470
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
471 472
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
473
				     struct compressed_bio *cb,
474
				     int *memstall, unsigned long *pflags)
475
{
476
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
477
	unsigned long end_index;
478
	u64 cur = bio_end_offset(cb->orig_bio);
479 480 481 482 483 484 485
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
486
	int sectors_missed = 0;
487 488 489 490 491 492 493

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

494 495 496 497 498 499 500 501 502 503
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

504
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
505

506 507 508 509
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
510

511
		if (pg_index > end_index)
512 513
			break;

514
		page = xa_load(&mapping->i_pages, pg_index);
515
		if (page && !xa_is_value(page)) {
516 517 518 519 520
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
521
				break;
522 523 524 525 526 527 528

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
529 530
		}

531 532
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
533 534 535
		if (!page)
			break;

536
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
537
			put_page(page);
538 539 540
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
541 542
		}

543
		if (!*memstall && PageWorkingset(page)) {
544
			psi_memstall_enter(pflags);
545 546
			*memstall = 1;
		}
547

548 549 550 551 552 553 554
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

555
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
556
		lock_extent(tree, cur, page_end, NULL);
557
		read_lock(&em_tree->lock);
558
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
559
		read_unlock(&em_tree->lock);
560

561 562 563 564 565 566 567
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
568
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
569
			free_extent_map(em);
570
			unlock_extent(tree, cur, page_end, NULL);
571
			unlock_page(page);
572
			put_page(page);
573 574 575 576 577
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
578
			size_t zero_offset = offset_in_page(isize);
579 580 581

			if (zero_offset) {
				int zeros;
582
				zeros = PAGE_SIZE - zero_offset;
583
				memzero_page(page, zero_offset, zeros);
584 585 586
			}
		}

587 588 589
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
590
			unlock_extent(tree, cur, page_end, NULL);
591
			unlock_page(page);
592
			put_page(page);
593 594
			break;
		}
595 596 597 598 599 600 601 602 603
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
604 605 606 607
	}
	return 0;
}

C
Chris Mason 已提交
608 609 610 611 612
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
613
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
614 615 616 617 618
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
619
void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
620
				  int mirror_num)
C
Chris Mason 已提交
621
{
622
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
623 624
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
625
	unsigned int compressed_len;
626 627 628 629
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
630
	u64 file_offset;
631 632
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
633
	struct extent_map *em;
634 635
	unsigned long pflags;
	int memstall = 0;
636
	blk_status_t ret;
637 638
	int ret2;
	int i;
C
Chris Mason 已提交
639 640 641

	em_tree = &BTRFS_I(inode)->extent_tree;

642 643 644
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
645
	/* we need the actual starting offset of this extent in the file */
646
	read_lock(&em_tree->lock);
647
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
648
	read_unlock(&em_tree->lock);
649 650 651 652
	if (!em) {
		ret = BLK_STS_IOERR;
		goto out;
	}
C
Chris Mason 已提交
653

654
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
655
	compressed_len = em->block_len;
656
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
657 658
	if (!cb) {
		ret = BLK_STS_RESOURCE;
659
		goto out;
660
	}
661

662
	refcount_set(&cb->pending_ios, 1);
663
	cb->status = BLK_STS_OK;
C
Chris Mason 已提交
664 665
	cb->inode = inode;

666
	cb->start = em->orig_start;
667 668
	em_len = em->len;
	em_start = em->start;
669

C
Christoph Hellwig 已提交
670
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
671
	cb->compressed_len = compressed_len;
672
	cb->compress_type = em->compress_type;
C
Chris Mason 已提交
673 674
	cb->orig_bio = bio;

675 676 677
	free_extent_map(em);
	em = NULL;

678 679
	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
680 681
	if (!cb->compressed_pages) {
		ret = BLK_STS_RESOURCE;
682
		goto fail;
683
	}
684

685 686 687 688
	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
	if (ret2) {
		ret = BLK_STS_RESOURCE;
		goto fail;
C
Chris Mason 已提交
689 690
	}

691
	add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags);
692 693

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
694
	cb->len = bio->bi_iter.bi_size;
695

696 697 698 699 700 701 702
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
703

704 705 706 707 708 709
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
710 711
				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
				break;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
729

730
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
731
		/*
732 733
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
734
		 */
735 736
		ASSERT(added == real_size);
		cur_disk_byte += added;
737

738 739 740
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
741

742 743 744
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
745

746
		if (submit) {
747 748 749 750
			/*
			 * Save the initial offset of this chunk, as there
			 * is no direct correlation between compressed pages and
			 * the original file offset.  The field is only used for
751
			 * printing error messages.
752 753
			 */
			btrfs_bio(comp_bio)->file_offset = file_offset;
754

755
			ASSERT(comp_bio->bi_iter.bi_size);
756
			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
757
			comp_bio = NULL;
C
Chris Mason 已提交
758 759
		}
	}
760

761
	if (memstall)
762 763
		psi_memstall_leave(&pflags);

764 765
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_read(cb);
766
	return;
767

768 769 770 771 772 773
fail:
	if (cb->compressed_pages) {
		for (i = 0; i < cb->nr_pages; i++) {
			if (cb->compressed_pages[i])
				__free_page(cb->compressed_pages[i]);
		}
774
	}
775 776 777 778 779

	kfree(cb->compressed_pages);
	kfree(cb);
out:
	free_extent_map(em);
780
	btrfs_bio_end_io(btrfs_bio(bio), ret);
781
	return;
C
Chris Mason 已提交
782
}
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
819 820

struct heuristic_ws {
821 822
	/* Partial copy of input data */
	u8 *sample;
823
	u32 sample_size;
824 825
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
826 827
	/* Sorting buffer */
	struct bucket_item *bucket_b;
828 829 830
	struct list_head list;
};

831 832
static struct workspace_manager heuristic_wsm;

833 834 835 836 837 838
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

839 840
	kvfree(workspace->sample);
	kfree(workspace->bucket);
841
	kfree(workspace->bucket_b);
842 843 844
	kfree(workspace);
}

845
static struct list_head *alloc_heuristic_ws(unsigned int level)
846 847 848 849 850 851 852
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

853 854 855 856 857 858 859
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
860

861 862 863 864
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

865
	INIT_LIST_HEAD(&ws->list);
866
	return &ws->list;
867 868 869
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
870 871
}

872
const struct btrfs_compress_op btrfs_heuristic_compress = {
873
	.workspace_manager = &heuristic_wsm,
874 875
};

876
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
877 878
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
879
	&btrfs_zlib_compress,
L
Li Zefan 已提交
880
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
881
	&btrfs_zstd_compress,
882 883
};

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

916
static void btrfs_init_workspace_manager(int type)
917
{
918
	struct workspace_manager *wsm;
919
	struct list_head *workspace;
920

921
	wsm = btrfs_compress_op[type]->workspace_manager;
922 923 924 925
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
926

927 928 929 930
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
931
	workspace = alloc_workspace(type, 0);
932 933 934 935
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
936 937 938
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
939 940 941
	}
}

942
static void btrfs_cleanup_workspace_manager(int type)
943
{
944
	struct workspace_manager *wsman;
945 946
	struct list_head *ws;

947
	wsman = btrfs_compress_op[type]->workspace_manager;
948 949 950
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
951
		free_workspace(type, ws);
952
		atomic_dec(&wsman->total_ws);
953 954 955 956
	}
}

/*
957 958 959 960
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
961
 */
962
struct list_head *btrfs_get_workspace(int type, unsigned int level)
963
{
964
	struct workspace_manager *wsm;
965 966
	struct list_head *workspace;
	int cpus = num_online_cpus();
967
	unsigned nofs_flag;
968 969 970 971 972 973
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

974
	wsm = btrfs_compress_op[type]->workspace_manager;
975 976 977 978 979
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
980 981

again:
982 983 984
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
985
		list_del(workspace);
986
		(*free_ws)--;
987
		spin_unlock(ws_lock);
988 989 990
		return workspace;

	}
991
	if (atomic_read(total_ws) > cpus) {
992 993
		DEFINE_WAIT(wait);

994 995
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
996
		if (atomic_read(total_ws) > cpus && !*free_ws)
997
			schedule();
998
		finish_wait(ws_wait, &wait);
999 1000
		goto again;
	}
1001
	atomic_inc(total_ws);
1002
	spin_unlock(ws_lock);
1003

1004 1005 1006 1007 1008 1009
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1010
	workspace = alloc_workspace(type, level);
1011 1012
	memalloc_nofs_restore(nofs_flag);

1013
	if (IS_ERR(workspace)) {
1014
		atomic_dec(total_ws);
1015
		wake_up(ws_wait);
1016 1017 1018 1019 1020 1021

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1022 1023 1024 1025
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1026
		 */
1027 1028 1029 1030 1031 1032
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1033
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1034 1035
			}
		}
1036
		goto again;
1037 1038 1039 1040
	}
	return workspace;
}

1041
static struct list_head *get_workspace(int type, int level)
1042
{
1043
	switch (type) {
1044
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1045
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1046
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1047 1048 1049 1050 1051 1052 1053 1054
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1055 1056
}

1057 1058 1059 1060
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1061
void btrfs_put_workspace(int type, struct list_head *ws)
1062
{
1063
	struct workspace_manager *wsm;
1064 1065 1066 1067 1068 1069
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1070
	wsm = btrfs_compress_op[type]->workspace_manager;
1071 1072 1073 1074 1075
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1076 1077

	spin_lock(ws_lock);
1078
	if (*free_ws <= num_online_cpus()) {
1079
		list_add(ws, idle_ws);
1080
		(*free_ws)++;
1081
		spin_unlock(ws_lock);
1082 1083
		goto wake;
	}
1084
	spin_unlock(ws_lock);
1085

1086
	free_workspace(type, ws);
1087
	atomic_dec(total_ws);
1088
wake:
1089
	cond_wake_up(ws_wait);
1090 1091
}

1092 1093
static void put_workspace(int type, struct list_head *ws)
{
1094
	switch (type) {
1095 1096 1097
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1098 1099 1100 1101 1102 1103 1104 1105
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1106 1107
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1124
/*
1125 1126
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1127
 *
1128 1129 1130 1131 1132
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1133 1134
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1135
 *
1136 1137
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1138 1139 1140
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1141 1142
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1143
 */
1144
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1145
			 u64 start, struct page **pages,
1146 1147
			 unsigned long *out_pages,
			 unsigned long *total_in,
1148
			 unsigned long *total_out)
1149
{
1150
	int type = btrfs_compress_type(type_level);
1151
	int level = btrfs_compress_level(type_level);
1152 1153 1154
	struct list_head *workspace;
	int ret;

1155
	level = btrfs_compress_set_level(type, level);
1156
	workspace = get_workspace(type, level);
1157 1158
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1159
	put_workspace(type, workspace);
1160 1161 1162
	return ret;
}

1163
static int btrfs_decompress_bio(struct compressed_bio *cb)
1164 1165 1166
{
	struct list_head *workspace;
	int ret;
1167
	int type = cb->compress_type;
1168

1169
	workspace = get_workspace(type, 0);
1170
	ret = compression_decompress_bio(workspace, cb);
1171
	put_workspace(type, workspace);
1172

1173 1174 1175 1176 1177 1178 1179 1180
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
1181
int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1182 1183 1184 1185 1186
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1187
	workspace = get_workspace(type, 0);
1188 1189
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1190
	put_workspace(type, workspace);
1191

1192 1193 1194
	return ret;
}

1195
int __init btrfs_init_compress(void)
1196
{
1197 1198 1199 1200
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1201
	return 0;
1202 1203
}

1204
void __cold btrfs_exit_compress(void)
1205
{
1206 1207 1208 1209
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1210
}
1211 1212

/*
1213
 * Copy decompressed data from working buffer to pages.
1214
 *
1215 1216 1217 1218 1219 1220
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1221
 *
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1241
 */
1242 1243
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1244
{
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1264

1265 1266 1267
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1268

1269 1270 1271 1272
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1273

1274
		/*
1275 1276
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1277
		 */
1278 1279 1280 1281
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		cur_offset += copy_len;
1282

1283 1284 1285 1286
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1287 1288 1289
	}
	return 1;
}
1290

1291 1292 1293
/*
 * Shannon Entropy calculation
 *
1294
 * Pure byte distribution analysis fails to determine compressibility of data.
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1358
 * Use 16 u32 counters for calculating new position in buf array
1359 1360 1361 1362 1363 1364
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1365
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1366
		       int num)
1367
{
1368 1369 1370 1371 1372 1373 1374 1375
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1376

1377 1378 1379 1380
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1381
	max_num = array[0].count;
1382
	for (i = 1; i < num; i++) {
1383
		buf_num = array[i].count;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1396
			buf_num = array[i].count;
1397 1398 1399 1400 1401 1402 1403 1404
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1405
			buf_num = array[i].count;
1406 1407 1408
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1409
			array_buf[new_addr] = array[i];
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1423
			buf_num = array_buf[i].count;
1424 1425 1426 1427 1428 1429 1430 1431
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1432
			buf_num = array_buf[i].count;
1433 1434 1435
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1436
			array[new_addr] = array_buf[i];
1437 1438 1439 1440
		}

		shift += RADIX_BASE;
	}
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1470
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1526 1527 1528 1529 1530 1531 1532 1533
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
1558
	if (!PAGE_ALIGNED(end))
1559 1560 1561 1562 1563
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1564
		in_data = kmap_local_page(page);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1577
		kunmap_local(in_data);
1578 1579 1580 1581 1582 1583 1584 1585
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1586 1587 1588 1589 1590
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
1591
 * (compressible/incompressible) to avoid wasting CPU time on incompressible
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1603
	struct list_head *ws_list = get_workspace(0, 0);
1604
	struct heuristic_ws *ws;
1605 1606
	u32 i;
	u8 byte;
1607
	int ret = 0;
1608

1609 1610
	ws = list_entry(ws_list, struct heuristic_ws, list);

1611 1612
	heuristic_collect_sample(inode, start, end, ws);

1613 1614 1615 1616 1617
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1618 1619 1620 1621 1622
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1623 1624
	}

1625 1626 1627 1628 1629 1630
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1671
out:
1672
	put_workspace(0, ws_list);
1673 1674
	return ret;
}
1675

1676 1677 1678 1679 1680
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1681
{
1682 1683 1684 1685
	unsigned int level = 0;
	int ret;

	if (!type)
1686 1687
		return 0;

1688 1689 1690 1691 1692 1693
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1694 1695 1696 1697
	level = btrfs_compress_set_level(type, level);

	return level;
}