compression.c 40.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
C
Chris Mason 已提交
21 22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

62
static int btrfs_decompress_bio(struct compressed_bio *cb);
63

64
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
65 66
				      unsigned long disk_size)
{
67
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
68

69
	return sizeof(struct compressed_bio) +
70
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
71 72
}

73
static int check_compressed_csum(struct btrfs_inode *inode,
74 75 76
				 struct compressed_bio *cb,
				 u64 disk_start)
{
77
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
78
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
80 81 82 83
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
84
	u8 csum[BTRFS_CSUM_SIZE];
85
	u8 *cb_sum = cb->sums;
86

87
	if (inode->flags & BTRFS_INODE_NODATASUM)
88 89
		return 0;

90 91
	shash->tfm = fs_info->csum_shash;

92 93 94
	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];

95
		crypto_shash_init(shash);
96
		kaddr = kmap_atomic(page);
97
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
98
		kunmap_atomic(kaddr);
99
		crypto_shash_final(shash, (u8 *)&csum);
100

101
		if (memcmp(&csum, cb_sum, csum_size)) {
102
			btrfs_print_data_csum_error(inode, disk_start,
103
					csum, cb_sum, cb->mirror_num);
104 105 106
			ret = -EIO;
			goto fail;
		}
107
		cb_sum += csum_size;
108 109 110 111 112 113 114

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
115 116 117 118 119 120 121 122 123 124
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
125
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
126 127 128 129 130
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
131
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
132
	int ret = 0;
C
Chris Mason 已提交
133

134
	if (bio->bi_status)
C
Chris Mason 已提交
135 136 137 138 139
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
140
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
141 142
		goto out;

143 144 145 146 147 148 149 150
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

151 152 153 154 155 156 157
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

158
	inode = cb->inode;
159
	ret = check_compressed_csum(BTRFS_I(inode), cb,
160
				    (u64)bio->bi_iter.bi_sector << 9);
161 162 163
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
164 165 166
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
167 168
	ret = btrfs_decompress_bio(cb);

169
csum_failed:
C
Chris Mason 已提交
170 171 172 173 174 175 176 177
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
178
		put_page(page);
C
Chris Mason 已提交
179 180 181
	}

	/* do io completion on the original bio */
182
	if (cb->errors) {
C
Chris Mason 已提交
183
		bio_io_error(cb->orig_bio);
184
	} else {
185
		struct bio_vec *bvec;
186
		struct bvec_iter_all iter_all;
187 188 189 190 191

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
192
		ASSERT(!bio_flagged(bio, BIO_CLONED));
193
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
194
			SetPageChecked(bvec->bv_page);
195

196
		bio_endio(cb->orig_bio);
197
	}
C
Chris Mason 已提交
198 199 200 201 202 203 204 205 206 207 208 209

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
210 211
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
212
{
213 214
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
215 216 217 218 219
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

220 221 222
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
223
	while (nr_pages > 0) {
C
Chris Mason 已提交
224
		ret = find_get_pages_contig(inode->i_mapping, index,
225 226
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
227 228 229 230 231 232
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
233 234
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
235
			end_page_writeback(pages[i]);
236
			put_page(pages[i]);
C
Chris Mason 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
252
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
253 254 255 256 257 258
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

259
	if (bio->bi_status)
C
Chris Mason 已提交
260 261 262 263 264
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
265
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
266 267 268 269 270 271
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
272
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
273
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
274
			cb->start, cb->start + cb->len - 1,
275
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
276
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
277

278
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
279 280 281 282 283 284 285 286 287 288
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
289
		put_page(page);
C
Chris Mason 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
308
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
309 310 311
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
312 313
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
314
{
315
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
316 317 318
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
319
	int pg_index = 0;
C
Chris Mason 已提交
320 321 322
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
323
	blk_status_t ret;
324
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
325

326
	WARN_ON(!PAGE_ALIGNED(start));
327
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
328
	if (!cb)
329
		return BLK_STS_RESOURCE;
330
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
331 332 333 334
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
335
	cb->mirror_num = 0;
C
Chris Mason 已提交
336 337 338 339 340
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

341
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
342

343 344
	bio = btrfs_bio_alloc(first_byte);
	bio_set_dev(bio, bdev);
345
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
346 347
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
348
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
349 350 351

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
352
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
353 354
		int submit = 0;

355
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
356
		page->mapping = inode->i_mapping;
357
		if (bio->bi_iter.bi_size)
358 359
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
360

C
Chris Mason 已提交
361
		page->mapping = NULL;
362
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
363
		    PAGE_SIZE) {
364 365 366 367 368 369
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
370
			refcount_inc(&cb->pending_bios);
371 372
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
373
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
374

375
			if (!skip_sum) {
376
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
377
				BUG_ON(ret); /* -ENOMEM */
378
			}
379

380
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
381
			if (ret) {
382
				bio->bi_status = ret;
383 384
				bio_endio(bio);
			}
C
Chris Mason 已提交
385

386 387
			bio = btrfs_bio_alloc(first_byte);
			bio_set_dev(bio, bdev);
388
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
389 390
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
391
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
392
		}
393
		if (bytes_left < PAGE_SIZE) {
394
			btrfs_info(fs_info,
395
					"bytes left %lu compress len %lu nr %lu",
396 397
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
398 399
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
400
		cond_resched();
C
Chris Mason 已提交
401 402
	}

403
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
404
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
405

406
	if (!skip_sum) {
407
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
408
		BUG_ON(ret); /* -ENOMEM */
409
	}
410

411
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
412
	if (ret) {
413
		bio->bi_status = ret;
414 415
		bio_endio(bio);
	}
C
Chris Mason 已提交
416 417 418 419

	return 0;
}

420 421
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
422
	struct bio_vec *last = bio_last_bvec_all(bio);
423 424 425 426

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

427 428 429 430 431
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
432
	unsigned long pg_index;
433 434 435 436 437 438 439 440 441 442 443 444
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

445
	last_offset = bio_end_offset(cb->orig_bio);
446 447 448 449 450 451
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

452
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
453

C
Chris Mason 已提交
454
	while (last_offset < compressed_end) {
455
		pg_index = last_offset >> PAGE_SHIFT;
456

457
		if (pg_index > end_index)
458 459
			break;

460
		page = xa_load(&mapping->i_pages, pg_index);
461
		if (page && !xa_is_value(page)) {
462 463 464 465 466 467
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

468 469
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
470 471 472
		if (!page)
			break;

473
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
474
			put_page(page);
475 476 477
			goto next;
		}

478
		end = last_offset + PAGE_SIZE - 1;
479 480 481 482 483 484
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
485
		lock_extent(tree, last_offset, end);
486
		read_lock(&em_tree->lock);
487
		em = lookup_extent_mapping(em_tree, last_offset,
488
					   PAGE_SIZE);
489
		read_unlock(&em_tree->lock);
490 491

		if (!em || last_offset < em->start ||
492
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
493
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
494
			free_extent_map(em);
495
			unlock_extent(tree, last_offset, end);
496
			unlock_page(page);
497
			put_page(page);
498 499 500 501 502 503
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
504
			size_t zero_offset = offset_in_page(isize);
505 506 507

			if (zero_offset) {
				int zeros;
508
				zeros = PAGE_SIZE - zero_offset;
509
				userpage = kmap_atomic(page);
510 511
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
512
				kunmap_atomic(userpage);
513 514 515 516
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
517
				   PAGE_SIZE, 0);
518

519
		if (ret == PAGE_SIZE) {
520
			nr_pages++;
521
			put_page(page);
522
		} else {
523
			unlock_extent(tree, last_offset, end);
524
			unlock_page(page);
525
			put_page(page);
526 527 528
			break;
		}
next:
529
		last_offset += PAGE_SIZE;
530 531 532 533
	}
	return 0;
}

C
Chris Mason 已提交
534 535 536 537 538
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
539
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
540 541 542 543 544
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
545
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
546 547
				 int mirror_num, unsigned long bio_flags)
{
548
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
549 550 551 552
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
553
	unsigned long pg_index;
C
Chris Mason 已提交
554 555 556
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
557
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
558 559
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
560
	struct extent_map *em;
561
	blk_status_t ret = BLK_STS_RESOURCE;
562
	int faili = 0;
563 564
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
	u8 *sums;
C
Chris Mason 已提交
565 566 567 568

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
569
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
570
	em = lookup_extent_mapping(em_tree,
571
				   page_offset(bio_first_page_all(bio)),
572
				   PAGE_SIZE);
573
	read_unlock(&em_tree->lock);
574
	if (!em)
575
		return BLK_STS_IOERR;
C
Chris Mason 已提交
576

577
	compressed_len = em->block_len;
578
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
579 580 581
	if (!cb)
		goto out;

582
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
583 584
	cb->errors = 0;
	cb->inode = inode;
585
	cb->mirror_num = mirror_num;
586
	sums = cb->sums;
C
Chris Mason 已提交
587

588
	cb->start = em->orig_start;
589 590
	em_len = em->len;
	em_start = em->start;
591

C
Chris Mason 已提交
592
	free_extent_map(em);
593
	em = NULL;
C
Chris Mason 已提交
594

C
Christoph Hellwig 已提交
595
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
596
	cb->compressed_len = compressed_len;
597
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
598 599
	cb->orig_bio = bio;

600
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
601
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
602
				       GFP_NOFS);
603 604 605
	if (!cb->compressed_pages)
		goto fail1;

606
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
607

608 609
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
610
							      __GFP_HIGHMEM);
611 612
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
613
			ret = BLK_STS_RESOURCE;
614
			goto fail2;
615
		}
C
Chris Mason 已提交
616
	}
617
	faili = nr_pages - 1;
C
Chris Mason 已提交
618 619
	cb->nr_pages = nr_pages;

620
	add_ra_bio_pages(inode, em_start + em_len, cb);
621 622

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
623
	cb->len = bio->bi_iter.bi_size;
624

625 626
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
	bio_set_dev(comp_bio, bdev);
D
David Sterba 已提交
627
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
628 629
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
630
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
631

632
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
633 634
		int submit = 0;

635
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
636
		page->mapping = inode->i_mapping;
637
		page->index = em_start >> PAGE_SHIFT;
638

639
		if (comp_bio->bi_iter.bi_size)
640 641
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
642

C
Chris Mason 已提交
643
		page->mapping = NULL;
644
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
645
		    PAGE_SIZE) {
646 647
			unsigned int nr_sectors;

648 649
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
650
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
651

652 653 654 655 656 657
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
658
			refcount_inc(&cb->pending_bios);
659

660
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
661
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
662
							    sums);
663
				BUG_ON(ret); /* -ENOMEM */
664
			}
665 666 667 668

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
			sums += csum_size * nr_sectors;
669

670
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
671
			if (ret) {
672
				comp_bio->bi_status = ret;
673 674
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
675

676 677
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
			bio_set_dev(comp_bio, bdev);
D
David Sterba 已提交
678
			comp_bio->bi_opf = REQ_OP_READ;
679 680 681
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

682
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
683
		}
684
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
685 686
	}

687
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
688
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
689

690
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
692
		BUG_ON(ret); /* -ENOMEM */
693
	}
694

695
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
696
	if (ret) {
697
		comp_bio->bi_status = ret;
698 699
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
700 701

	return 0;
702 703

fail2:
704 705 706 707
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
708 709 710 711 712 713 714

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
715
}
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
752 753

struct heuristic_ws {
754 755
	/* Partial copy of input data */
	u8 *sample;
756
	u32 sample_size;
757 758
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
759 760
	/* Sorting buffer */
	struct bucket_item *bucket_b;
761 762 763
	struct list_head list;
};

764 765 766 767 768 769 770 771 772 773 774 775
static struct workspace_manager heuristic_wsm;

static void heuristic_init_workspace_manager(void)
{
	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
}

static void heuristic_cleanup_workspace_manager(void)
{
	btrfs_cleanup_workspace_manager(&heuristic_wsm);
}

776
static struct list_head *heuristic_get_workspace(unsigned int level)
777
{
778
	return btrfs_get_workspace(&heuristic_wsm, level);
779 780 781 782 783 784 785
}

static void heuristic_put_workspace(struct list_head *ws)
{
	btrfs_put_workspace(&heuristic_wsm, ws);
}

786 787 788 789 790 791
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

792 793
	kvfree(workspace->sample);
	kfree(workspace->bucket);
794
	kfree(workspace->bucket_b);
795 796 797
	kfree(workspace);
}

798
static struct list_head *alloc_heuristic_ws(unsigned int level)
799 800 801 802 803 804 805
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

806 807 808 809 810 811 812
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
813

814 815 816 817
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

818
	INIT_LIST_HEAD(&ws->list);
819
	return &ws->list;
820 821 822
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
823 824
}

825
const struct btrfs_compress_op btrfs_heuristic_compress = {
826 827 828 829
	.init_workspace_manager = heuristic_init_workspace_manager,
	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
	.get_workspace = heuristic_get_workspace,
	.put_workspace = heuristic_put_workspace,
830 831 832 833
	.alloc_workspace = alloc_heuristic_ws,
	.free_workspace = free_heuristic_ws,
};

834
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
835 836
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
837
	&btrfs_zlib_compress,
L
Li Zefan 已提交
838
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
839
	&btrfs_zstd_compress,
840 841
};

842 843
void btrfs_init_workspace_manager(struct workspace_manager *wsm,
				  const struct btrfs_compress_op *ops)
844
{
845
	struct list_head *workspace;
846

847
	wsm->ops = ops;
848

849 850 851 852
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
853

854 855 856 857
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
858
	workspace = wsm->ops->alloc_workspace(0);
859 860 861 862
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
863 864 865
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
866 867 868
	}
}

869
void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
870 871 872 873 874 875 876 877
{
	struct list_head *ws;

	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
		wsman->ops->free_workspace(ws);
		atomic_dec(&wsman->total_ws);
878 879 880 881
	}
}

/*
882 883 884 885
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
886
 */
887 888
struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
				      unsigned int level)
889 890 891
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
892
	unsigned nofs_flag;
893 894 895 896 897 898
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

899 900 901 902 903
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
904 905

again:
906 907 908
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
909
		list_del(workspace);
910
		(*free_ws)--;
911
		spin_unlock(ws_lock);
912 913 914
		return workspace;

	}
915
	if (atomic_read(total_ws) > cpus) {
916 917
		DEFINE_WAIT(wait);

918 919
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
920
		if (atomic_read(total_ws) > cpus && !*free_ws)
921
			schedule();
922
		finish_wait(ws_wait, &wait);
923 924
		goto again;
	}
925
	atomic_inc(total_ws);
926
	spin_unlock(ws_lock);
927

928 929 930 931 932 933
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
934
	workspace = wsm->ops->alloc_workspace(level);
935 936
	memalloc_nofs_restore(nofs_flag);

937
	if (IS_ERR(workspace)) {
938
		atomic_dec(total_ws);
939
		wake_up(ws_wait);
940 941 942 943 944 945

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
946 947 948 949
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
950
		 */
951 952 953 954 955 956
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
957
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
958 959
			}
		}
960
		goto again;
961 962 963 964
	}
	return workspace;
}

965
static struct list_head *get_workspace(int type, int level)
966
{
967
	return btrfs_compress_op[type]->get_workspace(level);
968 969
}

970 971 972 973
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
974
void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
975
{
976 977 978 979 980 981
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

982 983 984 985 986
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
987 988

	spin_lock(ws_lock);
989
	if (*free_ws <= num_online_cpus()) {
990
		list_add(ws, idle_ws);
991
		(*free_ws)++;
992
		spin_unlock(ws_lock);
993 994
		goto wake;
	}
995
	spin_unlock(ws_lock);
996

997
	wsm->ops->free_workspace(ws);
998
	atomic_dec(total_ws);
999
wake:
1000
	cond_wake_up(ws_wait);
1001 1002
}

1003 1004
static void put_workspace(int type, struct list_head *ws)
{
1005
	return btrfs_compress_op[type]->put_workspace(ws);
1006 1007
}

1008
/*
1009 1010
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1011
 *
1012 1013 1014 1015 1016
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1017 1018
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1019
 *
1020 1021
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1022 1023 1024
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1025 1026
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1027
 *
1028
 * @max_out tells us the max number of bytes that we're allowed to
1029 1030
 * stuff into pages
 */
1031
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1032
			 u64 start, struct page **pages,
1033 1034
			 unsigned long *out_pages,
			 unsigned long *total_in,
1035
			 unsigned long *total_out)
1036
{
1037
	int type = btrfs_compress_type(type_level);
1038
	int level = btrfs_compress_level(type_level);
1039 1040 1041
	struct list_head *workspace;
	int ret;

1042
	level = btrfs_compress_set_level(type, level);
1043
	workspace = get_workspace(type, level);
1044
	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1045
						      start, pages,
1046
						      out_pages,
1047
						      total_in, total_out);
1048
	put_workspace(type, workspace);
1049 1050 1051 1052 1053 1054 1055 1056
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1057
 * orig_bio contains the pages from the file that we want to decompress into
1058 1059 1060 1061 1062 1063 1064 1065
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1066
static int btrfs_decompress_bio(struct compressed_bio *cb)
1067 1068 1069
{
	struct list_head *workspace;
	int ret;
1070
	int type = cb->compress_type;
1071

1072
	workspace = get_workspace(type, 0);
1073
	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1074
	put_workspace(type, workspace);
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1090
	workspace = get_workspace(type, 0);
1091
	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1092 1093
						  dest_page, start_byte,
						  srclen, destlen);
1094
	put_workspace(type, workspace);
1095

1096 1097 1098
	return ret;
}

1099 1100 1101 1102 1103
void __init btrfs_init_compress(void)
{
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1104
		btrfs_compress_op[i]->init_workspace_manager();
1105 1106
}

1107
void __cold btrfs_exit_compress(void)
1108
{
1109 1110 1111
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1112
		btrfs_compress_op[i]->cleanup_workspace_manager();
1113
}
1114 1115 1116 1117 1118 1119 1120 1121

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1122
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1123
			      unsigned long total_out, u64 disk_start,
1124
			      struct bio *bio)
1125 1126 1127 1128
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1129
	unsigned long prev_start_byte;
1130 1131 1132
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1133
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1134 1135 1136 1137 1138

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1139
	start_byte = page_offset(bvec.bv_page) - disk_start;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1159 1160
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1161
		bytes = min(bytes, working_bytes);
1162 1163 1164

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1165
		kunmap_atomic(kaddr);
1166
		flush_dcache_page(bvec.bv_page);
1167 1168 1169 1170 1171 1172

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1173 1174 1175 1176
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1177
		prev_start_byte = start_byte;
1178
		start_byte = page_offset(bvec.bv_page) - disk_start;
1179

1180
		/*
1181 1182 1183 1184
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1185
		 */
1186 1187 1188 1189 1190 1191 1192
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1205 1206 1207 1208 1209
		}
	}

	return 1;
}
1210

1211 1212 1213
/*
 * Shannon Entropy calculation
 *
1214
 * Pure byte distribution analysis fails to determine compressibility of data.
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1278
 * Use 16 u32 counters for calculating new position in buf array
1279 1280 1281 1282 1283 1284
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1285
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1286
		       int num)
1287
{
1288 1289 1290 1291 1292 1293 1294 1295
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1296

1297 1298 1299 1300
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1301
	max_num = array[0].count;
1302
	for (i = 1; i < num; i++) {
1303
		buf_num = array[i].count;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1316
			buf_num = array[i].count;
1317 1318 1319 1320 1321 1322 1323 1324
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1325
			buf_num = array[i].count;
1326 1327 1328
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1329
			array_buf[new_addr] = array[i];
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1343
			buf_num = array_buf[i].count;
1344 1345 1346 1347 1348 1349 1350 1351
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1352
			buf_num = array_buf[i].count;
1353 1354 1355
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1356
			array[new_addr] = array_buf[i];
1357 1358 1359 1360
		}

		shift += RADIX_BASE;
	}
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1390
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1446 1447 1448 1449 1450 1451 1452 1453
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1523
	struct list_head *ws_list = get_workspace(0, 0);
1524
	struct heuristic_ws *ws;
1525 1526
	u32 i;
	u8 byte;
1527
	int ret = 0;
1528

1529 1530
	ws = list_entry(ws_list, struct heuristic_ws, list);

1531 1532
	heuristic_collect_sample(inode, start, end, ws);

1533 1534 1535 1536 1537
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1538 1539 1540 1541 1542
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1543 1544
	}

1545 1546 1547 1548 1549 1550
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1591
out:
1592
	put_workspace(0, ws_list);
1593 1594
	return ret;
}
1595

1596 1597 1598 1599 1600
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1601
{
1602 1603 1604 1605
	unsigned int level = 0;
	int ret;

	if (!type)
1606 1607
		return 0;

1608 1609 1610 1611 1612 1613
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	level = btrfs_compress_set_level(type, level);

	return level;
}

/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);
1631

1632
	return level;
1633
}