compression.c 46.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
31
#include "subpage.h"
32
#include "zoned.h"
C
Chris Mason 已提交
33

34 35 36 37 38 39 40 41 42 43
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
44 45
	default:
		break;
46 47 48 49 50
	}

	return NULL;
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
85 86 87 88 89 90 91
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
92
		 */
93
		*out_pages = 0;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

136
static int btrfs_decompress_bio(struct compressed_bio *cb);
137

138
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
139 140 141
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
142
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
143 144
}

145
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 147
				 u64 disk_start)
{
148
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
149
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150
	const u32 csum_size = fs_info->csum_size;
151
	const u32 sectorsize = fs_info->sectorsize;
152
	struct page *page;
153
	unsigned int i;
154
	char *kaddr;
155
	u8 csum[BTRFS_CSUM_SIZE];
156
	struct compressed_bio *cb = bio->bi_private;
157
	u8 *cb_sum = cb->sums;
158

159
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
160 161
		return 0;

162 163
	shash->tfm = fs_info->csum_shash;

164
	for (i = 0; i < cb->nr_pages; i++) {
165 166
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
167 168
		page = cb->compressed_pages[i];

169 170 171 172 173 174 175
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
176
			kaddr = page_address(page);
177 178 179 180 181 182
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
183
				if (btrfs_bio(bio)->device)
184
					btrfs_dev_stat_inc_and_print(
185
						btrfs_bio(bio)->device,
186 187 188 189 190
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
191 192
		}
	}
193
	return 0;
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*
 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 *
 * Return true if there is no pending bio nor io.
 * Return false otherwise.
 */
static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	unsigned int bi_size = 0;
	bool last_io = false;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/*
	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
	 * Thus here we have to iterate through all segments to grab correct
	 * bio size.
	 */
	bio_for_each_segment_all(bvec, bio, iter_all)
		bi_size += bvec->bv_len;

	if (bio->bi_status)
		cb->errors = 1;

	ASSERT(bi_size && bi_size <= cb->compressed_len);
	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
					&cb->pending_sectors);
	atomic_dec(&cb->pending_bios);
	return last_io;
}

C
Chris Mason 已提交
228 229 230 231 232 233 234 235 236 237
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
238
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
239 240 241 242
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
243
	unsigned int index;
244
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
245
	int ret = 0;
C
Chris Mason 已提交
246

247
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
248 249
		goto out;

250 251 252 253
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
254
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
255 256
	cb->mirror_num = mirror;

257 258 259 260 261 262 263
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

264
	inode = cb->inode;
265
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
266
				    bio->bi_iter.bi_sector << 9);
267 268 269
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
270 271 272
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
273 274
	ret = btrfs_decompress_bio(cb);

275
csum_failed:
C
Chris Mason 已提交
276 277 278 279 280 281 282 283
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
284
		put_page(page);
C
Chris Mason 已提交
285 286 287
	}

	/* do io completion on the original bio */
288
	if (cb->errors) {
C
Chris Mason 已提交
289
		bio_io_error(cb->orig_bio);
290
	} else {
291
		struct bio_vec *bvec;
292
		struct bvec_iter_all iter_all;
293 294 295 296 297

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
298
		ASSERT(!bio_flagged(bio, BIO_CLONED));
299 300 301 302 303 304 305 306
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}
307

308
		bio_endio(cb->orig_bio);
309
	}
C
Chris Mason 已提交
310 311 312 313 314 315 316 317 318 319 320 321

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
322 323
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
324
{
325 326
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
327 328 329 330 331
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

332 333 334
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
335
	while (nr_pages > 0) {
C
Chris Mason 已提交
336
		ret = find_get_pages_contig(inode->i_mapping, index,
337 338
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
339 340 341 342 343 344
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
345 346
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
347
			end_page_writeback(pages[i]);
348
			put_page(pages[i]);
C
Chris Mason 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
364
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
365 366 367 368
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
369
	unsigned int index;
C
Chris Mason 已提交
370

371
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
372 373 374 375 376 377
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
378
	btrfs_record_physical_zoned(inode, cb->start, bio);
379
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
380
			cb->start, cb->start + cb->len - 1,
381
			!cb->errors);
C
Chris Mason 已提交
382

383
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
384 385 386 387 388 389 390 391 392 393
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
394
		put_page(page);
C
Chris Mason 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
413
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
414 415
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
416
				 struct page **compressed_pages,
417
				 unsigned int nr_pages,
418 419
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
420
{
421
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
422 423 424
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
425
	int pg_index = 0;
C
Chris Mason 已提交
426 427
	struct page *page;
	u64 first_byte = disk_start;
428
	blk_status_t ret;
429
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
430 431
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
432

433
	WARN_ON(!PAGE_ALIGNED(start));
434
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
435
	if (!cb)
436
		return BLK_STS_RESOURCE;
437 438
	atomic_set(&cb->pending_bios, 0);
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
439
	cb->errors = 0;
440
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
441 442
	cb->start = start;
	cb->len = len;
443
	cb->mirror_num = 0;
C
Chris Mason 已提交
444 445 446 447 448
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

449
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
450
	bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
451
	bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
452 453
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
454

455
	if (use_append) {
456
		struct btrfs_device *device;
457

458 459
		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
		if (IS_ERR(device)) {
460 461 462 463 464
			kfree(cb);
			bio_put(bio);
			return BLK_STS_NOTSUPP;
		}

465
		bio_set_dev(bio, device->bdev);
466 467
	}

468 469
	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
470
		kthread_associate_blkcg(blkcg_css);
471
	}
C
Chris Mason 已提交
472 473 474

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
475
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
476
		int submit = 0;
477
		int len = 0;
478

479
		page = compressed_pages[pg_index];
480
		page->mapping = inode->vfs_inode.i_mapping;
481
		if (bio->bi_iter.bi_size)
482 483
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
484

485 486 487 488 489 490 491 492 493 494 495
		/*
		 * Page can only be added to bio if the current bio fits in
		 * stripe.
		 */
		if (!submit) {
			if (pg_index == 0 && use_append)
				len = bio_add_zone_append_page(bio, page,
							       PAGE_SIZE, 0);
			else
				len = bio_add_page(bio, page, PAGE_SIZE, 0);
		}
496

C
Chris Mason 已提交
497
		page->mapping = NULL;
498
		if (submit || len < PAGE_SIZE) {
499
			atomic_inc(&cb->pending_bios);
500 501
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
502
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
503

504
			if (!skip_sum) {
505
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
506
				BUG_ON(ret); /* -ENOMEM */
507
			}
508

509
			ret = btrfs_map_bio(fs_info, bio, 0);
510
			if (ret) {
511
				bio->bi_status = ret;
512 513
				bio_endio(bio);
			}
C
Chris Mason 已提交
514

515
			bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
516
			bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
517
			bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
518 519
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
520
			if (blkcg_css)
521
				bio->bi_opf |= REQ_CGROUP_PUNT;
522 523 524 525
			/*
			 * Use bio_add_page() to ensure the bio has at least one
			 * page.
			 */
526
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
527
		}
528
		if (bytes_left < PAGE_SIZE) {
529
			btrfs_info(fs_info,
530
					"bytes left %lu compress len %u nr %u",
531 532
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
533 534
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
535
		cond_resched();
C
Chris Mason 已提交
536 537
	}

538
	atomic_inc(&cb->pending_bios);
539
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
540
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
541

542
	if (!skip_sum) {
543
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
544
		BUG_ON(ret); /* -ENOMEM */
545
	}
546

547
	ret = btrfs_map_bio(fs_info, bio, 0);
548
	if (ret) {
549
		bio->bi_status = ret;
550 551
		bio_endio(bio);
	}
C
Chris Mason 已提交
552

553 554 555
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
556 557 558
	return 0;
}

559 560
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
561
	struct bio_vec *last = bio_last_bvec_all(bio);
562 563 564 565

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

566 567 568 569 570 571 572 573 574 575 576
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
577 578 579 580
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
581
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
582
	unsigned long end_index;
583
	u64 cur = bio_end_offset(cb->orig_bio);
584 585 586 587 588 589 590
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
591
	int sectors_missed = 0;
592 593 594 595 596 597 598

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

599 600 601 602 603 604 605 606 607 608
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

609
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
610

611 612 613 614
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
615

616
		if (pg_index > end_index)
617 618
			break;

619
		page = xa_load(&mapping->i_pages, pg_index);
620
		if (page && !xa_is_value(page)) {
621 622 623 624 625
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
626
				break;
627 628 629 630 631 632 633

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
634 635
		}

636 637
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
638 639 640
		if (!page)
			break;

641
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
642
			put_page(page);
643 644 645
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
646 647
		}

648 649 650 651 652 653 654
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

655 656
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
657
		read_lock(&em_tree->lock);
658
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
659
		read_unlock(&em_tree->lock);
660

661 662 663 664 665 666 667
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
668
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
669
			free_extent_map(em);
670
			unlock_extent(tree, cur, page_end);
671
			unlock_page(page);
672
			put_page(page);
673 674 675 676 677
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
678
			size_t zero_offset = offset_in_page(isize);
679 680 681

			if (zero_offset) {
				int zeros;
682
				zeros = PAGE_SIZE - zero_offset;
683
				memzero_page(page, zero_offset, zeros);
684 685 686 687
				flush_dcache_page(page);
			}
		}

688 689 690 691
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
692
			unlock_page(page);
693
			put_page(page);
694 695
			break;
		}
696 697 698 699 700 701 702 703 704
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
705 706 707 708
	}
	return 0;
}

C
Chris Mason 已提交
709 710 711 712 713
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
714
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
715 716 717 718 719
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
720
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
721 722
				 int mirror_num, unsigned long bio_flags)
{
723
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
724 725
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
726 727 728
	unsigned int compressed_len;
	unsigned int nr_pages;
	unsigned int pg_index;
C
Chris Mason 已提交
729 730
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
731
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
732
	u64 file_offset;
733 734
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
735
	struct extent_map *em;
736
	blk_status_t ret = BLK_STS_RESOURCE;
737
	int faili = 0;
738
	u8 *sums;
C
Chris Mason 已提交
739 740 741

	em_tree = &BTRFS_I(inode)->extent_tree;

742 743 744
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
745
	/* we need the actual starting offset of this extent in the file */
746
	read_lock(&em_tree->lock);
747
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
748
	read_unlock(&em_tree->lock);
749
	if (!em)
750
		return BLK_STS_IOERR;
C
Chris Mason 已提交
751

752
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
753
	compressed_len = em->block_len;
754
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
755 756 757
	if (!cb)
		goto out;

758 759
	atomic_set(&cb->pending_bios, 0);
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
760 761
	cb->errors = 0;
	cb->inode = inode;
762
	cb->mirror_num = mirror_num;
763
	sums = cb->sums;
C
Chris Mason 已提交
764

765
	cb->start = em->orig_start;
766 767
	em_len = em->len;
	em_start = em->start;
768

C
Chris Mason 已提交
769
	free_extent_map(em);
770
	em = NULL;
C
Chris Mason 已提交
771

C
Christoph Hellwig 已提交
772
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
773
	cb->compressed_len = compressed_len;
774
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
775 776
	cb->orig_bio = bio;

777
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
778
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
779
				       GFP_NOFS);
780 781 782
	if (!cb->compressed_pages)
		goto fail1;

783
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
784
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
785 786
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
787
			ret = BLK_STS_RESOURCE;
788
			goto fail2;
789
		}
C
Chris Mason 已提交
790
	}
791
	faili = nr_pages - 1;
C
Chris Mason 已提交
792 793
	cb->nr_pages = nr_pages;

794
	add_ra_bio_pages(inode, em_start + em_len, cb);
795 796

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
797
	cb->len = bio->bi_iter.bi_size;
798

799
	comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
800
	comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
D
David Sterba 已提交
801
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
802 803 804
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;

805
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
806
		u32 pg_len = PAGE_SIZE;
807 808
		int submit = 0;

809 810 811 812 813 814 815 816 817 818 819
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

820
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
821
		page->mapping = inode->i_mapping;
822
		page->index = em_start >> PAGE_SHIFT;
823

824
		if (comp_bio->bi_iter.bi_size)
825
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
826
							  comp_bio, 0);
C
Chris Mason 已提交
827

C
Chris Mason 已提交
828
		page->mapping = NULL;
829
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
830 831
			unsigned int nr_sectors;

832
			atomic_inc(&cb->pending_bios);
833 834
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
835
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
836

837
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
838
			BUG_ON(ret); /* -ENOMEM */
839 840 841

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
842
			sums += fs_info->csum_size * nr_sectors;
843

844
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
845
			if (ret) {
846
				comp_bio->bi_status = ret;
847 848
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
849

850
			comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
851
			comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
D
David Sterba 已提交
852
			comp_bio->bi_opf = REQ_OP_READ;
853 854 855
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

856
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
857
		}
858
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
859 860
	}

861
	atomic_inc(&cb->pending_bios);
862
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
863
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
864

865
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
866
	BUG_ON(ret); /* -ENOMEM */
867

868
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
869
	if (ret) {
870
		comp_bio->bi_status = ret;
871 872
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
873 874

	return 0;
875 876

fail2:
877 878 879 880
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
881 882 883 884 885 886 887

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
888
}
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
925 926

struct heuristic_ws {
927 928
	/* Partial copy of input data */
	u8 *sample;
929
	u32 sample_size;
930 931
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
932 933
	/* Sorting buffer */
	struct bucket_item *bucket_b;
934 935 936
	struct list_head list;
};

937 938
static struct workspace_manager heuristic_wsm;

939 940 941 942 943 944
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

945 946
	kvfree(workspace->sample);
	kfree(workspace->bucket);
947
	kfree(workspace->bucket_b);
948 949 950
	kfree(workspace);
}

951
static struct list_head *alloc_heuristic_ws(unsigned int level)
952 953 954 955 956 957 958
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

959 960 961 962 963 964 965
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
966

967 968 969 970
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

971
	INIT_LIST_HEAD(&ws->list);
972
	return &ws->list;
973 974 975
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
976 977
}

978
const struct btrfs_compress_op btrfs_heuristic_compress = {
979
	.workspace_manager = &heuristic_wsm,
980 981
};

982
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
983 984
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
985
	&btrfs_zlib_compress,
L
Li Zefan 已提交
986
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
987
	&btrfs_zstd_compress,
988 989
};

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1022
static void btrfs_init_workspace_manager(int type)
1023
{
1024
	struct workspace_manager *wsm;
1025
	struct list_head *workspace;
1026

1027
	wsm = btrfs_compress_op[type]->workspace_manager;
1028 1029 1030 1031
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1032

1033 1034 1035 1036
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1037
	workspace = alloc_workspace(type, 0);
1038 1039 1040 1041
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1042 1043 1044
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1045 1046 1047
	}
}

1048
static void btrfs_cleanup_workspace_manager(int type)
1049
{
1050
	struct workspace_manager *wsman;
1051 1052
	struct list_head *ws;

1053
	wsman = btrfs_compress_op[type]->workspace_manager;
1054 1055 1056
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1057
		free_workspace(type, ws);
1058
		atomic_dec(&wsman->total_ws);
1059 1060 1061 1062
	}
}

/*
1063 1064 1065 1066
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1067
 */
1068
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1069
{
1070
	struct workspace_manager *wsm;
1071 1072
	struct list_head *workspace;
	int cpus = num_online_cpus();
1073
	unsigned nofs_flag;
1074 1075 1076 1077 1078 1079
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1080
	wsm = btrfs_compress_op[type]->workspace_manager;
1081 1082 1083 1084 1085
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1086 1087

again:
1088 1089 1090
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1091
		list_del(workspace);
1092
		(*free_ws)--;
1093
		spin_unlock(ws_lock);
1094 1095 1096
		return workspace;

	}
1097
	if (atomic_read(total_ws) > cpus) {
1098 1099
		DEFINE_WAIT(wait);

1100 1101
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1102
		if (atomic_read(total_ws) > cpus && !*free_ws)
1103
			schedule();
1104
		finish_wait(ws_wait, &wait);
1105 1106
		goto again;
	}
1107
	atomic_inc(total_ws);
1108
	spin_unlock(ws_lock);
1109

1110 1111 1112 1113 1114 1115
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1116
	workspace = alloc_workspace(type, level);
1117 1118
	memalloc_nofs_restore(nofs_flag);

1119
	if (IS_ERR(workspace)) {
1120
		atomic_dec(total_ws);
1121
		wake_up(ws_wait);
1122 1123 1124 1125 1126 1127

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1128 1129 1130 1131
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1132
		 */
1133 1134 1135 1136 1137 1138
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1139
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1140 1141
			}
		}
1142
		goto again;
1143 1144 1145 1146
	}
	return workspace;
}

1147
static struct list_head *get_workspace(int type, int level)
1148
{
1149
	switch (type) {
1150
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1151
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1152
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1153 1154 1155 1156 1157 1158 1159 1160
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1161 1162
}

1163 1164 1165 1166
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1167
void btrfs_put_workspace(int type, struct list_head *ws)
1168
{
1169
	struct workspace_manager *wsm;
1170 1171 1172 1173 1174 1175
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1176
	wsm = btrfs_compress_op[type]->workspace_manager;
1177 1178 1179 1180 1181
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1182 1183

	spin_lock(ws_lock);
1184
	if (*free_ws <= num_online_cpus()) {
1185
		list_add(ws, idle_ws);
1186
		(*free_ws)++;
1187
		spin_unlock(ws_lock);
1188 1189
		goto wake;
	}
1190
	spin_unlock(ws_lock);
1191

1192
	free_workspace(type, ws);
1193
	atomic_dec(total_ws);
1194
wake:
1195
	cond_wake_up(ws_wait);
1196 1197
}

1198 1199
static void put_workspace(int type, struct list_head *ws)
{
1200
	switch (type) {
1201 1202 1203
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1204 1205 1206 1207 1208 1209 1210 1211
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1212 1213
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1230
/*
1231 1232
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1233
 *
1234 1235 1236 1237 1238
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1239 1240
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1241
 *
1242 1243
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1244 1245 1246
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1247 1248
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1249
 */
1250
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1251
			 u64 start, struct page **pages,
1252 1253
			 unsigned long *out_pages,
			 unsigned long *total_in,
1254
			 unsigned long *total_out)
1255
{
1256
	int type = btrfs_compress_type(type_level);
1257
	int level = btrfs_compress_level(type_level);
1258 1259 1260
	struct list_head *workspace;
	int ret;

1261
	level = btrfs_compress_set_level(type, level);
1262
	workspace = get_workspace(type, level);
1263 1264
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1265
	put_workspace(type, workspace);
1266 1267 1268
	return ret;
}

1269
static int btrfs_decompress_bio(struct compressed_bio *cb)
1270 1271 1272
{
	struct list_head *workspace;
	int ret;
1273
	int type = cb->compress_type;
1274

1275
	workspace = get_workspace(type, 0);
1276
	ret = compression_decompress_bio(type, workspace, cb);
1277
	put_workspace(type, workspace);
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1293
	workspace = get_workspace(type, 0);
1294 1295
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1296
	put_workspace(type, workspace);
1297

1298 1299 1300
	return ret;
}

1301 1302
void __init btrfs_init_compress(void)
{
1303 1304 1305 1306
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1307 1308
}

1309
void __cold btrfs_exit_compress(void)
1310
{
1311 1312 1313 1314
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1315
}
1316 1317

/*
1318
 * Copy decompressed data from working buffer to pages.
1319
 *
1320 1321 1322 1323 1324 1325
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1326
 *
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1346
 */
1347 1348
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1349
{
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1369

1370 1371 1372
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1373

1374 1375 1376 1377
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1378

1379
		/*
1380 1381
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1382
		 */
1383 1384 1385 1386 1387
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		flush_dcache_page(bvec.bv_page);
		cur_offset += copy_len;
1388

1389 1390 1391 1392
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1393 1394 1395
	}
	return 1;
}
1396

1397 1398 1399
/*
 * Shannon Entropy calculation
 *
1400
 * Pure byte distribution analysis fails to determine compressibility of data.
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1464
 * Use 16 u32 counters for calculating new position in buf array
1465 1466 1467 1468 1469 1470
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1471
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1472
		       int num)
1473
{
1474 1475 1476 1477 1478 1479 1480 1481
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1482

1483 1484 1485 1486
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1487
	max_num = array[0].count;
1488
	for (i = 1; i < num; i++) {
1489
		buf_num = array[i].count;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1502
			buf_num = array[i].count;
1503 1504 1505 1506 1507 1508 1509 1510
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1511
			buf_num = array[i].count;
1512 1513 1514
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1515
			array_buf[new_addr] = array[i];
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1529
			buf_num = array_buf[i].count;
1530 1531 1532 1533 1534 1535 1536 1537
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1538
			buf_num = array_buf[i].count;
1539 1540 1541
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1542
			array[new_addr] = array_buf[i];
1543 1544 1545 1546
		}

		shift += RADIX_BASE;
	}
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1576
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1632 1633 1634 1635 1636 1637 1638 1639
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1670
		in_data = kmap_local_page(page);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1683
		kunmap_local(in_data);
1684 1685 1686 1687 1688 1689 1690 1691
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1709
	struct list_head *ws_list = get_workspace(0, 0);
1710
	struct heuristic_ws *ws;
1711 1712
	u32 i;
	u8 byte;
1713
	int ret = 0;
1714

1715 1716
	ws = list_entry(ws_list, struct heuristic_ws, list);

1717 1718
	heuristic_collect_sample(inode, start, end, ws);

1719 1720 1721 1722 1723
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1724 1725 1726 1727 1728
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1729 1730
	}

1731 1732 1733 1734 1735 1736
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1777
out:
1778
	put_workspace(0, ws_list);
1779 1780
	return ret;
}
1781

1782 1783 1784 1785 1786
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1787
{
1788 1789 1790 1791
	unsigned int level = 0;
	int ret;

	if (!type)
1792 1793
		return 0;

1794 1795 1796 1797 1798 1799
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1800 1801 1802 1803
	level = btrfs_compress_set_level(type, level);

	return level;
}