compression.c 44.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

32 33 34 35 36 37 38
int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
		u64 start, struct page **pages, unsigned long *out_pages,
		unsigned long *total_in, unsigned long *total_out);
int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
int zlib_decompress(struct list_head *ws, unsigned char *data_in,
		struct page *dest_page, unsigned long start_byte, size_t srclen,
		size_t destlen);
39 40 41 42
struct list_head *zlib_alloc_workspace(unsigned int level);
void zlib_free_workspace(struct list_head *ws);
struct list_head *zlib_get_workspace(unsigned int level);
void zlib_put_workspace(struct list_head *ws);
43 44 45 46 47 48 49 50

int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
		u64 start, struct page **pages, unsigned long *out_pages,
		unsigned long *total_in, unsigned long *total_out);
int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
int lzo_decompress(struct list_head *ws, unsigned char *data_in,
		struct page *dest_page, unsigned long start_byte, size_t srclen,
		size_t destlen);
51 52 53 54
struct list_head *lzo_alloc_workspace(unsigned int level);
void lzo_free_workspace(struct list_head *ws);
struct list_head *lzo_get_workspace(unsigned int level);
void lzo_put_workspace(struct list_head *ws);
55 56 57 58 59 60 61 62

int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
		u64 start, struct page **pages, unsigned long *out_pages,
		unsigned long *total_in, unsigned long *total_out);
int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
int zstd_decompress(struct list_head *ws, unsigned char *data_in,
		struct page *dest_page, unsigned long start_byte, size_t srclen,
		size_t destlen);
63
void zstd_init_workspace_manager(void);
64
void zstd_cleanup_workspace_manager(void);
65 66 67 68
struct list_head *zstd_alloc_workspace(unsigned int level);
void zstd_free_workspace(struct list_head *ws);
struct list_head *zstd_get_workspace(unsigned int level);
void zstd_put_workspace(struct list_head *ws);
69

70 71 72 73 74 75 76 77 78 79
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
80 81
	default:
		break;
82 83 84 85 86
	}

	return NULL;
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here. As a sane fallback, return what the
		 * callers will understand as 'no compression happened'.
		 */
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

167
static int btrfs_decompress_bio(struct compressed_bio *cb);
168

169
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
170 171
				      unsigned long disk_size)
{
172
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
173

174
	return sizeof(struct compressed_bio) +
175
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
176 177
}

178
static int check_compressed_csum(struct btrfs_inode *inode,
179 180 181
				 struct compressed_bio *cb,
				 u64 disk_start)
{
182
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
183
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
184
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
185 186 187 188
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
189
	u8 csum[BTRFS_CSUM_SIZE];
190
	u8 *cb_sum = cb->sums;
191

192
	if (inode->flags & BTRFS_INODE_NODATASUM)
193 194
		return 0;

195 196
	shash->tfm = fs_info->csum_shash;

197 198 199
	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];

200
		crypto_shash_init(shash);
201
		kaddr = kmap_atomic(page);
202
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
203
		kunmap_atomic(kaddr);
204
		crypto_shash_final(shash, (u8 *)&csum);
205

206
		if (memcmp(&csum, cb_sum, csum_size)) {
207
			btrfs_print_data_csum_error(inode, disk_start,
208
					csum, cb_sum, cb->mirror_num);
209 210 211
			ret = -EIO;
			goto fail;
		}
212
		cb_sum += csum_size;
213 214 215 216 217 218 219

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
220 221 222 223 224 225 226 227 228 229
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
230
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
231 232 233 234 235
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
236
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
237
	int ret = 0;
C
Chris Mason 已提交
238

239
	if (bio->bi_status)
C
Chris Mason 已提交
240 241 242 243 244
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
245
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
246 247
		goto out;

248 249 250 251 252 253 254 255
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

256 257 258 259 260 261 262
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

263
	inode = cb->inode;
264
	ret = check_compressed_csum(BTRFS_I(inode), cb,
265
				    (u64)bio->bi_iter.bi_sector << 9);
266 267 268
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
269 270 271
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
272 273
	ret = btrfs_decompress_bio(cb);

274
csum_failed:
C
Chris Mason 已提交
275 276 277 278 279 280 281 282
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
283
		put_page(page);
C
Chris Mason 已提交
284 285 286
	}

	/* do io completion on the original bio */
287
	if (cb->errors) {
C
Chris Mason 已提交
288
		bio_io_error(cb->orig_bio);
289
	} else {
290
		struct bio_vec *bvec;
291
		struct bvec_iter_all iter_all;
292 293 294 295 296

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
297
		ASSERT(!bio_flagged(bio, BIO_CLONED));
298
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
299
			SetPageChecked(bvec->bv_page);
300

301
		bio_endio(cb->orig_bio);
302
	}
C
Chris Mason 已提交
303 304 305 306 307 308 309 310 311 312 313 314

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
315 316
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
317
{
318 319
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
320 321 322 323 324
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

325 326 327
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
328
	while (nr_pages > 0) {
C
Chris Mason 已提交
329
		ret = find_get_pages_contig(inode->i_mapping, index,
330 331
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
332 333 334 335 336 337
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
338 339
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
340
			end_page_writeback(pages[i]);
341
			put_page(pages[i]);
C
Chris Mason 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
357
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
358 359 360 361 362 363
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

364
	if (bio->bi_status)
C
Chris Mason 已提交
365 366 367 368 369
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
370
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
371 372 373 374 375 376
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
377
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
378
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
379
			cb->start, cb->start + cb->len - 1,
380
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
381
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
382

383
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
384 385 386 387 388 389 390 391 392 393
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
394
		put_page(page);
C
Chris Mason 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
413
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
414 415 416
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
417
				 unsigned long nr_pages,
418 419
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
420
{
421
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
422 423 424
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
425
	int pg_index = 0;
C
Chris Mason 已提交
426 427 428
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
429
	blk_status_t ret;
430
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
431

432
	WARN_ON(!PAGE_ALIGNED(start));
433
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
434
	if (!cb)
435
		return BLK_STS_RESOURCE;
436
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
437 438 439 440
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
441
	cb->mirror_num = 0;
C
Chris Mason 已提交
442 443 444 445 446
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

447
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
448

449 450
	bio = btrfs_bio_alloc(first_byte);
	bio_set_dev(bio, bdev);
451
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
452 453
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
454 455 456 457 458

	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
		bio_associate_blkg_from_css(bio, blkcg_css);
	}
459
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
460 461 462

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
463
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
464 465
		int submit = 0;

466
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
467
		page->mapping = inode->i_mapping;
468
		if (bio->bi_iter.bi_size)
469 470
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
471

C
Chris Mason 已提交
472
		page->mapping = NULL;
473
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
474
		    PAGE_SIZE) {
475 476 477 478 479 480
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
481
			refcount_inc(&cb->pending_bios);
482 483
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
484
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
485

486
			if (!skip_sum) {
487
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
488
				BUG_ON(ret); /* -ENOMEM */
489
			}
490

491
			ret = btrfs_map_bio(fs_info, bio, 0);
492
			if (ret) {
493
				bio->bi_status = ret;
494 495
				bio_endio(bio);
			}
C
Chris Mason 已提交
496

497 498
			bio = btrfs_bio_alloc(first_byte);
			bio_set_dev(bio, bdev);
499
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
500 501
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
502
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
503
		}
504
		if (bytes_left < PAGE_SIZE) {
505
			btrfs_info(fs_info,
506
					"bytes left %lu compress len %lu nr %lu",
507 508
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
509 510
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
511
		cond_resched();
C
Chris Mason 已提交
512 513
	}

514
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
515
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
516

517
	if (!skip_sum) {
518
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
519
		BUG_ON(ret); /* -ENOMEM */
520
	}
521

522
	ret = btrfs_map_bio(fs_info, bio, 0);
523
	if (ret) {
524
		bio->bi_status = ret;
525 526
		bio_endio(bio);
	}
C
Chris Mason 已提交
527 528 529 530

	return 0;
}

531 532
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
533
	struct bio_vec *last = bio_last_bvec_all(bio);
534 535 536 537

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

538 539 540 541 542
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
543
	unsigned long pg_index;
544 545 546 547 548 549 550 551 552 553 554 555
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

556
	last_offset = bio_end_offset(cb->orig_bio);
557 558 559 560 561 562
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

563
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
564

C
Chris Mason 已提交
565
	while (last_offset < compressed_end) {
566
		pg_index = last_offset >> PAGE_SHIFT;
567

568
		if (pg_index > end_index)
569 570
			break;

571
		page = xa_load(&mapping->i_pages, pg_index);
572
		if (page && !xa_is_value(page)) {
573 574 575 576 577 578
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

579 580
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
581 582 583
		if (!page)
			break;

584
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
585
			put_page(page);
586 587 588
			goto next;
		}

589
		end = last_offset + PAGE_SIZE - 1;
590 591 592 593 594 595
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
596
		lock_extent(tree, last_offset, end);
597
		read_lock(&em_tree->lock);
598
		em = lookup_extent_mapping(em_tree, last_offset,
599
					   PAGE_SIZE);
600
		read_unlock(&em_tree->lock);
601 602

		if (!em || last_offset < em->start ||
603
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
604
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
605
			free_extent_map(em);
606
			unlock_extent(tree, last_offset, end);
607
			unlock_page(page);
608
			put_page(page);
609 610 611 612 613 614
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
615
			size_t zero_offset = offset_in_page(isize);
616 617 618

			if (zero_offset) {
				int zeros;
619
				zeros = PAGE_SIZE - zero_offset;
620
				userpage = kmap_atomic(page);
621 622
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
623
				kunmap_atomic(userpage);
624 625 626 627
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
628
				   PAGE_SIZE, 0);
629

630
		if (ret == PAGE_SIZE) {
631
			nr_pages++;
632
			put_page(page);
633
		} else {
634
			unlock_extent(tree, last_offset, end);
635
			unlock_page(page);
636
			put_page(page);
637 638 639
			break;
		}
next:
640
		last_offset += PAGE_SIZE;
641 642 643 644
	}
	return 0;
}

C
Chris Mason 已提交
645 646 647 648 649
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
650
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
651 652 653 654 655
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
656
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
657 658
				 int mirror_num, unsigned long bio_flags)
{
659
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
660 661 662 663
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
664
	unsigned long pg_index;
C
Chris Mason 已提交
665 666 667
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
668
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
669 670
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
671
	struct extent_map *em;
672
	blk_status_t ret = BLK_STS_RESOURCE;
673
	int faili = 0;
674 675
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
	u8 *sums;
C
Chris Mason 已提交
676 677 678 679

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
680
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
681
	em = lookup_extent_mapping(em_tree,
682
				   page_offset(bio_first_page_all(bio)),
683
				   PAGE_SIZE);
684
	read_unlock(&em_tree->lock);
685
	if (!em)
686
		return BLK_STS_IOERR;
C
Chris Mason 已提交
687

688
	compressed_len = em->block_len;
689
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
690 691 692
	if (!cb)
		goto out;

693
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
694 695
	cb->errors = 0;
	cb->inode = inode;
696
	cb->mirror_num = mirror_num;
697
	sums = cb->sums;
C
Chris Mason 已提交
698

699
	cb->start = em->orig_start;
700 701
	em_len = em->len;
	em_start = em->start;
702

C
Chris Mason 已提交
703
	free_extent_map(em);
704
	em = NULL;
C
Chris Mason 已提交
705

C
Christoph Hellwig 已提交
706
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
707
	cb->compressed_len = compressed_len;
708
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
709 710
	cb->orig_bio = bio;

711
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
712
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
713
				       GFP_NOFS);
714 715 716
	if (!cb->compressed_pages)
		goto fail1;

717
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
718

719 720
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
721
							      __GFP_HIGHMEM);
722 723
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
724
			ret = BLK_STS_RESOURCE;
725
			goto fail2;
726
		}
C
Chris Mason 已提交
727
	}
728
	faili = nr_pages - 1;
C
Chris Mason 已提交
729 730
	cb->nr_pages = nr_pages;

731
	add_ra_bio_pages(inode, em_start + em_len, cb);
732 733

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
734
	cb->len = bio->bi_iter.bi_size;
735

736 737
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
	bio_set_dev(comp_bio, bdev);
D
David Sterba 已提交
738
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
739 740
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
741
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
742

743
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
744 745
		int submit = 0;

746
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
747
		page->mapping = inode->i_mapping;
748
		page->index = em_start >> PAGE_SHIFT;
749

750
		if (comp_bio->bi_iter.bi_size)
751 752
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
753

C
Chris Mason 已提交
754
		page->mapping = NULL;
755
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
756
		    PAGE_SIZE) {
757 758
			unsigned int nr_sectors;

759 760
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
761
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
762

763 764 765 766 767 768
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
769
			refcount_inc(&cb->pending_bios);
770

771
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
772
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
773
							    sums);
774
				BUG_ON(ret); /* -ENOMEM */
775
			}
776 777 778 779

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
			sums += csum_size * nr_sectors;
780

781
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
782
			if (ret) {
783
				comp_bio->bi_status = ret;
784 785
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
786

787 788
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
			bio_set_dev(comp_bio, bdev);
D
David Sterba 已提交
789
			comp_bio->bi_opf = REQ_OP_READ;
790 791 792
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

793
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
794
		}
795
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
796 797
	}

798
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
799
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
800

801
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
802
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
803
		BUG_ON(ret); /* -ENOMEM */
804
	}
805

806
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
807
	if (ret) {
808
		comp_bio->bi_status = ret;
809 810
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
811 812

	return 0;
813 814

fail2:
815 816 817 818
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
819 820 821 822 823 824 825

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
826
}
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
863 864

struct heuristic_ws {
865 866
	/* Partial copy of input data */
	u8 *sample;
867
	u32 sample_size;
868 869
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
870 871
	/* Sorting buffer */
	struct bucket_item *bucket_b;
872 873 874
	struct list_head list;
};

875 876
static struct workspace_manager heuristic_wsm;

877
static struct list_head *heuristic_get_workspace(unsigned int level)
878
{
879
	return btrfs_get_workspace(&heuristic_wsm, level);
880 881 882 883 884 885 886
}

static void heuristic_put_workspace(struct list_head *ws)
{
	btrfs_put_workspace(&heuristic_wsm, ws);
}

887 888 889 890 891 892
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

893 894
	kvfree(workspace->sample);
	kfree(workspace->bucket);
895
	kfree(workspace->bucket_b);
896 897 898
	kfree(workspace);
}

899
static struct list_head *alloc_heuristic_ws(unsigned int level)
900 901 902 903 904 905 906
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

907 908 909 910 911 912 913
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
914

915 916 917 918
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

919
	INIT_LIST_HEAD(&ws->list);
920
	return &ws->list;
921 922 923
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
924 925
}

926
const struct btrfs_compress_op btrfs_heuristic_compress = {
927
	.workspace_manager = &heuristic_wsm,
928 929
	.get_workspace = heuristic_get_workspace,
	.put_workspace = heuristic_put_workspace,
930 931 932 933
	.alloc_workspace = alloc_heuristic_ws,
	.free_workspace = free_heuristic_ws,
};

934
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
935 936
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
937
	&btrfs_zlib_compress,
L
Li Zefan 已提交
938
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
939
	&btrfs_zstd_compress,
940 941
};

942
static void btrfs_init_workspace_manager(int type)
943
{
944 945
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
	struct workspace_manager *wsm = ops->workspace_manager;
946
	struct list_head *workspace;
947

948
	wsm->ops = ops;
949

950 951 952 953
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
954

955 956 957 958
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
959
	workspace = wsm->ops->alloc_workspace(0);
960 961 962 963
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
964 965 966
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
967 968 969
	}
}

970
static void btrfs_cleanup_workspace_manager(int type)
971
{
972
	struct workspace_manager *wsman;
973 974
	struct list_head *ws;

975
	wsman = btrfs_compress_op[type]->workspace_manager;
976 977 978 979 980
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
		wsman->ops->free_workspace(ws);
		atomic_dec(&wsman->total_ws);
981 982 983 984
	}
}

/*
985 986 987 988
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
989
 */
990 991
struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
				      unsigned int level)
992 993 994
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
995
	unsigned nofs_flag;
996 997 998 999 1000 1001
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1002 1003 1004 1005 1006
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1007 1008

again:
1009 1010 1011
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1012
		list_del(workspace);
1013
		(*free_ws)--;
1014
		spin_unlock(ws_lock);
1015 1016 1017
		return workspace;

	}
1018
	if (atomic_read(total_ws) > cpus) {
1019 1020
		DEFINE_WAIT(wait);

1021 1022
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1023
		if (atomic_read(total_ws) > cpus && !*free_ws)
1024
			schedule();
1025
		finish_wait(ws_wait, &wait);
1026 1027
		goto again;
	}
1028
	atomic_inc(total_ws);
1029
	spin_unlock(ws_lock);
1030

1031 1032 1033 1034 1035 1036
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1037
	workspace = wsm->ops->alloc_workspace(level);
1038 1039
	memalloc_nofs_restore(nofs_flag);

1040
	if (IS_ERR(workspace)) {
1041
		atomic_dec(total_ws);
1042
		wake_up(ws_wait);
1043 1044 1045 1046 1047 1048

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1049 1050 1051 1052
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1053
		 */
1054 1055 1056 1057 1058 1059
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1060
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1061 1062
			}
		}
1063
		goto again;
1064 1065 1066 1067
	}
	return workspace;
}

1068
static struct list_head *get_workspace(int type, int level)
1069
{
1070
	return btrfs_compress_op[type]->get_workspace(level);
1071 1072
}

1073 1074 1075 1076
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1077
void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
1078
{
1079 1080 1081 1082 1083 1084
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1085 1086 1087 1088 1089
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1090 1091

	spin_lock(ws_lock);
1092
	if (*free_ws <= num_online_cpus()) {
1093
		list_add(ws, idle_ws);
1094
		(*free_ws)++;
1095
		spin_unlock(ws_lock);
1096 1097
		goto wake;
	}
1098
	spin_unlock(ws_lock);
1099

1100
	wsm->ops->free_workspace(ws);
1101
	atomic_dec(total_ws);
1102
wake:
1103
	cond_wake_up(ws_wait);
1104 1105
}

1106 1107
static void put_workspace(int type, struct list_head *ws)
{
1108
	return btrfs_compress_op[type]->put_workspace(ws);
1109 1110
}

1111
/*
1112 1113
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1114
 *
1115 1116 1117 1118 1119
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1120 1121
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1122
 *
1123 1124
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1125 1126 1127
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1128 1129
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1130
 *
1131
 * @max_out tells us the max number of bytes that we're allowed to
1132 1133
 * stuff into pages
 */
1134
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1135
			 u64 start, struct page **pages,
1136 1137
			 unsigned long *out_pages,
			 unsigned long *total_in,
1138
			 unsigned long *total_out)
1139
{
1140
	int type = btrfs_compress_type(type_level);
1141
	int level = btrfs_compress_level(type_level);
1142 1143 1144
	struct list_head *workspace;
	int ret;

1145
	level = btrfs_compress_set_level(type, level);
1146
	workspace = get_workspace(type, level);
1147 1148
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1149
	put_workspace(type, workspace);
1150 1151 1152 1153 1154 1155 1156 1157
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1158
 * orig_bio contains the pages from the file that we want to decompress into
1159 1160 1161 1162 1163 1164 1165 1166
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1167
static int btrfs_decompress_bio(struct compressed_bio *cb)
1168 1169 1170
{
	struct list_head *workspace;
	int ret;
1171
	int type = cb->compress_type;
1172

1173
	workspace = get_workspace(type, 0);
1174
	ret = compression_decompress_bio(type, workspace, cb);
1175
	put_workspace(type, workspace);
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1191
	workspace = get_workspace(type, 0);
1192 1193
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1194
	put_workspace(type, workspace);
1195

1196 1197 1198
	return ret;
}

1199 1200
void __init btrfs_init_compress(void)
{
1201 1202 1203 1204
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1205 1206
}

1207
void __cold btrfs_exit_compress(void)
1208
{
1209 1210 1211 1212
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1213
}
1214 1215 1216 1217 1218 1219 1220 1221

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1222
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1223
			      unsigned long total_out, u64 disk_start,
1224
			      struct bio *bio)
1225 1226 1227 1228
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1229
	unsigned long prev_start_byte;
1230 1231 1232
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1233
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1234 1235 1236 1237 1238

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1239
	start_byte = page_offset(bvec.bv_page) - disk_start;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1259 1260
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1261
		bytes = min(bytes, working_bytes);
1262 1263 1264

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1265
		kunmap_atomic(kaddr);
1266
		flush_dcache_page(bvec.bv_page);
1267 1268 1269 1270 1271 1272

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1273 1274 1275 1276
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1277
		prev_start_byte = start_byte;
1278
		start_byte = page_offset(bvec.bv_page) - disk_start;
1279

1280
		/*
1281 1282 1283 1284
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1285
		 */
1286 1287 1288 1289 1290 1291 1292
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1305 1306 1307 1308 1309
		}
	}

	return 1;
}
1310

1311 1312 1313
/*
 * Shannon Entropy calculation
 *
1314
 * Pure byte distribution analysis fails to determine compressibility of data.
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1378
 * Use 16 u32 counters for calculating new position in buf array
1379 1380 1381 1382 1383 1384
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1385
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1386
		       int num)
1387
{
1388 1389 1390 1391 1392 1393 1394 1395
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1396

1397 1398 1399 1400
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1401
	max_num = array[0].count;
1402
	for (i = 1; i < num; i++) {
1403
		buf_num = array[i].count;
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1416
			buf_num = array[i].count;
1417 1418 1419 1420 1421 1422 1423 1424
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1425
			buf_num = array[i].count;
1426 1427 1428
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1429
			array_buf[new_addr] = array[i];
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1443
			buf_num = array_buf[i].count;
1444 1445 1446 1447 1448 1449 1450 1451
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1452
			buf_num = array_buf[i].count;
1453 1454 1455
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1456
			array[new_addr] = array_buf[i];
1457 1458 1459 1460
		}

		shift += RADIX_BASE;
	}
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1490
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1546 1547 1548 1549 1550 1551 1552 1553
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1623
	struct list_head *ws_list = get_workspace(0, 0);
1624
	struct heuristic_ws *ws;
1625 1626
	u32 i;
	u8 byte;
1627
	int ret = 0;
1628

1629 1630
	ws = list_entry(ws_list, struct heuristic_ws, list);

1631 1632
	heuristic_collect_sample(inode, start, end, ws);

1633 1634 1635 1636 1637
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1638 1639 1640 1641 1642
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1643 1644
	}

1645 1646 1647 1648 1649 1650
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1691
out:
1692
	put_workspace(0, ws_list);
1693 1694
	return ret;
}
1695

1696 1697 1698 1699 1700
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1701
{
1702 1703 1704 1705
	unsigned int level = 0;
	int ret;

	if (!type)
1706 1707
		return 0;

1708 1709 1710 1711 1712 1713
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	level = btrfs_compress_set_level(type, level);

	return level;
}

/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);
1731

1732
	return level;
1733
}