compression.c 44.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

32 33 34 35 36 37 38 39 40 41
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
42 43
	default:
		break;
44 45 46 47 48
	}

	return NULL;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here. As a sane fallback, return what the
		 * callers will understand as 'no compression happened'.
		 */
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

129
static int btrfs_decompress_bio(struct compressed_bio *cb);
130

131
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 133 134
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
135
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
136 137
}

138
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
139 140
				 u64 disk_start)
{
141
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
142
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
143
	const u32 csum_size = fs_info->csum_size;
144
	const u32 sectorsize = fs_info->sectorsize;
145 146 147
	struct page *page;
	unsigned long i;
	char *kaddr;
148
	u8 csum[BTRFS_CSUM_SIZE];
149
	struct compressed_bio *cb = bio->bi_private;
150
	u8 *cb_sum = cb->sums;
151

152
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
153 154
		return 0;

155 156
	shash->tfm = fs_info->csum_shash;

157
	for (i = 0; i < cb->nr_pages; i++) {
158 159
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
160 161
		page = cb->compressed_pages[i];

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
			kaddr = kmap_atomic(page);
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);
			kunmap_atomic(kaddr);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
				if (btrfs_io_bio(bio)->device)
					btrfs_dev_stat_inc_and_print(
						btrfs_io_bio(bio)->device,
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
185 186
		}
	}
187
	return 0;
188 189
}

C
Chris Mason 已提交
190 191 192 193 194 195 196 197 198 199
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
200
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
201 202 203 204 205
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
206
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
207
	int ret = 0;
C
Chris Mason 已提交
208

209
	if (bio->bi_status)
C
Chris Mason 已提交
210 211 212 213 214
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
215
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
216 217
		goto out;

218 219 220 221 222 223 224
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

225 226 227 228 229 230 231
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

232
	inode = cb->inode;
233
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
234
				    bio->bi_iter.bi_sector << 9);
235 236 237
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
238 239 240
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
241 242
	ret = btrfs_decompress_bio(cb);

243
csum_failed:
C
Chris Mason 已提交
244 245 246 247 248 249 250 251
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
252
		put_page(page);
C
Chris Mason 已提交
253 254 255
	}

	/* do io completion on the original bio */
256
	if (cb->errors) {
C
Chris Mason 已提交
257
		bio_io_error(cb->orig_bio);
258
	} else {
259
		struct bio_vec *bvec;
260
		struct bvec_iter_all iter_all;
261 262 263 264 265

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
266
		ASSERT(!bio_flagged(bio, BIO_CLONED));
267
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
268
			SetPageChecked(bvec->bv_page);
269

270
		bio_endio(cb->orig_bio);
271
	}
C
Chris Mason 已提交
272 273 274 275 276 277 278 279 280 281 282 283

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
284 285
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
286
{
287 288
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
289 290 291 292 293
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

294 295 296
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
297
	while (nr_pages > 0) {
C
Chris Mason 已提交
298
		ret = find_get_pages_contig(inode->i_mapping, index,
299 300
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
301 302 303 304 305 306
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
307 308
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
309
			end_page_writeback(pages[i]);
310
			put_page(pages[i]);
C
Chris Mason 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
326
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
327 328 329 330 331 332
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

333
	if (bio->bi_status)
C
Chris Mason 已提交
334 335 336 337 338
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
339
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
340 341 342 343 344 345
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
346
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
347
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
348
			cb->start, cb->start + cb->len - 1,
349
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
350
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
351

352
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
353 354 355 356 357 358 359 360 361 362
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
363
		put_page(page);
C
Chris Mason 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
382
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
C
Chris Mason 已提交
383 384 385
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
386
				 unsigned long nr_pages,
387 388
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
389
{
390
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
391 392 393
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
394
	int pg_index = 0;
C
Chris Mason 已提交
395 396
	struct page *page;
	u64 first_byte = disk_start;
397
	blk_status_t ret;
398
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
399

400
	WARN_ON(!PAGE_ALIGNED(start));
401
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
402
	if (!cb)
403
		return BLK_STS_RESOURCE;
404
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
405
	cb->errors = 0;
406
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
407 408
	cb->start = start;
	cb->len = len;
409
	cb->mirror_num = 0;
C
Chris Mason 已提交
410 411 412 413 414
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

415
	bio = btrfs_bio_alloc(first_byte);
416
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
417 418
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
419 420 421

	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
422
		kthread_associate_blkcg(blkcg_css);
423
	}
424
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
425 426 427

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
428
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
429 430
		int submit = 0;

431
		page = compressed_pages[pg_index];
432
		page->mapping = inode->vfs_inode.i_mapping;
433
		if (bio->bi_iter.bi_size)
434 435
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
436

C
Chris Mason 已提交
437
		page->mapping = NULL;
438
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
439
		    PAGE_SIZE) {
440 441 442 443 444 445
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
446
			refcount_inc(&cb->pending_bios);
447 448
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
449
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
450

451
			if (!skip_sum) {
452
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
453
				BUG_ON(ret); /* -ENOMEM */
454
			}
455

456
			ret = btrfs_map_bio(fs_info, bio, 0);
457
			if (ret) {
458
				bio->bi_status = ret;
459 460
				bio_endio(bio);
			}
C
Chris Mason 已提交
461

462
			bio = btrfs_bio_alloc(first_byte);
463
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
464 465
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
466
			if (blkcg_css)
467
				bio->bi_opf |= REQ_CGROUP_PUNT;
468
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
469
		}
470
		if (bytes_left < PAGE_SIZE) {
471
			btrfs_info(fs_info,
472
					"bytes left %lu compress len %lu nr %lu",
473 474
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
475 476
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
477
		cond_resched();
C
Chris Mason 已提交
478 479
	}

480
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
481
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
482

483
	if (!skip_sum) {
484
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
485
		BUG_ON(ret); /* -ENOMEM */
486
	}
487

488
	ret = btrfs_map_bio(fs_info, bio, 0);
489
	if (ret) {
490
		bio->bi_status = ret;
491 492
		bio_endio(bio);
	}
C
Chris Mason 已提交
493

494 495 496
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
497 498 499
	return 0;
}

500 501
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
502
	struct bio_vec *last = bio_last_bvec_all(bio);
503 504 505 506

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

507 508 509 510 511
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
512
	unsigned long pg_index;
513 514 515 516 517 518 519 520 521 522 523 524
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

525
	last_offset = bio_end_offset(cb->orig_bio);
526 527 528 529 530 531
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

532
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
533

C
Chris Mason 已提交
534
	while (last_offset < compressed_end) {
535
		pg_index = last_offset >> PAGE_SHIFT;
536

537
		if (pg_index > end_index)
538 539
			break;

540
		page = xa_load(&mapping->i_pages, pg_index);
541
		if (page && !xa_is_value(page)) {
542 543 544 545 546 547
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

548 549
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
550 551 552
		if (!page)
			break;

553
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
554
			put_page(page);
555 556 557 558 559 560 561 562
			goto next;
		}

		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
563 564 565 566 567 568 569 570
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

		end = last_offset + PAGE_SIZE - 1;
571
		lock_extent(tree, last_offset, end);
572
		read_lock(&em_tree->lock);
573
		em = lookup_extent_mapping(em_tree, last_offset,
574
					   PAGE_SIZE);
575
		read_unlock(&em_tree->lock);
576 577

		if (!em || last_offset < em->start ||
578
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
579
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
580
			free_extent_map(em);
581
			unlock_extent(tree, last_offset, end);
582
			unlock_page(page);
583
			put_page(page);
584 585 586 587 588 589
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
590
			size_t zero_offset = offset_in_page(isize);
591 592 593

			if (zero_offset) {
				int zeros;
594
				zeros = PAGE_SIZE - zero_offset;
595
				userpage = kmap_atomic(page);
596 597
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
598
				kunmap_atomic(userpage);
599 600 601 602
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
603
				   PAGE_SIZE, 0);
604

605
		if (ret == PAGE_SIZE) {
606
			nr_pages++;
607
			put_page(page);
608
		} else {
609
			unlock_extent(tree, last_offset, end);
610
			unlock_page(page);
611
			put_page(page);
612 613 614
			break;
		}
next:
615
		last_offset += PAGE_SIZE;
616 617 618 619
	}
	return 0;
}

C
Chris Mason 已提交
620 621 622 623 624
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
625
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
626 627 628 629 630
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
631
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
632 633
				 int mirror_num, unsigned long bio_flags)
{
634
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
635 636 637 638
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
639
	unsigned long pg_index;
C
Chris Mason 已提交
640 641
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
642
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
643 644
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
645
	struct extent_map *em;
646
	blk_status_t ret = BLK_STS_RESOURCE;
647
	int faili = 0;
648
	u8 *sums;
C
Chris Mason 已提交
649 650 651 652

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
653
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
654
	em = lookup_extent_mapping(em_tree,
655
				   page_offset(bio_first_page_all(bio)),
656
				   fs_info->sectorsize);
657
	read_unlock(&em_tree->lock);
658
	if (!em)
659
		return BLK_STS_IOERR;
C
Chris Mason 已提交
660

661
	compressed_len = em->block_len;
662
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
663 664 665
	if (!cb)
		goto out;

666
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
667 668
	cb->errors = 0;
	cb->inode = inode;
669
	cb->mirror_num = mirror_num;
670
	sums = cb->sums;
C
Chris Mason 已提交
671

672
	cb->start = em->orig_start;
673 674
	em_len = em->len;
	em_start = em->start;
675

C
Chris Mason 已提交
676
	free_extent_map(em);
677
	em = NULL;
C
Chris Mason 已提交
678

C
Christoph Hellwig 已提交
679
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
680
	cb->compressed_len = compressed_len;
681
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
682 683
	cb->orig_bio = bio;

684
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
685
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
686
				       GFP_NOFS);
687 688 689
	if (!cb->compressed_pages)
		goto fail1;

690 691
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
692
							      __GFP_HIGHMEM);
693 694
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
695
			ret = BLK_STS_RESOURCE;
696
			goto fail2;
697
		}
C
Chris Mason 已提交
698
	}
699
	faili = nr_pages - 1;
C
Chris Mason 已提交
700 701
	cb->nr_pages = nr_pages;

702
	add_ra_bio_pages(inode, em_start + em_len, cb);
703 704

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
705
	cb->len = bio->bi_iter.bi_size;
706

707
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
708
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
709 710
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
711
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
712

713
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
714
		u32 pg_len = PAGE_SIZE;
715 716
		int submit = 0;

717 718 719 720 721 722 723 724 725 726 727
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

728
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
729
		page->mapping = inode->i_mapping;
730
		page->index = em_start >> PAGE_SHIFT;
731

732
		if (comp_bio->bi_iter.bi_size)
733
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
734
							  comp_bio, 0);
C
Chris Mason 已提交
735

C
Chris Mason 已提交
736
		page->mapping = NULL;
737
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
738 739
			unsigned int nr_sectors;

740 741
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
742
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
743

744 745 746 747 748 749
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
750
			refcount_inc(&cb->pending_bios);
751

752
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
753
			BUG_ON(ret); /* -ENOMEM */
754 755 756

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
757
			sums += fs_info->csum_size * nr_sectors;
758

759
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
760
			if (ret) {
761
				comp_bio->bi_status = ret;
762 763
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
764

765
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
766
			comp_bio->bi_opf = REQ_OP_READ;
767 768 769
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

770
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
771
		}
772
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
773 774
	}

775
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
776
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
777

778
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
779
	BUG_ON(ret); /* -ENOMEM */
780

781
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
782
	if (ret) {
783
		comp_bio->bi_status = ret;
784 785
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
786 787

	return 0;
788 789

fail2:
790 791 792 793
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
794 795 796 797 798 799 800

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
801
}
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
838 839

struct heuristic_ws {
840 841
	/* Partial copy of input data */
	u8 *sample;
842
	u32 sample_size;
843 844
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
845 846
	/* Sorting buffer */
	struct bucket_item *bucket_b;
847 848 849
	struct list_head list;
};

850 851
static struct workspace_manager heuristic_wsm;

852 853 854 855 856 857
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

858 859
	kvfree(workspace->sample);
	kfree(workspace->bucket);
860
	kfree(workspace->bucket_b);
861 862 863
	kfree(workspace);
}

864
static struct list_head *alloc_heuristic_ws(unsigned int level)
865 866 867 868 869 870 871
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

872 873 874 875 876 877 878
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
879

880 881 882 883
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

884
	INIT_LIST_HEAD(&ws->list);
885
	return &ws->list;
886 887 888
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
889 890
}

891
const struct btrfs_compress_op btrfs_heuristic_compress = {
892
	.workspace_manager = &heuristic_wsm,
893 894
};

895
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
896 897
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
898
	&btrfs_zlib_compress,
L
Li Zefan 已提交
899
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
900
	&btrfs_zstd_compress,
901 902
};

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

935
static void btrfs_init_workspace_manager(int type)
936
{
937
	struct workspace_manager *wsm;
938
	struct list_head *workspace;
939

940
	wsm = btrfs_compress_op[type]->workspace_manager;
941 942 943 944
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
945

946 947 948 949
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
950
	workspace = alloc_workspace(type, 0);
951 952 953 954
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
955 956 957
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
958 959 960
	}
}

961
static void btrfs_cleanup_workspace_manager(int type)
962
{
963
	struct workspace_manager *wsman;
964 965
	struct list_head *ws;

966
	wsman = btrfs_compress_op[type]->workspace_manager;
967 968 969
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
970
		free_workspace(type, ws);
971
		atomic_dec(&wsman->total_ws);
972 973 974 975
	}
}

/*
976 977 978 979
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
980
 */
981
struct list_head *btrfs_get_workspace(int type, unsigned int level)
982
{
983
	struct workspace_manager *wsm;
984 985
	struct list_head *workspace;
	int cpus = num_online_cpus();
986
	unsigned nofs_flag;
987 988 989 990 991 992
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

993
	wsm = btrfs_compress_op[type]->workspace_manager;
994 995 996 997 998
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
999 1000

again:
1001 1002 1003
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1004
		list_del(workspace);
1005
		(*free_ws)--;
1006
		spin_unlock(ws_lock);
1007 1008 1009
		return workspace;

	}
1010
	if (atomic_read(total_ws) > cpus) {
1011 1012
		DEFINE_WAIT(wait);

1013 1014
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1015
		if (atomic_read(total_ws) > cpus && !*free_ws)
1016
			schedule();
1017
		finish_wait(ws_wait, &wait);
1018 1019
		goto again;
	}
1020
	atomic_inc(total_ws);
1021
	spin_unlock(ws_lock);
1022

1023 1024 1025 1026 1027 1028
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1029
	workspace = alloc_workspace(type, level);
1030 1031
	memalloc_nofs_restore(nofs_flag);

1032
	if (IS_ERR(workspace)) {
1033
		atomic_dec(total_ws);
1034
		wake_up(ws_wait);
1035 1036 1037 1038 1039 1040

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1041 1042 1043 1044
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1045
		 */
1046 1047 1048 1049 1050 1051
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1052
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1053 1054
			}
		}
1055
		goto again;
1056 1057 1058 1059
	}
	return workspace;
}

1060
static struct list_head *get_workspace(int type, int level)
1061
{
1062
	switch (type) {
1063
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1064
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1065
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1066 1067 1068 1069 1070 1071 1072 1073
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1074 1075
}

1076 1077 1078 1079
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1080
void btrfs_put_workspace(int type, struct list_head *ws)
1081
{
1082
	struct workspace_manager *wsm;
1083 1084 1085 1086 1087 1088
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1089
	wsm = btrfs_compress_op[type]->workspace_manager;
1090 1091 1092 1093 1094
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1095 1096

	spin_lock(ws_lock);
1097
	if (*free_ws <= num_online_cpus()) {
1098
		list_add(ws, idle_ws);
1099
		(*free_ws)++;
1100
		spin_unlock(ws_lock);
1101 1102
		goto wake;
	}
1103
	spin_unlock(ws_lock);
1104

1105
	free_workspace(type, ws);
1106
	atomic_dec(total_ws);
1107
wake:
1108
	cond_wake_up(ws_wait);
1109 1110
}

1111 1112
static void put_workspace(int type, struct list_head *ws)
{
1113
	switch (type) {
1114 1115 1116
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1117 1118 1119 1120 1121 1122 1123 1124
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1143
/*
1144 1145
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1146
 *
1147 1148 1149 1150 1151
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1152 1153
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1154
 *
1155 1156
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1157 1158 1159
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1160 1161
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1162
 *
1163
 * @max_out tells us the max number of bytes that we're allowed to
1164 1165
 * stuff into pages
 */
1166
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1167
			 u64 start, struct page **pages,
1168 1169
			 unsigned long *out_pages,
			 unsigned long *total_in,
1170
			 unsigned long *total_out)
1171
{
1172
	int type = btrfs_compress_type(type_level);
1173
	int level = btrfs_compress_level(type_level);
1174 1175 1176
	struct list_head *workspace;
	int ret;

1177
	level = btrfs_compress_set_level(type, level);
1178
	workspace = get_workspace(type, level);
1179 1180
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1181
	put_workspace(type, workspace);
1182 1183 1184 1185 1186 1187 1188 1189
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1190
 * orig_bio contains the pages from the file that we want to decompress into
1191 1192 1193 1194 1195 1196 1197 1198
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1199
static int btrfs_decompress_bio(struct compressed_bio *cb)
1200 1201 1202
{
	struct list_head *workspace;
	int ret;
1203
	int type = cb->compress_type;
1204

1205
	workspace = get_workspace(type, 0);
1206
	ret = compression_decompress_bio(type, workspace, cb);
1207
	put_workspace(type, workspace);
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1223
	workspace = get_workspace(type, 0);
1224 1225
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1226
	put_workspace(type, workspace);
1227

1228 1229 1230
	return ret;
}

1231 1232
void __init btrfs_init_compress(void)
{
1233 1234 1235 1236
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1237 1238
}

1239
void __cold btrfs_exit_compress(void)
1240
{
1241 1242 1243 1244
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1245
}
1246 1247 1248 1249 1250 1251 1252 1253

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1254
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1255
			      unsigned long total_out, u64 disk_start,
1256
			      struct bio *bio)
1257 1258 1259 1260
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1261
	unsigned long prev_start_byte;
1262 1263
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
1264
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1265 1266 1267 1268 1269

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1270
	start_byte = page_offset(bvec.bv_page) - disk_start;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1290
		bytes = min_t(unsigned long, bvec.bv_len,
1291
				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1292
		bytes = min(bytes, working_bytes);
1293

1294 1295
		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
			       bytes);
1296
		flush_dcache_page(bvec.bv_page);
1297 1298 1299 1300 1301 1302

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1303 1304 1305 1306
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1307
		prev_start_byte = start_byte;
1308
		start_byte = page_offset(bvec.bv_page) - disk_start;
1309

1310
		/*
1311 1312 1313 1314
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1315
		 */
1316 1317 1318 1319 1320 1321 1322
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1335 1336 1337 1338 1339
		}
	}

	return 1;
}
1340

1341 1342 1343
/*
 * Shannon Entropy calculation
 *
1344
 * Pure byte distribution analysis fails to determine compressibility of data.
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1408
 * Use 16 u32 counters for calculating new position in buf array
1409 1410 1411 1412 1413 1414
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1415
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1416
		       int num)
1417
{
1418 1419 1420 1421 1422 1423 1424 1425
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1426

1427 1428 1429 1430
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1431
	max_num = array[0].count;
1432
	for (i = 1; i < num; i++) {
1433
		buf_num = array[i].count;
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1446
			buf_num = array[i].count;
1447 1448 1449 1450 1451 1452 1453 1454
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1455
			buf_num = array[i].count;
1456 1457 1458
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1459
			array_buf[new_addr] = array[i];
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1473
			buf_num = array_buf[i].count;
1474 1475 1476 1477 1478 1479 1480 1481
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1482
			buf_num = array_buf[i].count;
1483 1484 1485
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1486
			array[new_addr] = array_buf[i];
1487 1488 1489 1490
		}

		shift += RADIX_BASE;
	}
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1520
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1576 1577 1578 1579 1580 1581 1582 1583
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1614
		in_data = kmap_local_page(page);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1627
		kunmap_local(in_data);
1628 1629 1630 1631 1632 1633 1634 1635
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1653
	struct list_head *ws_list = get_workspace(0, 0);
1654
	struct heuristic_ws *ws;
1655 1656
	u32 i;
	u8 byte;
1657
	int ret = 0;
1658

1659 1660
	ws = list_entry(ws_list, struct heuristic_ws, list);

1661 1662
	heuristic_collect_sample(inode, start, end, ws);

1663 1664 1665 1666 1667
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1668 1669 1670 1671 1672
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1673 1674
	}

1675 1676 1677 1678 1679 1680
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1721
out:
1722
	put_workspace(0, ws_list);
1723 1724
	return ret;
}
1725

1726 1727 1728 1729 1730
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1731
{
1732 1733 1734 1735
	unsigned int level = 0;
	int ret;

	if (!type)
1736 1737
		return 0;

1738 1739 1740 1741 1742 1743
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1744 1745 1746 1747
	level = btrfs_compress_set_level(type, level);

	return level;
}