compression.c 50.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
12
#include <linux/kthread.h>
C
Chris Mason 已提交
13 14 15 16 17
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
18
#include <linux/slab.h>
19
#include <linux/sched/mm.h>
20
#include <linux/log2.h>
21
#include <crypto/hash.h>
22
#include "misc.h"
C
Chris Mason 已提交
23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
32
#include "subpage.h"
33
#include "zoned.h"
C
Chris Mason 已提交
34

35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
45 46
	default:
		break;
47 48 49 50 51
	}

	return NULL;
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
86 87 88 89 90 91 92
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
93
		 */
94
		*out_pages = 0;
95 96 97 98
		return -E2BIG;
	}
}

99 100
static int compression_decompress_bio(struct list_head *ws,
				      struct compressed_bio *cb)
101
{
102
	switch (cb->compress_type) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

137
static int btrfs_decompress_bio(struct compressed_bio *cb);
138

139
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 141 142
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
143
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 145
}

146
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 148
				 u64 disk_start)
{
149
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151
	const u32 csum_size = fs_info->csum_size;
152
	const u32 sectorsize = fs_info->sectorsize;
153
	struct page *page;
154
	unsigned int i;
155
	char *kaddr;
156
	u8 csum[BTRFS_CSUM_SIZE];
157
	struct compressed_bio *cb = bio->bi_private;
158
	u8 *cb_sum = cb->sums;
159

160 161
	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
162 163
		return 0;

164 165
	shash->tfm = fs_info->csum_shash;

166
	for (i = 0; i < cb->nr_pages; i++) {
167 168
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
169 170
		page = cb->compressed_pages[i];

171 172 173 174 175 176 177
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
178
			kaddr = kmap_atomic(page);
179 180
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);
181
			kunmap_atomic(kaddr);
182 183 184 185

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
186
				if (btrfs_bio(bio)->device)
187
					btrfs_dev_stat_inc_and_print(
188
						btrfs_bio(bio)->device,
189 190 191 192 193
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
194 195
		}
	}
196
	return 0;
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 *
 * Return true if there is no pending bio nor io.
 * Return false otherwise.
 */
static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	unsigned int bi_size = 0;
	bool last_io = false;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/*
	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
	 * Thus here we have to iterate through all segments to grab correct
	 * bio size.
	 */
	bio_for_each_segment_all(bvec, bio, iter_all)
		bi_size += bvec->bv_len;

	if (bio->bi_status)
222
		cb->status = bio->bi_status;
223 224 225 226

	ASSERT(bi_size && bi_size <= cb->compressed_len);
	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
					&cb->pending_sectors);
227 228 229 230 231 232 233
	/*
	 * Here we must wake up the possible error handler after all other
	 * operations on @cb finished, or we can race with
	 * finish_compressed_bio_*() which may free @cb.
	 */
	wake_up_var(cb);

234 235 236
	return last_io;
}

237
static void finish_compressed_bio_read(struct compressed_bio *cb)
238 239 240 241 242 243 244 245 246 247 248 249
{
	unsigned int index;
	struct page *page;

	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
250 251 252
	if (cb->status != BLK_STS_OK) {
		cb->orig_bio->bi_status = cb->status;
		bio_endio(cb->orig_bio);
253 254 255 256 257 258 259 260
	} else {
		struct bio_vec *bvec;
		struct bvec_iter_all iter_all;

		/*
		 * We have verified the checksum already, set page checked so
		 * the end_io handlers know about it
		 */
261
		ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}

		bio_endio(cb->orig_bio);
	}

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

C
Chris Mason 已提交
279 280 281 282 283 284 285 286 287 288
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
289
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
290 291 292
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
293
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
294
	int ret = 0;
C
Chris Mason 已提交
295

296
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
297 298
		goto out;

299 300 301 302
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
303
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
304 305
	cb->mirror_num = mirror;

306 307 308 309
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
310
	if (cb->status != BLK_STS_OK)
311 312
		goto csum_failed;

313
	inode = cb->inode;
314
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
315
				    bio->bi_iter.bi_sector << 9);
316 317 318
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
319 320 321
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
322 323
	ret = btrfs_decompress_bio(cb);

324
csum_failed:
C
Chris Mason 已提交
325
	if (ret)
326
		cb->status = errno_to_blk_status(ret);
327
	finish_compressed_bio_read(cb);
C
Chris Mason 已提交
328 329 330 331 332 333 334 335
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
336 337
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
338
{
339
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 341
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
342 343
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
344
	const int errno = blk_status_to_errno(cb->status);
C
Chris Mason 已提交
345 346 347
	int i;
	int ret;

348 349
	if (errno)
		mapping_set_error(inode->i_mapping, errno);
350

C
Chris Mason 已提交
351
	while (nr_pages > 0) {
C
Chris Mason 已提交
352
		ret = find_get_pages_contig(inode->i_mapping, index,
353 354
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
355 356 357 358 359 360
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
361
			if (errno)
362
				SetPageError(pages[i]);
363 364
			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
							 cb->start, cb->len);
365
			put_page(pages[i]);
C
Chris Mason 已提交
366 367 368 369 370 371 372
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

373
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
374
{
375
	struct inode *inode = cb->inode;
376
	unsigned int index;
C
Chris Mason 已提交
377

378 379 380
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
381
	 */
382
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383
			cb->start, cb->start + cb->len - 1,
384
			cb->status == BLK_STS_OK);
C
Chris Mason 已提交
385

386 387
	if (cb->writeback)
		end_compressed_writeback(inode, cb);
388
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
389 390

	/*
391
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
392 393 394
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
395 396
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
397
		page->mapping = NULL;
398
		put_page(page);
C
Chris Mason 已提交
399 400
	}

401
	/* Finally free the cb struct */
C
Chris Mason 已提交
402 403
	kfree(cb->compressed_pages);
	kfree(cb);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
static void end_compressed_bio_write(struct bio *bio)
{
	struct compressed_bio *cb = bio->bi_private;

	if (!dec_and_test_compressed_bio(cb, bio))
		goto out;

	btrfs_record_physical_zoned(cb->inode, cb->start, bio);

	finish_compressed_bio_write(cb);
C
Chris Mason 已提交
423 424 425 426
out:
	bio_put(bio);
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440
static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
					  struct compressed_bio *cb,
					  struct bio *bio, int mirror_num)
{
	blk_status_t ret;

	ASSERT(bio->bi_iter.bi_size);
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
	if (ret)
		return ret;
	ret = btrfs_map_bio(fs_info, bio, mirror_num);
	return ret;
}

441
/*
442 443 444 445 446 447 448 449 450 451 452 453 454
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
455
 */
456 457


458
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
459 460
					unsigned int opf, bio_end_io_t endio_func,
					u64 *next_stripe_start)
461
{
462 463 464
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
465
	struct bio *bio;
466
	int ret;
467 468 469 470 471 472 473 474

	bio = btrfs_bio_alloc(BIO_MAX_VECS);

	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
	bio->bi_opf = opf;
	bio->bi_private = cb;
	bio->bi_end_io = endio_func;

475 476 477 478 479
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
480

481 482 483 484 485 486 487 488
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
489
	}
490 491
	*next_stripe_start = disk_bytenr + geom.len;

492 493 494
	return bio;
}

C
Chris Mason 已提交
495 496 497 498 499 500 501 502 503
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
504
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
505 506
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
507
				 struct page **compressed_pages,
508
				 unsigned int nr_pages,
509
				 unsigned int write_flags,
510 511
				 struct cgroup_subsys_state *blkcg_css,
				 bool writeback)
C
Chris Mason 已提交
512
{
513
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
514 515
	struct bio *bio = NULL;
	struct compressed_bio *cb;
516
	u64 cur_disk_bytenr = disk_start;
517
	u64 next_stripe_start;
518
	blk_status_t ret;
519
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
520 521
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
522

523 524
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
525
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
526
	if (!cb)
527
		return BLK_STS_RESOURCE;
528
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
529
	cb->status = BLK_STS_OK;
530
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
531 532
	cb->start = start;
	cb->len = len;
533
	cb->mirror_num = 0;
C
Chris Mason 已提交
534 535
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
536
	cb->writeback = writeback;
C
Chris Mason 已提交
537 538 539
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

540 541 542
	if (blkcg_css)
		kthread_associate_blkcg(blkcg_css);

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
				bio = NULL;
				goto finish_cb;
			}
561 562
			if (blkcg_css)
				bio->bi_opf |= REQ_CGROUP_PUNT;
563
		}
564
		/*
565 566
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
567
		 */
568
		ASSERT(cur_disk_bytenr != next_stripe_start);
C
Chris Mason 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
601
			if (!skip_sum) {
602
				ret = btrfs_csum_one_bio(inode, bio, start, true);
603 604
				if (ret)
					goto finish_cb;
605
			}
C
Chris Mason 已提交
606

607
			ret = submit_compressed_bio(fs_info, cb, bio, 0);
608 609
			if (ret)
				goto finish_cb;
610
			bio = NULL;
C
Chris Mason 已提交
611
		}
612
		cond_resched();
C
Chris Mason 已提交
613
	}
614 615
	if (blkcg_css)
		kthread_associate_blkcg(NULL);
C
Chris Mason 已提交
616 617

	return 0;
618

619
finish_cb:
620 621 622
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

623
	if (bio) {
624
		bio->bi_status = ret;
625 626
		bio_endio(bio);
	}
627 628 629
	/* Last byte of @cb is submitted, endio will free @cb */
	if (cur_disk_bytenr == disk_start + compressed_len)
		return ret;
C
Chris Mason 已提交
630

631 632 633
	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_start + compressed_len - cur_disk_bytenr) >>
			   fs_info->sectorsize_bits);
634 635 636 637 638 639 640 641
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_write(cb);
	return ret;
C
Chris Mason 已提交
642 643
}

644 645
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
646
	struct bio_vec *last = bio_last_bvec_all(bio);
647 648 649 650

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

651 652 653 654 655 656 657 658 659 660 661
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
662 663 664 665
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
666
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
667
	unsigned long end_index;
668
	u64 cur = bio_end_offset(cb->orig_bio);
669 670 671 672 673 674 675
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
676
	int sectors_missed = 0;
677 678 679 680 681 682 683

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

684 685 686 687 688 689 690 691 692 693
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

694
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
695

696 697 698 699
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
700

701
		if (pg_index > end_index)
702 703
			break;

704
		page = xa_load(&mapping->i_pages, pg_index);
705
		if (page && !xa_is_value(page)) {
706 707 708 709 710
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
711
				break;
712 713 714 715 716 717 718

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
719 720
		}

721 722
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
723 724 725
		if (!page)
			break;

726
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
727
			put_page(page);
728 729 730
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
731 732
		}

733 734 735 736 737 738 739
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

740 741
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
742
		read_lock(&em_tree->lock);
743
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
744
		read_unlock(&em_tree->lock);
745

746 747 748 749 750 751 752
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
753
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
754
			free_extent_map(em);
755
			unlock_extent(tree, cur, page_end);
756
			unlock_page(page);
757
			put_page(page);
758 759 760 761 762
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
763
			size_t zero_offset = offset_in_page(isize);
764 765 766

			if (zero_offset) {
				int zeros;
767
				zeros = PAGE_SIZE - zero_offset;
768
				memzero_page(page, zero_offset, zeros);
769 770 771 772
				flush_dcache_page(page);
			}
		}

773 774 775 776
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
777
			unlock_page(page);
778
			put_page(page);
779 780
			break;
		}
781 782 783 784 785 786 787 788 789
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
790 791 792 793
	}
	return 0;
}

C
Chris Mason 已提交
794 795 796 797 798
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
799
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
800 801 802 803 804
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
805
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
806 807
				 int mirror_num, unsigned long bio_flags)
{
808
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
809 810
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
811 812 813
	unsigned int compressed_len;
	unsigned int nr_pages;
	unsigned int pg_index;
814 815 816 817
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
818
	u64 file_offset;
819 820
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
821
	struct extent_map *em;
822
	blk_status_t ret;
823
	int faili = 0;
824
	u8 *sums;
C
Chris Mason 已提交
825 826 827

	em_tree = &BTRFS_I(inode)->extent_tree;

828 829 830
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
831
	/* we need the actual starting offset of this extent in the file */
832
	read_lock(&em_tree->lock);
833
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
834
	read_unlock(&em_tree->lock);
835 836 837 838
	if (!em) {
		ret = BLK_STS_IOERR;
		goto out;
	}
C
Chris Mason 已提交
839

840
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
841
	compressed_len = em->block_len;
842
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
843 844
	if (!cb) {
		ret = BLK_STS_RESOURCE;
845
		goto out;
846
	}
847

848
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
849
	cb->status = BLK_STS_OK;
C
Chris Mason 已提交
850
	cb->inode = inode;
851
	cb->mirror_num = mirror_num;
852
	sums = cb->sums;
C
Chris Mason 已提交
853

854
	cb->start = em->orig_start;
855 856
	em_len = em->len;
	em_start = em->start;
857

C
Chris Mason 已提交
858
	free_extent_map(em);
859
	em = NULL;
C
Chris Mason 已提交
860

C
Christoph Hellwig 已提交
861
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
862
	cb->compressed_len = compressed_len;
863
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
864 865
	cb->orig_bio = bio;

866
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
867
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
868
				       GFP_NOFS);
869 870
	if (!cb->compressed_pages) {
		ret = BLK_STS_RESOURCE;
871
		goto fail1;
872
	}
873

874
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
875
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
876 877
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
878
			ret = BLK_STS_RESOURCE;
879
			goto fail2;
880
		}
C
Chris Mason 已提交
881
	}
882
	faili = nr_pages - 1;
C
Chris Mason 已提交
883 884
	cb->nr_pages = nr_pages;

885
	add_ra_bio_pages(inode, em_start + em_len, cb);
886 887

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
888
	cb->len = bio->bi_iter.bi_size;
889

890 891 892 893 894 895 896
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
				ret = errno_to_blk_status(PTR_ERR(comp_bio));
				comp_bio = NULL;
				goto finish_cb;
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
924

925
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
926
		/*
927 928
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
929
		 */
930 931
		ASSERT(added == real_size);
		cur_disk_byte += added;
932

933 934 935
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
936

937 938 939
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
940

941
		if (submit) {
942 943
			unsigned int nr_sectors;

944
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
945 946
			if (ret)
				goto finish_cb;
947 948 949

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
950
			sums += fs_info->csum_size * nr_sectors;
951

952
			ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
953 954
			if (ret)
				goto finish_cb;
955
			comp_bio = NULL;
C
Chris Mason 已提交
956 957
		}
	}
958
	return BLK_STS_OK;
959 960

fail2:
961 962 963 964
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
965 966 967 968 969 970

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
971 972
	bio->bi_status = ret;
	bio_endio(bio);
973
	return ret;
974 975 976 977 978
finish_cb:
	if (comp_bio) {
		comp_bio->bi_status = ret;
		bio_endio(comp_bio);
	}
979 980 981 982 983 984 985
	/* All bytes of @cb is submitted, endio will free @cb */
	if (cur_disk_byte == disk_bytenr + compressed_len)
		return ret;

	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_bytenr + compressed_len - cur_disk_byte) >>
			   fs_info->sectorsize_bits);
986 987 988 989 990 991
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish @cb manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
992
	finish_compressed_bio_read(cb);
993
	return ret;
C
Chris Mason 已提交
994
}
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
1031 1032

struct heuristic_ws {
1033 1034
	/* Partial copy of input data */
	u8 *sample;
1035
	u32 sample_size;
1036 1037
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
1038 1039
	/* Sorting buffer */
	struct bucket_item *bucket_b;
1040 1041 1042
	struct list_head list;
};

1043 1044
static struct workspace_manager heuristic_wsm;

1045 1046 1047 1048 1049 1050
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

1051 1052
	kvfree(workspace->sample);
	kfree(workspace->bucket);
1053
	kfree(workspace->bucket_b);
1054 1055 1056
	kfree(workspace);
}

1057
static struct list_head *alloc_heuristic_ws(unsigned int level)
1058 1059 1060 1061 1062 1063 1064
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

1065 1066 1067 1068 1069 1070 1071
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
1072

1073 1074 1075 1076
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

1077
	INIT_LIST_HEAD(&ws->list);
1078
	return &ws->list;
1079 1080 1081
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
1082 1083
}

1084
const struct btrfs_compress_op btrfs_heuristic_compress = {
1085
	.workspace_manager = &heuristic_wsm,
1086 1087
};

1088
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1089 1090
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
1091
	&btrfs_zlib_compress,
L
Li Zefan 已提交
1092
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
1093
	&btrfs_zstd_compress,
1094 1095
};

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1128
static void btrfs_init_workspace_manager(int type)
1129
{
1130
	struct workspace_manager *wsm;
1131
	struct list_head *workspace;
1132

1133
	wsm = btrfs_compress_op[type]->workspace_manager;
1134 1135 1136 1137
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1138

1139 1140 1141 1142
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1143
	workspace = alloc_workspace(type, 0);
1144 1145 1146 1147
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1148 1149 1150
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1151 1152 1153
	}
}

1154
static void btrfs_cleanup_workspace_manager(int type)
1155
{
1156
	struct workspace_manager *wsman;
1157 1158
	struct list_head *ws;

1159
	wsman = btrfs_compress_op[type]->workspace_manager;
1160 1161 1162
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1163
		free_workspace(type, ws);
1164
		atomic_dec(&wsman->total_ws);
1165 1166 1167 1168
	}
}

/*
1169 1170 1171 1172
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1173
 */
1174
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1175
{
1176
	struct workspace_manager *wsm;
1177 1178
	struct list_head *workspace;
	int cpus = num_online_cpus();
1179
	unsigned nofs_flag;
1180 1181 1182 1183 1184 1185
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1186
	wsm = btrfs_compress_op[type]->workspace_manager;
1187 1188 1189 1190 1191
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1192 1193

again:
1194 1195 1196
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1197
		list_del(workspace);
1198
		(*free_ws)--;
1199
		spin_unlock(ws_lock);
1200 1201 1202
		return workspace;

	}
1203
	if (atomic_read(total_ws) > cpus) {
1204 1205
		DEFINE_WAIT(wait);

1206 1207
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1208
		if (atomic_read(total_ws) > cpus && !*free_ws)
1209
			schedule();
1210
		finish_wait(ws_wait, &wait);
1211 1212
		goto again;
	}
1213
	atomic_inc(total_ws);
1214
	spin_unlock(ws_lock);
1215

1216 1217 1218 1219 1220 1221
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1222
	workspace = alloc_workspace(type, level);
1223 1224
	memalloc_nofs_restore(nofs_flag);

1225
	if (IS_ERR(workspace)) {
1226
		atomic_dec(total_ws);
1227
		wake_up(ws_wait);
1228 1229 1230 1231 1232 1233

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1234 1235 1236 1237
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1238
		 */
1239 1240 1241 1242 1243 1244
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1245
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1246 1247
			}
		}
1248
		goto again;
1249 1250 1251 1252
	}
	return workspace;
}

1253
static struct list_head *get_workspace(int type, int level)
1254
{
1255
	switch (type) {
1256
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1257
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1258
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1259 1260 1261 1262 1263 1264 1265 1266
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1267 1268
}

1269 1270 1271 1272
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1273
void btrfs_put_workspace(int type, struct list_head *ws)
1274
{
1275
	struct workspace_manager *wsm;
1276 1277 1278 1279 1280 1281
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1282
	wsm = btrfs_compress_op[type]->workspace_manager;
1283 1284 1285 1286 1287
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1288 1289

	spin_lock(ws_lock);
1290
	if (*free_ws <= num_online_cpus()) {
1291
		list_add(ws, idle_ws);
1292
		(*free_ws)++;
1293
		spin_unlock(ws_lock);
1294 1295
		goto wake;
	}
1296
	spin_unlock(ws_lock);
1297

1298
	free_workspace(type, ws);
1299
	atomic_dec(total_ws);
1300
wake:
1301
	cond_wake_up(ws_wait);
1302 1303
}

1304 1305
static void put_workspace(int type, struct list_head *ws)
{
1306
	switch (type) {
1307 1308 1309
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1310 1311 1312 1313 1314 1315 1316 1317
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1318 1319
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1336
/*
1337 1338
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1339
 *
1340 1341 1342 1343 1344
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1345 1346
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1347
 *
1348 1349
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1350 1351 1352
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1353 1354
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1355
 */
1356
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1357
			 u64 start, struct page **pages,
1358 1359
			 unsigned long *out_pages,
			 unsigned long *total_in,
1360
			 unsigned long *total_out)
1361
{
1362
	int type = btrfs_compress_type(type_level);
1363
	int level = btrfs_compress_level(type_level);
1364 1365 1366
	struct list_head *workspace;
	int ret;

1367
	level = btrfs_compress_set_level(type, level);
1368
	workspace = get_workspace(type, level);
1369 1370
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1371
	put_workspace(type, workspace);
1372 1373 1374
	return ret;
}

1375
static int btrfs_decompress_bio(struct compressed_bio *cb)
1376 1377 1378
{
	struct list_head *workspace;
	int ret;
1379
	int type = cb->compress_type;
1380

1381
	workspace = get_workspace(type, 0);
1382
	ret = compression_decompress_bio(workspace, cb);
1383
	put_workspace(type, workspace);
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1399
	workspace = get_workspace(type, 0);
1400 1401
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1402
	put_workspace(type, workspace);
1403

1404 1405 1406
	return ret;
}

1407 1408
void __init btrfs_init_compress(void)
{
1409 1410 1411 1412
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1413 1414
}

1415
void __cold btrfs_exit_compress(void)
1416
{
1417 1418 1419 1420
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1421
}
1422 1423

/*
1424
 * Copy decompressed data from working buffer to pages.
1425
 *
1426 1427 1428 1429 1430 1431
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1432
 *
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1452
 */
1453 1454
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1455
{
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1475

1476 1477 1478
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1479

1480 1481 1482 1483
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1484

1485
		/*
1486 1487
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1488
		 */
1489 1490 1491 1492 1493
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		flush_dcache_page(bvec.bv_page);
		cur_offset += copy_len;
1494

1495 1496 1497 1498
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1499 1500 1501
	}
	return 1;
}
1502

1503 1504 1505
/*
 * Shannon Entropy calculation
 *
1506
 * Pure byte distribution analysis fails to determine compressibility of data.
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1570
 * Use 16 u32 counters for calculating new position in buf array
1571 1572 1573 1574 1575 1576
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1577
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1578
		       int num)
1579
{
1580 1581 1582 1583 1584 1585 1586 1587
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1588

1589 1590 1591 1592
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1593
	max_num = array[0].count;
1594
	for (i = 1; i < num; i++) {
1595
		buf_num = array[i].count;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1608
			buf_num = array[i].count;
1609 1610 1611 1612 1613 1614 1615 1616
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1617
			buf_num = array[i].count;
1618 1619 1620
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1621
			array_buf[new_addr] = array[i];
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1635
			buf_num = array_buf[i].count;
1636 1637 1638 1639 1640 1641 1642 1643
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1644
			buf_num = array_buf[i].count;
1645 1646 1647
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1648
			array[new_addr] = array_buf[i];
1649 1650 1651 1652
		}

		shift += RADIX_BASE;
	}
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1682
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1738 1739 1740 1741 1742 1743 1744 1745
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1776
		in_data = kmap_local_page(page);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1789
		kunmap_local(in_data);
1790 1791 1792 1793 1794 1795 1796 1797
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1815
	struct list_head *ws_list = get_workspace(0, 0);
1816
	struct heuristic_ws *ws;
1817 1818
	u32 i;
	u8 byte;
1819
	int ret = 0;
1820

1821 1822
	ws = list_entry(ws_list, struct heuristic_ws, list);

1823 1824
	heuristic_collect_sample(inode, start, end, ws);

1825 1826 1827 1828 1829
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1830 1831 1832 1833 1834
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1835 1836
	}

1837 1838 1839 1840 1841 1842
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1883
out:
1884
	put_workspace(0, ws_list);
1885 1886
	return ret;
}
1887

1888 1889 1890 1891 1892
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1893
{
1894 1895 1896 1897
	unsigned int level = 0;
	int ret;

	if (!type)
1898 1899
		return 0;

1900 1901 1902 1903 1904 1905
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1906 1907 1908 1909
	level = btrfs_compress_set_level(type, level);

	return level;
}