compression.c 41.5 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/bit_spinlock.h>
34
#include <linux/slab.h>
35
#include <linux/sched/mm.h>
36
#include <linux/log2.h>
C
Chris Mason 已提交
37 38 39 40 41 42 43 44 45 46
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

62
static int btrfs_decompress_bio(struct compressed_bio *cb);
63

64
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
65 66
				      unsigned long disk_size)
{
67
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
68

69
	return sizeof(struct compressed_bio) +
70
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
71 72
}

73
static int check_compressed_csum(struct btrfs_inode *inode,
74 75 76 77 78 79 80 81 82 83
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

84
	if (inode->flags & BTRFS_INODE_NODATASUM)
85 86 87 88 89 90
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

91
		kaddr = kmap_atomic(page);
92
		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
93
		btrfs_csum_final(csum, (u8 *)&csum);
94
		kunmap_atomic(kaddr);
95 96

		if (csum != *cb_sum) {
97
			btrfs_print_data_csum_error(inode, disk_start, csum,
98
					*cb_sum, cb->mirror_num);
99 100 101 102 103 104 105 106 107 108 109
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
110 111 112 113 114 115 116 117 118 119
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
120
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
121 122 123 124 125
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
126
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
127
	int ret = 0;
C
Chris Mason 已提交
128

129
	if (bio->bi_status)
C
Chris Mason 已提交
130 131 132 133 134
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
135
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
136 137
		goto out;

138 139 140 141 142 143 144 145
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

146 147 148 149 150 151 152
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

153
	inode = cb->inode;
154
	ret = check_compressed_csum(BTRFS_I(inode), cb,
155
				    (u64)bio->bi_iter.bi_sector << 9);
156 157 158
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
159 160 161
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
162 163
	ret = btrfs_decompress_bio(cb);

164
csum_failed:
C
Chris Mason 已提交
165 166 167 168 169 170 171 172
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
173
		put_page(page);
C
Chris Mason 已提交
174 175 176
	}

	/* do io completion on the original bio */
177
	if (cb->errors) {
C
Chris Mason 已提交
178
		bio_io_error(cb->orig_bio);
179
	} else {
180 181
		int i;
		struct bio_vec *bvec;
182 183 184 185 186

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
187
		ASSERT(!bio_flagged(bio, BIO_CLONED));
188
		bio_for_each_segment_all(bvec, cb->orig_bio, i)
189
			SetPageChecked(bvec->bv_page);
190

191
		bio_endio(cb->orig_bio);
192
	}
C
Chris Mason 已提交
193 194 195 196 197 198 199 200 201 202 203 204

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
205 206
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
207
{
208 209
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
210 211 212 213 214
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

215 216 217
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
218
	while (nr_pages > 0) {
C
Chris Mason 已提交
219
		ret = find_get_pages_contig(inode->i_mapping, index,
220 221
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
222 223 224 225 226 227
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
228 229
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
230
			end_page_writeback(pages[i]);
231
			put_page(pages[i]);
C
Chris Mason 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
247
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
248 249 250 251 252 253 254
{
	struct extent_io_tree *tree;
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

255
	if (bio->bi_status)
C
Chris Mason 已提交
256 257 258 259 260
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
261
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
262 263 264 265 266 267 268
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
	tree = &BTRFS_I(inode)->io_tree;
C
Chris Mason 已提交
269
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
C
Chris Mason 已提交
270 271 272
	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
					 cb->start,
					 cb->start + cb->len - 1,
273
					 NULL,
274 275
					 bio->bi_status ?
					 BLK_STS_OK : BLK_STS_NOTSUPP);
C
Chris Mason 已提交
276
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
277

278
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
279 280 281 282 283 284 285 286 287 288
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
289
		put_page(page);
C
Chris Mason 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
308
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
309 310 311
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
312 313
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
314
{
315
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
316 317 318 319
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
320
	int pg_index = 0;
C
Chris Mason 已提交
321 322 323
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
324
	blk_status_t ret;
325
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
326

327
	WARN_ON(start & ((u64)PAGE_SIZE - 1));
328
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
329
	if (!cb)
330
		return BLK_STS_RESOURCE;
331
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
332 333 334 335
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
336
	cb->mirror_num = 0;
C
Chris Mason 已提交
337 338 339 340 341
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

342
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
343

344
	bio = btrfs_bio_alloc(bdev, first_byte);
345
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
346 347
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
348
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
349 350 351

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
352
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
353 354
		int submit = 0;

355
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
356
		page->mapping = inode->i_mapping;
357
		if (bio->bi_iter.bi_size)
358
			submit = io_tree->ops->merge_bio_hook(page, 0,
359
							   PAGE_SIZE,
C
Chris Mason 已提交
360 361
							   bio, 0);

C
Chris Mason 已提交
362
		page->mapping = NULL;
363
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
364
		    PAGE_SIZE) {
365 366 367 368 369 370
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
371
			refcount_inc(&cb->pending_bios);
372 373
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
374
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
375

376
			if (!skip_sum) {
377
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
378
				BUG_ON(ret); /* -ENOMEM */
379
			}
380

381
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
382
			if (ret) {
383
				bio->bi_status = ret;
384 385
				bio_endio(bio);
			}
C
Chris Mason 已提交
386

387
			bio = btrfs_bio_alloc(bdev, first_byte);
388
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
389 390
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
391
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
392
		}
393
		if (bytes_left < PAGE_SIZE) {
394
			btrfs_info(fs_info,
395
					"bytes left %lu compress len %lu nr %lu",
396 397
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
398 399
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
400
		cond_resched();
C
Chris Mason 已提交
401 402
	}

403
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
404
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
405

406
	if (!skip_sum) {
407
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
408
		BUG_ON(ret); /* -ENOMEM */
409
	}
410

411
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
412
	if (ret) {
413
		bio->bi_status = ret;
414 415
		bio_endio(bio);
	}
C
Chris Mason 已提交
416 417 418 419

	return 0;
}

420 421
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
422
	struct bio_vec *last = bio_last_bvec_all(bio);
423 424 425 426

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

427 428 429 430 431
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
432
	unsigned long pg_index;
433 434 435 436 437 438 439 440 441 442 443 444
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

445
	last_offset = bio_end_offset(cb->orig_bio);
446 447 448 449 450 451
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

452
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
453

C
Chris Mason 已提交
454
	while (last_offset < compressed_end) {
455
		pg_index = last_offset >> PAGE_SHIFT;
456

457
		if (pg_index > end_index)
458 459 460
			break;

		rcu_read_lock();
461
		page = radix_tree_lookup(&mapping->page_tree, pg_index);
462
		rcu_read_unlock();
463
		if (page && !radix_tree_exceptional_entry(page)) {
464 465 466 467 468 469
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

470 471
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
472 473 474
		if (!page)
			break;

475
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
476
			put_page(page);
477 478 479
			goto next;
		}

480
		end = last_offset + PAGE_SIZE - 1;
481 482 483 484 485 486
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
487
		lock_extent(tree, last_offset, end);
488
		read_lock(&em_tree->lock);
489
		em = lookup_extent_mapping(em_tree, last_offset,
490
					   PAGE_SIZE);
491
		read_unlock(&em_tree->lock);
492 493

		if (!em || last_offset < em->start ||
494
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
495
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
496
			free_extent_map(em);
497
			unlock_extent(tree, last_offset, end);
498
			unlock_page(page);
499
			put_page(page);
500 501 502 503 504 505
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
506
			size_t zero_offset = isize & (PAGE_SIZE - 1);
507 508 509

			if (zero_offset) {
				int zeros;
510
				zeros = PAGE_SIZE - zero_offset;
511
				userpage = kmap_atomic(page);
512 513
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
514
				kunmap_atomic(userpage);
515 516 517 518
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
519
				   PAGE_SIZE, 0);
520

521
		if (ret == PAGE_SIZE) {
522
			nr_pages++;
523
			put_page(page);
524
		} else {
525
			unlock_extent(tree, last_offset, end);
526
			unlock_page(page);
527
			put_page(page);
528 529 530
			break;
		}
next:
531
		last_offset += PAGE_SIZE;
532 533 534 535
	}
	return 0;
}

C
Chris Mason 已提交
536 537 538 539 540
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
541
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
542 543 544 545 546
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
547
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
548 549
				 int mirror_num, unsigned long bio_flags)
{
550
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
551 552 553 554 555
	struct extent_io_tree *tree;
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
556
	unsigned long pg_index;
C
Chris Mason 已提交
557 558 559
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
560
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
561 562
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
563
	struct extent_map *em;
564
	blk_status_t ret = BLK_STS_RESOURCE;
565
	int faili = 0;
566
	u32 *sums;
C
Chris Mason 已提交
567 568 569 570 571

	tree = &BTRFS_I(inode)->io_tree;
	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
572
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
573
	em = lookup_extent_mapping(em_tree,
574
				   page_offset(bio_first_page_all(bio)),
575
				   PAGE_SIZE);
576
	read_unlock(&em_tree->lock);
577
	if (!em)
578
		return BLK_STS_IOERR;
C
Chris Mason 已提交
579

580
	compressed_len = em->block_len;
581
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
582 583 584
	if (!cb)
		goto out;

585
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
586 587
	cb->errors = 0;
	cb->inode = inode;
588 589
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
590

591
	cb->start = em->orig_start;
592 593
	em_len = em->len;
	em_start = em->start;
594

C
Chris Mason 已提交
595
	free_extent_map(em);
596
	em = NULL;
C
Chris Mason 已提交
597

C
Christoph Hellwig 已提交
598
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
599
	cb->compressed_len = compressed_len;
600
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
601 602
	cb->orig_bio = bio;

603
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
604
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
605
				       GFP_NOFS);
606 607 608
	if (!cb->compressed_pages)
		goto fail1;

609
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
610

611 612
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
613
							      __GFP_HIGHMEM);
614 615
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
616
			ret = BLK_STS_RESOURCE;
617
			goto fail2;
618
		}
C
Chris Mason 已提交
619
	}
620
	faili = nr_pages - 1;
C
Chris Mason 已提交
621 622
	cb->nr_pages = nr_pages;

623
	add_ra_bio_pages(inode, em_start + em_len, cb);
624 625

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
626
	cb->len = bio->bi_iter.bi_size;
627

628
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
M
Mike Christie 已提交
629
	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
C
Chris Mason 已提交
630 631
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
632
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
633

634
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
635 636
		int submit = 0;

637
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
638
		page->mapping = inode->i_mapping;
639
		page->index = em_start >> PAGE_SHIFT;
640

641
		if (comp_bio->bi_iter.bi_size)
642
			submit = tree->ops->merge_bio_hook(page, 0,
643
							PAGE_SIZE,
C
Chris Mason 已提交
644 645
							comp_bio, 0);

C
Chris Mason 已提交
646
		page->mapping = NULL;
647
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
648
		    PAGE_SIZE) {
649 650
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
651
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
652

653 654 655 656 657 658
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
659
			refcount_inc(&cb->pending_bios);
660

661
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
662 663
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
							    sums);
664
				BUG_ON(ret); /* -ENOMEM */
665
			}
666
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
667
					     fs_info->sectorsize);
668

669
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
670
			if (ret) {
671
				comp_bio->bi_status = ret;
672 673
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
674

675
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
M
Mike Christie 已提交
676
			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
677 678 679
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

680
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
681
		}
682
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
683 684
	}

685
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
686
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
687

688
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
689
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
690
		BUG_ON(ret); /* -ENOMEM */
691
	}
692

693
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
694
	if (ret) {
695
		comp_bio->bi_status = ret;
696 697
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
698 699

	return 0;
700 701

fail2:
702 703 704 705
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
706 707 708 709 710 711 712

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
713
}
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
750 751

struct heuristic_ws {
752 753
	/* Partial copy of input data */
	u8 *sample;
754
	u32 sample_size;
755 756
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
757 758
	/* Sorting buffer */
	struct bucket_item *bucket_b;
759 760 761 762 763 764 765 766 767
	struct list_head list;
};

static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

768 769
	kvfree(workspace->sample);
	kfree(workspace->bucket);
770
	kfree(workspace->bucket_b);
771 772 773 774 775 776 777 778 779 780 781
	kfree(workspace);
}

static struct list_head *alloc_heuristic_ws(void)
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

782 783 784 785 786 787 788
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
789

790 791 792 793
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

794
	INIT_LIST_HEAD(&ws->list);
795
	return &ws->list;
796 797 798
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
799 800 801
}

struct workspaces_list {
802 803
	struct list_head idle_ws;
	spinlock_t ws_lock;
804 805 806 807 808
	/* Number of free workspaces */
	int free_ws;
	/* Total number of allocated workspaces */
	atomic_t total_ws;
	/* Waiters for a free workspace */
809
	wait_queue_head_t ws_wait;
810 811 812 813 814
};

static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];

static struct workspaces_list btrfs_heuristic_ws;
815

816
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
817
	&btrfs_zlib_compress,
L
Li Zefan 已提交
818
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
819
	&btrfs_zstd_compress,
820 821
};

822
void __init btrfs_init_compress(void)
823
{
824
	struct list_head *workspace;
825 826
	int i;

827 828 829 830
	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
831

832 833 834 835 836 837 838 839 840 841 842
	workspace = alloc_heuristic_ws();
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
	} else {
		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
		btrfs_heuristic_ws.free_ws = 1;
		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
	}

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
843 844
		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
845
		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
846
		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
847 848 849 850 851 852 853

		/*
		 * Preallocate one workspace for each compression type so
		 * we can guarantee forward progress in the worst case
		 */
		workspace = btrfs_compress_op[i]->alloc_workspace();
		if (IS_ERR(workspace)) {
854
			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
855 856 857 858 859
		} else {
			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
			btrfs_comp_ws[i].free_ws = 1;
			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
		}
860 861 862 863
	}
}

/*
864 865 866 867
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
868
 */
869
static struct list_head *__find_workspace(int type, bool heuristic)
870 871 872 873
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
	int idx = type - 1;
874
	unsigned nofs_flag;
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
894 895

again:
896 897 898
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
899
		list_del(workspace);
900
		(*free_ws)--;
901
		spin_unlock(ws_lock);
902 903 904
		return workspace;

	}
905
	if (atomic_read(total_ws) > cpus) {
906 907
		DEFINE_WAIT(wait);

908 909
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
910
		if (atomic_read(total_ws) > cpus && !*free_ws)
911
			schedule();
912
		finish_wait(ws_wait, &wait);
913 914
		goto again;
	}
915
	atomic_inc(total_ws);
916
	spin_unlock(ws_lock);
917

918 919 920 921 922 923
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
924 925 926 927
	if (heuristic)
		workspace = alloc_heuristic_ws();
	else
		workspace = btrfs_compress_op[idx]->alloc_workspace();
928 929
	memalloc_nofs_restore(nofs_flag);

930
	if (IS_ERR(workspace)) {
931
		atomic_dec(total_ws);
932
		wake_up(ws_wait);
933 934 935 936 937 938

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
939 940 941 942
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
943
		 */
944 945 946 947 948 949
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
950
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
951 952
			}
		}
953
		goto again;
954 955 956 957
	}
	return workspace;
}

958 959 960 961 962
static struct list_head *find_workspace(int type)
{
	return __find_workspace(type, false);
}

963 964 965 966
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
967 968
static void __free_workspace(int type, struct list_head *workspace,
			     bool heuristic)
969 970
{
	int idx = type - 1;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
990 991

	spin_lock(ws_lock);
992
	if (*free_ws <= num_online_cpus()) {
993
		list_add(workspace, idle_ws);
994
		(*free_ws)++;
995
		spin_unlock(ws_lock);
996 997
		goto wake;
	}
998
	spin_unlock(ws_lock);
999

1000 1001 1002 1003
	if (heuristic)
		free_heuristic_ws(workspace);
	else
		btrfs_compress_op[idx]->free_workspace(workspace);
1004
	atomic_dec(total_ws);
1005
wake:
1006 1007 1008
	/*
	 * Make sure counter is updated before we wake up waiters.
	 */
1009
	smp_mb();
1010 1011
	if (waitqueue_active(ws_wait))
		wake_up(ws_wait);
1012 1013
}

1014 1015 1016 1017 1018
static void free_workspace(int type, struct list_head *ws)
{
	return __free_workspace(type, ws, false);
}

1019 1020 1021 1022 1023 1024 1025 1026
/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct list_head *workspace;
	int i;

1027 1028 1029 1030 1031 1032 1033
	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
		workspace = btrfs_heuristic_ws.idle_ws.next;
		list_del(workspace);
		free_heuristic_ws(workspace);
		atomic_dec(&btrfs_heuristic_ws.total_ws);
	}

1034
	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1035 1036
		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
			workspace = btrfs_comp_ws[i].idle_ws.next;
1037 1038
			list_del(workspace);
			btrfs_compress_op[i]->free_workspace(workspace);
1039
			atomic_dec(&btrfs_comp_ws[i].total_ws);
1040 1041 1042 1043 1044
		}
	}
}

/*
1045 1046
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1047
 *
1048 1049 1050 1051 1052
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1053 1054
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1055
 *
1056 1057
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1058 1059 1060
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1061 1062
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1063
 *
1064
 * @max_out tells us the max number of bytes that we're allowed to
1065 1066
 * stuff into pages
 */
1067
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1068
			 u64 start, struct page **pages,
1069 1070
			 unsigned long *out_pages,
			 unsigned long *total_in,
1071
			 unsigned long *total_out)
1072 1073 1074
{
	struct list_head *workspace;
	int ret;
1075
	int type = type_level & 0xF;
1076 1077 1078

	workspace = find_workspace(type);

1079
	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1080
	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1081
						      start, pages,
1082
						      out_pages,
1083
						      total_in, total_out);
1084 1085 1086 1087 1088 1089 1090 1091 1092
	free_workspace(type, workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1093
 * orig_bio contains the pages from the file that we want to decompress into
1094 1095 1096 1097 1098 1099 1100 1101
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1102
static int btrfs_decompress_bio(struct compressed_bio *cb)
1103 1104 1105
{
	struct list_head *workspace;
	int ret;
1106
	int type = cb->compress_type;
1107 1108

	workspace = find_workspace(type);
1109
	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1110
	free_workspace(type, workspace);
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);

	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
						  dest_page, start_byte,
						  srclen, destlen);

	free_workspace(type, workspace);
	return ret;
}

1136
void btrfs_exit_compress(void)
1137 1138 1139
{
	free_workspaces();
}
1140 1141 1142 1143 1144 1145 1146 1147

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1148
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1149
			      unsigned long total_out, u64 disk_start,
1150
			      struct bio *bio)
1151 1152 1153 1154
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1155
	unsigned long prev_start_byte;
1156 1157 1158
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1159
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1160 1161 1162 1163 1164

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1165
	start_byte = page_offset(bvec.bv_page) - disk_start;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1185 1186
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1187
		bytes = min(bytes, working_bytes);
1188 1189 1190

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1191
		kunmap_atomic(kaddr);
1192
		flush_dcache_page(bvec.bv_page);
1193 1194 1195 1196 1197 1198

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1199 1200 1201 1202
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1203
		prev_start_byte = start_byte;
1204
		start_byte = page_offset(bvec.bv_page) - disk_start;
1205

1206
		/*
1207 1208 1209 1210
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1211
		 */
1212 1213 1214 1215 1216 1217 1218
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1231 1232 1233 1234 1235
		}
	}

	return 1;
}
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
/*
 * Shannon Entropy calculation
 *
 * Pure byte distribution analysis fails to determine compressiability of data.
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
 * Use 16 u32 counters for calculating new possition in buf array
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1311
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1312
		       int num)
1313
{
1314 1315 1316 1317 1318 1319 1320 1321
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1322

1323 1324 1325 1326
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1327
	max_num = array[0].count;
1328
	for (i = 1; i < num; i++) {
1329
		buf_num = array[i].count;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1342
			buf_num = array[i].count;
1343 1344 1345 1346 1347 1348 1349 1350
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1351
			buf_num = array[i].count;
1352 1353 1354
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1355
			array_buf[new_addr] = array[i];
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1369
			buf_num = array_buf[i].count;
1370 1371 1372 1373 1374 1375 1376 1377
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1378
			buf_num = array_buf[i].count;
1379 1380 1381
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1382
			array[new_addr] = array_buf[i];
1383 1384 1385 1386
		}

		shift += RADIX_BASE;
	}
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1416
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1472 1473 1474 1475 1476 1477 1478 1479
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1549 1550
	struct list_head *ws_list = __find_workspace(0, true);
	struct heuristic_ws *ws;
1551 1552
	u32 i;
	u8 byte;
1553
	int ret = 0;
1554

1555 1556
	ws = list_entry(ws_list, struct heuristic_ws, list);

1557 1558
	heuristic_collect_sample(inode, start, end, ws);

1559 1560 1561 1562 1563
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1564 1565 1566 1567 1568
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1569 1570
	}

1571 1572 1573 1574 1575 1576
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1617
out:
1618
	__free_workspace(0, ws_list, true);
1619 1620
	return ret;
}
1621 1622 1623 1624 1625 1626

unsigned int btrfs_compress_str2level(const char *str)
{
	if (strncmp(str, "zlib", 4) != 0)
		return 0;

1627 1628 1629
	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
		return str[5] - '0';
1630

1631
	return BTRFS_ZLIB_DEFAULT_LEVEL;
1632
}