compression.c 46.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
11
#include <linux/pagevec.h>
C
Chris Mason 已提交
12
#include <linux/highmem.h>
13
#include <linux/kthread.h>
C
Chris Mason 已提交
14 15 16 17 18
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
19
#include <linux/psi.h>
20
#include <linux/slab.h>
21
#include <linux/sched/mm.h>
22
#include <linux/log2.h>
23
#include <crypto/hash.h>
24
#include "misc.h"
C
Chris Mason 已提交
25
#include "ctree.h"
26
#include "fs.h"
C
Chris Mason 已提交
27 28 29 30 31 32 33 34
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
35
#include "subpage.h"
36
#include "zoned.h"
37
#include "file-item.h"
38
#include "super.h"
C
Chris Mason 已提交
39

40 41 42 43 44 45 46 47 48 49
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
50 51
	default:
		break;
52 53 54 55 56
	}

	return NULL;
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
91 92 93 94 95 96 97
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
98
		 */
99
		*out_pages = 0;
100 101 102 103
		return -E2BIG;
	}
}

104 105
static int compression_decompress_bio(struct list_head *ws,
				      struct compressed_bio *cb)
106
{
107
	switch (cb->compress_type) {
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

142
static int btrfs_decompress_bio(struct compressed_bio *cb);
143

144
static void finish_compressed_bio_read(struct compressed_bio *cb)
145 146 147 148
{
	unsigned int index;
	struct page *page;

149 150 151
	if (cb->status == BLK_STS_OK)
		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));

152 153 154 155 156 157 158 159
	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
160
	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
161 162 163 164 165 166

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

167 168 169 170
/*
 * Verify the checksums and kick off repair if needed on the uncompressed data
 * before decompressing it into the original bio and freeing the uncompressed
 * pages.
C
Chris Mason 已提交
171
 */
172
static void end_compressed_bio_read(struct btrfs_bio *bbio)
C
Chris Mason 已提交
173
{
174
	struct compressed_bio *cb = bbio->private;
175 176 177 178 179
	struct inode *inode = cb->inode;
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
	struct btrfs_inode *bi = BTRFS_I(inode);
	bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
180
	blk_status_t status = bbio->bio.bi_status;
181 182 183 184 185 186 187 188
	struct bvec_iter iter;
	struct bio_vec bv;
	u32 offset;

	btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
		u64 start = bbio->file_offset + offset;

		if (!status &&
189
		    (!csum || !btrfs_check_data_csum(bi, bbio, offset,
190
						     bv.bv_page, bv.bv_offset))) {
191 192
			btrfs_clean_io_failure(bi, start, bv.bv_page,
					       bv.bv_offset);
193 194
		} else {
			int ret;
195

196
			refcount_inc(&cb->pending_ios);
197
			ret = btrfs_repair_one_sector(BTRFS_I(inode), bbio, offset,
198
						      bv.bv_page, bv.bv_offset,
199
						      true);
200 201 202 203 204 205
			if (ret) {
				refcount_dec(&cb->pending_ios);
				status = errno_to_blk_status(ret);
			}
		}
	}
206

207 208
	if (status)
		cb->status = status;
209

210 211 212
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_read(cb);
	btrfs_bio_free_csum(bbio);
213
	bio_put(&bbio->bio);
C
Chris Mason 已提交
214 215 216 217 218 219
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
220 221
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
222
{
223
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
224 225
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
226
	struct folio_batch fbatch;
227
	const int errno = blk_status_to_errno(cb->status);
C
Chris Mason 已提交
228 229 230
	int i;
	int ret;

231 232
	if (errno)
		mapping_set_error(inode->i_mapping, errno);
233

234 235 236 237 238 239 240 241
	folio_batch_init(&fbatch);
	while (index <= end_index) {
		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
				&fbatch);

		if (ret == 0)
			return;

C
Chris Mason 已提交
242
		for (i = 0; i < ret; i++) {
243 244
			struct folio *folio = fbatch.folios[i];

245
			if (errno)
246 247
				folio_set_error(folio);
			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
248
							 cb->start, cb->len);
C
Chris Mason 已提交
249
		}
250
		folio_batch_release(&fbatch);
C
Chris Mason 已提交
251 252 253 254
	}
	/* the inode may be gone now */
}

255
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
256
{
257
	struct inode *inode = cb->inode;
258
	unsigned int index;
C
Chris Mason 已提交
259

260 261 262
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
263
	 */
264
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
265
			cb->start, cb->start + cb->len - 1,
266
			cb->status == BLK_STS_OK);
C
Chris Mason 已提交
267

268 269
	if (cb->writeback)
		end_compressed_writeback(inode, cb);
270
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
271 272

	/*
273
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
274 275 276
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
277 278
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
279
		page->mapping = NULL;
280
		put_page(page);
C
Chris Mason 已提交
281 282
	}

283
	/* Finally free the cb struct */
C
Chris Mason 已提交
284 285
	kfree(cb->compressed_pages);
	kfree(cb);
286 287
}

288 289 290 291 292 293 294 295
static void btrfs_finish_compressed_write_work(struct work_struct *work)
{
	struct compressed_bio *cb =
		container_of(work, struct compressed_bio, write_end_work);

	finish_compressed_bio_write(cb);
}

296 297 298 299 300 301 302
/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
303
static void end_compressed_bio_write(struct btrfs_bio *bbio)
304
{
305
	struct compressed_bio *cb = bbio->private;
306

307 308
	if (bbio->bio.bi_status)
		cb->status = bbio->bio.bi_status;
309

310
	if (refcount_dec_and_test(&cb->pending_ios)) {
311
		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
312

313
		btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio);
314 315
		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
	}
316
	bio_put(&bbio->bio);
C
Chris Mason 已提交
317 318
}

319
/*
320 321 322 323 324 325 326 327 328 329 330 331 332
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
333
 */
334 335


336
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
337 338
					blk_opf_t opf,
					btrfs_bio_end_io_t endio_func,
339
					u64 *next_stripe_start)
340
{
341 342 343
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
344
	struct bio *bio;
345
	int ret;
346

347
	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb);
348 349
	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;

350 351 352 353 354
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
355

356 357 358 359 360 361 362 363
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
364
	}
365
	*next_stripe_start = disk_bytenr + geom.len;
366
	refcount_inc(&cb->pending_ios);
367 368 369
	return bio;
}

C
Chris Mason 已提交
370 371 372 373 374 375 376 377 378
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
379
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
380 381
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
382
				 struct page **compressed_pages,
383
				 unsigned int nr_pages,
384
				 blk_opf_t write_flags,
385 386
				 struct cgroup_subsys_state *blkcg_css,
				 bool writeback)
C
Chris Mason 已提交
387
{
388
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
389 390
	struct bio *bio = NULL;
	struct compressed_bio *cb;
391
	u64 cur_disk_bytenr = disk_start;
392
	u64 next_stripe_start;
393
	blk_status_t ret = BLK_STS_OK;
394
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
395
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
396
	const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
397

398 399
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
400
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
401
	if (!cb)
402
		return BLK_STS_RESOURCE;
403
	refcount_set(&cb->pending_ios, 1);
404
	cb->status = BLK_STS_OK;
405
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
406 407 408 409
	cb->start = start;
	cb->len = len;
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
410
	cb->writeback = writeback;
411
	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
C
Chris Mason 已提交
412 413
	cb->nr_pages = nr_pages;

414 415 416
	if (blkcg_css)
		kthread_associate_blkcg(blkcg_css);

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
432
				break;
433
			}
434 435
			if (blkcg_css)
				bio->bi_opf |= REQ_CGROUP_PUNT;
436
		}
437
		/*
438 439
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
440
		 */
441
		ASSERT(cur_disk_bytenr != next_stripe_start);
C
Chris Mason 已提交
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
474
			if (!skip_sum) {
475
				ret = btrfs_csum_one_bio(inode, bio, start, true);
476
				if (ret) {
477
					btrfs_bio_end_io(btrfs_bio(bio), ret);
478 479
					break;
				}
480
			}
C
Chris Mason 已提交
481

482
			ASSERT(bio->bi_iter.bi_size);
483
			btrfs_submit_bio(fs_info, bio, 0);
484
			bio = NULL;
C
Chris Mason 已提交
485
		}
486
		cond_resched();
C
Chris Mason 已提交
487
	}
488

489 490 491
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

492 493
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_write(cb);
494
	return ret;
C
Chris Mason 已提交
495 496
}

497 498
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
499
	struct bio_vec *last = bio_last_bvec_all(bio);
500 501 502 503

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

504 505 506 507 508 509 510 511 512 513 514
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
515 516
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
517
				     struct compressed_bio *cb,
518
				     int *memstall, unsigned long *pflags)
519
{
520
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
521
	unsigned long end_index;
522
	u64 cur = bio_end_offset(cb->orig_bio);
523 524 525 526 527 528 529
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
530
	int sectors_missed = 0;
531 532 533 534 535 536 537

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

538 539 540 541 542 543 544 545 546 547
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

548
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
549

550 551 552 553
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
554

555
		if (pg_index > end_index)
556 557
			break;

558
		page = xa_load(&mapping->i_pages, pg_index);
559
		if (page && !xa_is_value(page)) {
560 561 562 563 564
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
565
				break;
566 567 568 569 570 571 572

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
573 574
		}

575 576
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
577 578 579
		if (!page)
			break;

580
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
581
			put_page(page);
582 583 584
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
585 586
		}

587
		if (!*memstall && PageWorkingset(page)) {
588
			psi_memstall_enter(pflags);
589 590
			*memstall = 1;
		}
591

592 593 594 595 596 597 598
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

599
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
600
		lock_extent(tree, cur, page_end, NULL);
601
		read_lock(&em_tree->lock);
602
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
603
		read_unlock(&em_tree->lock);
604

605 606 607 608 609 610 611
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
612
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
613
			free_extent_map(em);
614
			unlock_extent(tree, cur, page_end, NULL);
615
			unlock_page(page);
616
			put_page(page);
617 618 619 620 621
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
622
			size_t zero_offset = offset_in_page(isize);
623 624 625

			if (zero_offset) {
				int zeros;
626
				zeros = PAGE_SIZE - zero_offset;
627
				memzero_page(page, zero_offset, zeros);
628 629 630
			}
		}

631 632 633
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
634
			unlock_extent(tree, cur, page_end, NULL);
635
			unlock_page(page);
636
			put_page(page);
637 638
			break;
		}
639 640 641 642 643 644 645 646 647
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
648 649 650 651
	}
	return 0;
}

C
Chris Mason 已提交
652 653 654 655 656
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
657
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
658 659 660 661 662
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
663
void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
664
				  int mirror_num)
C
Chris Mason 已提交
665
{
666
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
667 668
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
669
	unsigned int compressed_len;
670 671 672 673
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
674
	u64 file_offset;
675 676
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
677
	struct extent_map *em;
678 679
	unsigned long pflags;
	int memstall = 0;
680
	blk_status_t ret;
681 682
	int ret2;
	int i;
C
Chris Mason 已提交
683 684 685

	em_tree = &BTRFS_I(inode)->extent_tree;

686 687 688
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
689
	/* we need the actual starting offset of this extent in the file */
690
	read_lock(&em_tree->lock);
691
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
692
	read_unlock(&em_tree->lock);
693 694 695 696
	if (!em) {
		ret = BLK_STS_IOERR;
		goto out;
	}
C
Chris Mason 已提交
697

698
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
699
	compressed_len = em->block_len;
700
	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
701 702
	if (!cb) {
		ret = BLK_STS_RESOURCE;
703
		goto out;
704
	}
705

706
	refcount_set(&cb->pending_ios, 1);
707
	cb->status = BLK_STS_OK;
C
Chris Mason 已提交
708 709
	cb->inode = inode;

710
	cb->start = em->orig_start;
711 712
	em_len = em->len;
	em_start = em->start;
713

C
Christoph Hellwig 已提交
714
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
715
	cb->compressed_len = compressed_len;
716
	cb->compress_type = em->compress_type;
C
Chris Mason 已提交
717 718
	cb->orig_bio = bio;

719 720 721
	free_extent_map(em);
	em = NULL;

722 723
	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
724 725
	if (!cb->compressed_pages) {
		ret = BLK_STS_RESOURCE;
726
		goto fail;
727
	}
728

729 730 731 732
	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
	if (ret2) {
		ret = BLK_STS_RESOURCE;
		goto fail;
C
Chris Mason 已提交
733 734
	}

735
	add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags);
736 737

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
738
	cb->len = bio->bi_iter.bi_size;
739

740 741 742 743 744 745 746
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
747

748 749 750 751 752 753
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
754 755
				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
				break;
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
773

774
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
775
		/*
776 777
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
778
		 */
779 780
		ASSERT(added == real_size);
		cur_disk_byte += added;
781

782 783 784
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
785

786 787 788
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
789

790
		if (submit) {
791 792 793
			/* Save the original iter for read repair */
			if (bio_op(comp_bio) == REQ_OP_READ)
				btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
794

795 796 797 798 799 800 801
			/*
			 * Save the initial offset of this chunk, as there
			 * is no direct correlation between compressed pages and
			 * the original file offset.  The field is only used for
			 * priting error messages.
			 */
			btrfs_bio(comp_bio)->file_offset = file_offset;
802

803
			ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
804
			if (ret) {
805
				btrfs_bio_end_io(btrfs_bio(comp_bio), ret);
806 807
				break;
			}
808

809
			ASSERT(comp_bio->bi_iter.bi_size);
810
			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
811
			comp_bio = NULL;
C
Chris Mason 已提交
812 813
		}
	}
814

815
	if (memstall)
816 817
		psi_memstall_leave(&pflags);

818 819
	if (refcount_dec_and_test(&cb->pending_ios))
		finish_compressed_bio_read(cb);
820
	return;
821

822 823 824 825 826 827
fail:
	if (cb->compressed_pages) {
		for (i = 0; i < cb->nr_pages; i++) {
			if (cb->compressed_pages[i])
				__free_page(cb->compressed_pages[i]);
		}
828
	}
829 830 831 832 833

	kfree(cb->compressed_pages);
	kfree(cb);
out:
	free_extent_map(em);
834
	btrfs_bio_end_io(btrfs_bio(bio), ret);
835
	return;
C
Chris Mason 已提交
836
}
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
873 874

struct heuristic_ws {
875 876
	/* Partial copy of input data */
	u8 *sample;
877
	u32 sample_size;
878 879
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
880 881
	/* Sorting buffer */
	struct bucket_item *bucket_b;
882 883 884
	struct list_head list;
};

885 886
static struct workspace_manager heuristic_wsm;

887 888 889 890 891 892
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

893 894
	kvfree(workspace->sample);
	kfree(workspace->bucket);
895
	kfree(workspace->bucket_b);
896 897 898
	kfree(workspace);
}

899
static struct list_head *alloc_heuristic_ws(unsigned int level)
900 901 902 903 904 905 906
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

907 908 909 910 911 912 913
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
914

915 916 917 918
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

919
	INIT_LIST_HEAD(&ws->list);
920
	return &ws->list;
921 922 923
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
924 925
}

926
const struct btrfs_compress_op btrfs_heuristic_compress = {
927
	.workspace_manager = &heuristic_wsm,
928 929
};

930
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
931 932
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
933
	&btrfs_zlib_compress,
L
Li Zefan 已提交
934
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
935
	&btrfs_zstd_compress,
936 937
};

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

970
static void btrfs_init_workspace_manager(int type)
971
{
972
	struct workspace_manager *wsm;
973
	struct list_head *workspace;
974

975
	wsm = btrfs_compress_op[type]->workspace_manager;
976 977 978 979
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
980

981 982 983 984
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
985
	workspace = alloc_workspace(type, 0);
986 987 988 989
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
990 991 992
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
993 994 995
	}
}

996
static void btrfs_cleanup_workspace_manager(int type)
997
{
998
	struct workspace_manager *wsman;
999 1000
	struct list_head *ws;

1001
	wsman = btrfs_compress_op[type]->workspace_manager;
1002 1003 1004
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1005
		free_workspace(type, ws);
1006
		atomic_dec(&wsman->total_ws);
1007 1008 1009 1010
	}
}

/*
1011 1012 1013 1014
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1015
 */
1016
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1017
{
1018
	struct workspace_manager *wsm;
1019 1020
	struct list_head *workspace;
	int cpus = num_online_cpus();
1021
	unsigned nofs_flag;
1022 1023 1024 1025 1026 1027
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1028
	wsm = btrfs_compress_op[type]->workspace_manager;
1029 1030 1031 1032 1033
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1034 1035

again:
1036 1037 1038
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1039
		list_del(workspace);
1040
		(*free_ws)--;
1041
		spin_unlock(ws_lock);
1042 1043 1044
		return workspace;

	}
1045
	if (atomic_read(total_ws) > cpus) {
1046 1047
		DEFINE_WAIT(wait);

1048 1049
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1050
		if (atomic_read(total_ws) > cpus && !*free_ws)
1051
			schedule();
1052
		finish_wait(ws_wait, &wait);
1053 1054
		goto again;
	}
1055
	atomic_inc(total_ws);
1056
	spin_unlock(ws_lock);
1057

1058 1059 1060 1061 1062 1063
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1064
	workspace = alloc_workspace(type, level);
1065 1066
	memalloc_nofs_restore(nofs_flag);

1067
	if (IS_ERR(workspace)) {
1068
		atomic_dec(total_ws);
1069
		wake_up(ws_wait);
1070 1071 1072 1073 1074 1075

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1076 1077 1078 1079
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1080
		 */
1081 1082 1083 1084 1085 1086
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1087
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1088 1089
			}
		}
1090
		goto again;
1091 1092 1093 1094
	}
	return workspace;
}

1095
static struct list_head *get_workspace(int type, int level)
1096
{
1097
	switch (type) {
1098
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1099
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1100
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1101 1102 1103 1104 1105 1106 1107 1108
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1109 1110
}

1111 1112 1113 1114
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1115
void btrfs_put_workspace(int type, struct list_head *ws)
1116
{
1117
	struct workspace_manager *wsm;
1118 1119 1120 1121 1122 1123
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1124
	wsm = btrfs_compress_op[type]->workspace_manager;
1125 1126 1127 1128 1129
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1130 1131

	spin_lock(ws_lock);
1132
	if (*free_ws <= num_online_cpus()) {
1133
		list_add(ws, idle_ws);
1134
		(*free_ws)++;
1135
		spin_unlock(ws_lock);
1136 1137
		goto wake;
	}
1138
	spin_unlock(ws_lock);
1139

1140
	free_workspace(type, ws);
1141
	atomic_dec(total_ws);
1142
wake:
1143
	cond_wake_up(ws_wait);
1144 1145
}

1146 1147
static void put_workspace(int type, struct list_head *ws)
{
1148
	switch (type) {
1149 1150 1151
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1152 1153 1154 1155 1156 1157 1158 1159
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1178
/*
1179 1180
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1181
 *
1182 1183 1184 1185 1186
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1187 1188
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1189
 *
1190 1191
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1192 1193 1194
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1195 1196
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1197
 */
1198
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1199
			 u64 start, struct page **pages,
1200 1201
			 unsigned long *out_pages,
			 unsigned long *total_in,
1202
			 unsigned long *total_out)
1203
{
1204
	int type = btrfs_compress_type(type_level);
1205
	int level = btrfs_compress_level(type_level);
1206 1207 1208
	struct list_head *workspace;
	int ret;

1209
	level = btrfs_compress_set_level(type, level);
1210
	workspace = get_workspace(type, level);
1211 1212
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1213
	put_workspace(type, workspace);
1214 1215 1216
	return ret;
}

1217
static int btrfs_decompress_bio(struct compressed_bio *cb)
1218 1219 1220
{
	struct list_head *workspace;
	int ret;
1221
	int type = cb->compress_type;
1222

1223
	workspace = get_workspace(type, 0);
1224
	ret = compression_decompress_bio(workspace, cb);
1225
	put_workspace(type, workspace);
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1241
	workspace = get_workspace(type, 0);
1242 1243
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1244
	put_workspace(type, workspace);
1245

1246 1247 1248
	return ret;
}

1249
int __init btrfs_init_compress(void)
1250
{
1251 1252 1253 1254
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1255
	return 0;
1256 1257
}

1258
void __cold btrfs_exit_compress(void)
1259
{
1260 1261 1262 1263
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1264
}
1265 1266

/*
1267
 * Copy decompressed data from working buffer to pages.
1268
 *
1269 1270 1271 1272 1273 1274
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1275
 *
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1295
 */
1296 1297
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1298
{
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1318

1319 1320 1321
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1322

1323 1324 1325 1326
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1327

1328
		/*
1329 1330
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1331
		 */
1332 1333 1334 1335
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		cur_offset += copy_len;
1336

1337 1338 1339 1340
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1341 1342 1343
	}
	return 1;
}
1344

1345 1346 1347
/*
 * Shannon Entropy calculation
 *
1348
 * Pure byte distribution analysis fails to determine compressibility of data.
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1412
 * Use 16 u32 counters for calculating new position in buf array
1413 1414 1415 1416 1417 1418
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1419
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1420
		       int num)
1421
{
1422 1423 1424 1425 1426 1427 1428 1429
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1430

1431 1432 1433 1434
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1435
	max_num = array[0].count;
1436
	for (i = 1; i < num; i++) {
1437
		buf_num = array[i].count;
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1450
			buf_num = array[i].count;
1451 1452 1453 1454 1455 1456 1457 1458
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1459
			buf_num = array[i].count;
1460 1461 1462
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1463
			array_buf[new_addr] = array[i];
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1477
			buf_num = array_buf[i].count;
1478 1479 1480 1481 1482 1483 1484 1485
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1486
			buf_num = array_buf[i].count;
1487 1488 1489
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1490
			array[new_addr] = array_buf[i];
1491 1492 1493 1494
		}

		shift += RADIX_BASE;
	}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1524
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1580 1581 1582 1583 1584 1585 1586 1587
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1618
		in_data = kmap_local_page(page);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1631
		kunmap_local(in_data);
1632 1633 1634 1635 1636 1637 1638 1639
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1657
	struct list_head *ws_list = get_workspace(0, 0);
1658
	struct heuristic_ws *ws;
1659 1660
	u32 i;
	u8 byte;
1661
	int ret = 0;
1662

1663 1664
	ws = list_entry(ws_list, struct heuristic_ws, list);

1665 1666
	heuristic_collect_sample(inode, start, end, ws);

1667 1668 1669 1670 1671
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1672 1673 1674 1675 1676
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1677 1678
	}

1679 1680 1681 1682 1683 1684
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1725
out:
1726
	put_workspace(0, ws_list);
1727 1728
	return ret;
}
1729

1730 1731 1732 1733 1734
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1735
{
1736 1737 1738 1739
	unsigned int level = 0;
	int ret;

	if (!type)
1740 1741
		return 0;

1742 1743 1744 1745 1746 1747
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1748 1749 1750 1751
	level = btrfs_compress_set_level(type, level);

	return level;
}