compression.c 50.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
12
#include <linux/kthread.h>
C
Chris Mason 已提交
13 14 15 16 17
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
18
#include <linux/slab.h>
19
#include <linux/sched/mm.h>
20
#include <linux/log2.h>
21
#include <crypto/hash.h>
22
#include "misc.h"
C
Chris Mason 已提交
23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
32
#include "subpage.h"
33
#include "zoned.h"
C
Chris Mason 已提交
34

35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
45 46
	default:
		break;
47 48 49 50 51
	}

	return NULL;
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
86 87 88 89 90 91 92
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
93
		 */
94
		*out_pages = 0;
95 96 97 98
		return -E2BIG;
	}
}

99 100
static int compression_decompress_bio(struct list_head *ws,
				      struct compressed_bio *cb)
101
{
102
	switch (cb->compress_type) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

137
static int btrfs_decompress_bio(struct compressed_bio *cb);
138

139
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 141 142
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
143
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 145
}

146
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 148
				 u64 disk_start)
{
149
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151
	const u32 csum_size = fs_info->csum_size;
152
	const u32 sectorsize = fs_info->sectorsize;
153
	struct page *page;
154
	unsigned int i;
155
	char *kaddr;
156
	u8 csum[BTRFS_CSUM_SIZE];
157
	struct compressed_bio *cb = bio->bi_private;
158
	u8 *cb_sum = cb->sums;
159

160 161
	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
162 163
		return 0;

164 165
	shash->tfm = fs_info->csum_shash;

166
	for (i = 0; i < cb->nr_pages; i++) {
167 168
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
169 170
		page = cb->compressed_pages[i];

171 172 173 174 175 176 177
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
178
			kaddr = kmap_atomic(page);
179 180
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);
181
			kunmap_atomic(kaddr);
182 183 184 185

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
186
				if (btrfs_bio(bio)->device)
187
					btrfs_dev_stat_inc_and_print(
188
						btrfs_bio(bio)->device,
189 190 191 192 193
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
194 195
		}
	}
196
	return 0;
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 *
 * Return true if there is no pending bio nor io.
 * Return false otherwise.
 */
static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	unsigned int bi_size = 0;
	bool last_io = false;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/*
	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
	 * Thus here we have to iterate through all segments to grab correct
	 * bio size.
	 */
	bio_for_each_segment_all(bvec, bio, iter_all)
		bi_size += bvec->bv_len;

	if (bio->bi_status)
222
		cb->status = bio->bi_status;
223 224 225 226

	ASSERT(bi_size && bi_size <= cb->compressed_len);
	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
					&cb->pending_sectors);
227 228 229 230 231 232 233
	/*
	 * Here we must wake up the possible error handler after all other
	 * operations on @cb finished, or we can race with
	 * finish_compressed_bio_*() which may free @cb.
	 */
	wake_up_var(cb);

234 235 236
	return last_io;
}

237
static void finish_compressed_bio_read(struct compressed_bio *cb)
238 239 240 241 242 243 244 245 246 247 248 249
{
	unsigned int index;
	struct page *page;

	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
250 251 252
	if (cb->status != BLK_STS_OK) {
		cb->orig_bio->bi_status = cb->status;
		bio_endio(cb->orig_bio);
253 254 255 256 257 258 259 260
	} else {
		struct bio_vec *bvec;
		struct bvec_iter_all iter_all;

		/*
		 * We have verified the checksum already, set page checked so
		 * the end_io handlers know about it
		 */
261
		ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}

		bio_endio(cb->orig_bio);
	}

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

C
Chris Mason 已提交
279 280 281 282 283 284 285 286 287 288
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
289
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
290 291 292
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
293
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
294
	int ret = 0;
C
Chris Mason 已提交
295

296
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
297 298
		goto out;

299 300 301 302
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
303
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
304 305
	cb->mirror_num = mirror;

306 307 308 309
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
310
	if (cb->status != BLK_STS_OK)
311 312
		goto csum_failed;

313
	inode = cb->inode;
314
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
315
				    bio->bi_iter.bi_sector << 9);
316 317 318
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
319 320 321
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
322 323
	ret = btrfs_decompress_bio(cb);

324
csum_failed:
C
Chris Mason 已提交
325
	if (ret)
326
		cb->status = errno_to_blk_status(ret);
327
	finish_compressed_bio_read(cb);
C
Chris Mason 已提交
328 329 330 331 332 333 334 335
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
336 337
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
338
{
339
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 341
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
342 343
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
344
	const int errno = blk_status_to_errno(cb->status);
C
Chris Mason 已提交
345 346 347
	int i;
	int ret;

348 349
	if (errno)
		mapping_set_error(inode->i_mapping, errno);
350

C
Chris Mason 已提交
351
	while (nr_pages > 0) {
C
Chris Mason 已提交
352
		ret = find_get_pages_contig(inode->i_mapping, index,
353 354
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
355 356 357 358 359 360
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
361
			if (errno)
362
				SetPageError(pages[i]);
363 364
			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
							 cb->start, cb->len);
365
			put_page(pages[i]);
C
Chris Mason 已提交
366 367 368 369 370 371 372
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

373
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
374
{
375
	struct inode *inode = cb->inode;
376
	unsigned int index;
C
Chris Mason 已提交
377

378 379 380
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
381
	 */
382
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383
			cb->start, cb->start + cb->len - 1,
384
			cb->status == BLK_STS_OK);
C
Chris Mason 已提交
385

386 387
	if (cb->writeback)
		end_compressed_writeback(inode, cb);
388
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
389 390

	/*
391
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
392 393 394
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
395 396
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
397
		page->mapping = NULL;
398
		put_page(page);
C
Chris Mason 已提交
399 400
	}

401
	/* Finally free the cb struct */
C
Chris Mason 已提交
402 403
	kfree(cb->compressed_pages);
	kfree(cb);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
static void end_compressed_bio_write(struct bio *bio)
{
	struct compressed_bio *cb = bio->bi_private;

	if (!dec_and_test_compressed_bio(cb, bio))
		goto out;

	btrfs_record_physical_zoned(cb->inode, cb->start, bio);

	finish_compressed_bio_write(cb);
C
Chris Mason 已提交
423 424 425 426
out:
	bio_put(bio);
}

427 428 429 430 431 432 433 434 435 436 437 438 439
static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
					  struct bio *bio, int mirror_num)
{
	blk_status_t ret;

	ASSERT(bio->bi_iter.bi_size);
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
	if (ret)
		return ret;
	ret = btrfs_map_bio(fs_info, bio, mirror_num);
	return ret;
}

440
/*
441 442 443 444 445 446 447 448 449 450 451 452 453
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
454
 */
455 456


457
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
458 459
					unsigned int opf, bio_end_io_t endio_func,
					u64 *next_stripe_start)
460
{
461 462 463
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
464
	struct bio *bio;
465
	int ret;
466 467 468 469 470 471 472 473

	bio = btrfs_bio_alloc(BIO_MAX_VECS);

	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
	bio->bi_opf = opf;
	bio->bi_private = cb;
	bio->bi_end_io = endio_func;

474 475 476 477 478
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
479

480 481 482 483 484 485 486 487
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
488
	}
489 490
	*next_stripe_start = disk_bytenr + geom.len;

491 492 493
	return bio;
}

C
Chris Mason 已提交
494 495 496 497 498 499 500 501 502
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
503
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
504 505
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
506
				 struct page **compressed_pages,
507
				 unsigned int nr_pages,
508
				 unsigned int write_flags,
509 510
				 struct cgroup_subsys_state *blkcg_css,
				 bool writeback)
C
Chris Mason 已提交
511
{
512
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
513 514
	struct bio *bio = NULL;
	struct compressed_bio *cb;
515
	u64 cur_disk_bytenr = disk_start;
516
	u64 next_stripe_start;
517
	blk_status_t ret;
518
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
519 520
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
521

522 523
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
524
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
525
	if (!cb)
526
		return BLK_STS_RESOURCE;
527
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
528
	cb->status = BLK_STS_OK;
529
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
530 531
	cb->start = start;
	cb->len = len;
532
	cb->mirror_num = 0;
C
Chris Mason 已提交
533 534
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
535
	cb->writeback = writeback;
C
Chris Mason 已提交
536 537 538
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

539 540 541
	if (blkcg_css)
		kthread_associate_blkcg(blkcg_css);

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
				bio = NULL;
				goto finish_cb;
			}
560 561
			if (blkcg_css)
				bio->bi_opf |= REQ_CGROUP_PUNT;
562
		}
563
		/*
564 565
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
566
		 */
567
		ASSERT(cur_disk_bytenr != next_stripe_start);
C
Chris Mason 已提交
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
600
			if (!skip_sum) {
601
				ret = btrfs_csum_one_bio(inode, bio, start, true);
602 603
				if (ret)
					goto finish_cb;
604
			}
C
Chris Mason 已提交
605

606
			ret = submit_compressed_bio(fs_info, bio, 0);
607 608
			if (ret)
				goto finish_cb;
609
			bio = NULL;
C
Chris Mason 已提交
610
		}
611
		cond_resched();
C
Chris Mason 已提交
612
	}
613 614
	if (blkcg_css)
		kthread_associate_blkcg(NULL);
C
Chris Mason 已提交
615 616

	return 0;
617

618
finish_cb:
619 620 621
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

622
	if (bio) {
623
		bio->bi_status = ret;
624 625
		bio_endio(bio);
	}
626 627 628
	/* Last byte of @cb is submitted, endio will free @cb */
	if (cur_disk_bytenr == disk_start + compressed_len)
		return ret;
C
Chris Mason 已提交
629

630 631 632
	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_start + compressed_len - cur_disk_bytenr) >>
			   fs_info->sectorsize_bits);
633 634 635 636 637 638 639 640
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_write(cb);
	return ret;
C
Chris Mason 已提交
641 642
}

643 644
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
645
	struct bio_vec *last = bio_last_bvec_all(bio);
646 647 648 649

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

650 651 652 653 654 655 656 657 658 659 660
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
661 662 663 664
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
665
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
666
	unsigned long end_index;
667
	u64 cur = bio_end_offset(cb->orig_bio);
668 669 670 671 672 673 674
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
675
	int sectors_missed = 0;
676 677 678 679 680 681 682

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

683 684 685 686 687 688 689 690 691 692
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

693
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
694

695 696 697 698
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
699

700
		if (pg_index > end_index)
701 702
			break;

703
		page = xa_load(&mapping->i_pages, pg_index);
704
		if (page && !xa_is_value(page)) {
705 706 707 708 709
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
710
				break;
711 712 713 714 715 716 717

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
718 719
		}

720 721
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
722 723 724
		if (!page)
			break;

725
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
726
			put_page(page);
727 728 729
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
730 731
		}

732 733 734 735 736 737 738
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

739 740
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
741
		read_lock(&em_tree->lock);
742
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
743
		read_unlock(&em_tree->lock);
744

745 746 747 748 749 750 751
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
752
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
753
			free_extent_map(em);
754
			unlock_extent(tree, cur, page_end);
755
			unlock_page(page);
756
			put_page(page);
757 758 759 760 761
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
762
			size_t zero_offset = offset_in_page(isize);
763 764 765

			if (zero_offset) {
				int zeros;
766
				zeros = PAGE_SIZE - zero_offset;
767
				memzero_page(page, zero_offset, zeros);
768 769 770 771
				flush_dcache_page(page);
			}
		}

772 773 774 775
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
776
			unlock_page(page);
777
			put_page(page);
778 779
			break;
		}
780 781 782 783 784 785 786 787 788
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
789 790 791 792
	}
	return 0;
}

C
Chris Mason 已提交
793 794 795 796 797
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
798
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
799 800 801 802 803
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
804
void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
805
				  int mirror_num)
C
Chris Mason 已提交
806
{
807
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
808 809
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
810
	unsigned int compressed_len;
811 812 813 814
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
815
	u64 file_offset;
816 817
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
818
	struct extent_map *em;
819
	blk_status_t ret;
820 821
	int ret2;
	int i;
822
	u8 *sums;
C
Chris Mason 已提交
823 824 825

	em_tree = &BTRFS_I(inode)->extent_tree;

826 827 828
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
829
	/* we need the actual starting offset of this extent in the file */
830
	read_lock(&em_tree->lock);
831
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
832
	read_unlock(&em_tree->lock);
833 834 835 836
	if (!em) {
		ret = BLK_STS_IOERR;
		goto out;
	}
C
Chris Mason 已提交
837

838
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
839
	compressed_len = em->block_len;
840
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
841 842
	if (!cb) {
		ret = BLK_STS_RESOURCE;
843
		goto out;
844
	}
845

846
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
847
	cb->status = BLK_STS_OK;
C
Chris Mason 已提交
848
	cb->inode = inode;
849
	cb->mirror_num = mirror_num;
850
	sums = cb->sums;
C
Chris Mason 已提交
851

852
	cb->start = em->orig_start;
853 854
	em_len = em->len;
	em_start = em->start;
855

C
Christoph Hellwig 已提交
856
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
857
	cb->compressed_len = compressed_len;
858
	cb->compress_type = em->compress_type;
C
Chris Mason 已提交
859 860
	cb->orig_bio = bio;

861 862 863
	free_extent_map(em);
	em = NULL;

864 865
	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
866 867
	if (!cb->compressed_pages) {
		ret = BLK_STS_RESOURCE;
868
		goto fail;
869
	}
870

871 872 873 874
	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
	if (ret2) {
		ret = BLK_STS_RESOURCE;
		goto fail;
C
Chris Mason 已提交
875 876
	}

877
	add_ra_bio_pages(inode, em_start + em_len, cb);
878 879

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
880
	cb->len = bio->bi_iter.bi_size;
881

882 883 884 885 886 887 888
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
				ret = errno_to_blk_status(PTR_ERR(comp_bio));
				comp_bio = NULL;
				goto finish_cb;
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
916

917
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
918
		/*
919 920
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
921
		 */
922 923
		ASSERT(added == real_size);
		cur_disk_byte += added;
924

925 926 927
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
928

929 930 931
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
932

933
		if (submit) {
934 935
			unsigned int nr_sectors;

936
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
937 938
			if (ret)
				goto finish_cb;
939 940 941

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
942
			sums += fs_info->csum_size * nr_sectors;
943

944
			ret = submit_compressed_bio(fs_info, comp_bio, mirror_num);
945 946
			if (ret)
				goto finish_cb;
947
			comp_bio = NULL;
C
Chris Mason 已提交
948 949
		}
	}
950
	return;
951

952 953 954 955 956 957
fail:
	if (cb->compressed_pages) {
		for (i = 0; i < cb->nr_pages; i++) {
			if (cb->compressed_pages[i])
				__free_page(cb->compressed_pages[i]);
		}
958
	}
959 960 961 962 963

	kfree(cb->compressed_pages);
	kfree(cb);
out:
	free_extent_map(em);
964 965
	bio->bi_status = ret;
	bio_endio(bio);
966
	return;
967 968 969 970 971
finish_cb:
	if (comp_bio) {
		comp_bio->bi_status = ret;
		bio_endio(comp_bio);
	}
972 973
	/* All bytes of @cb is submitted, endio will free @cb */
	if (cur_disk_byte == disk_bytenr + compressed_len)
974
		return;
975 976 977 978

	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_bytenr + compressed_len - cur_disk_byte) >>
			   fs_info->sectorsize_bits);
979 980 981 982 983 984
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish @cb manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
985
	finish_compressed_bio_read(cb);
C
Chris Mason 已提交
986
}
987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
1023 1024

struct heuristic_ws {
1025 1026
	/* Partial copy of input data */
	u8 *sample;
1027
	u32 sample_size;
1028 1029
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
1030 1031
	/* Sorting buffer */
	struct bucket_item *bucket_b;
1032 1033 1034
	struct list_head list;
};

1035 1036
static struct workspace_manager heuristic_wsm;

1037 1038 1039 1040 1041 1042
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

1043 1044
	kvfree(workspace->sample);
	kfree(workspace->bucket);
1045
	kfree(workspace->bucket_b);
1046 1047 1048
	kfree(workspace);
}

1049
static struct list_head *alloc_heuristic_ws(unsigned int level)
1050 1051 1052 1053 1054 1055 1056
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

1057 1058 1059 1060 1061 1062 1063
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
1064

1065 1066 1067 1068
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

1069
	INIT_LIST_HEAD(&ws->list);
1070
	return &ws->list;
1071 1072 1073
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
1074 1075
}

1076
const struct btrfs_compress_op btrfs_heuristic_compress = {
1077
	.workspace_manager = &heuristic_wsm,
1078 1079
};

1080
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1081 1082
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
1083
	&btrfs_zlib_compress,
L
Li Zefan 已提交
1084
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
1085
	&btrfs_zstd_compress,
1086 1087
};

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1120
static void btrfs_init_workspace_manager(int type)
1121
{
1122
	struct workspace_manager *wsm;
1123
	struct list_head *workspace;
1124

1125
	wsm = btrfs_compress_op[type]->workspace_manager;
1126 1127 1128 1129
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1130

1131 1132 1133 1134
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1135
	workspace = alloc_workspace(type, 0);
1136 1137 1138 1139
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1140 1141 1142
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1143 1144 1145
	}
}

1146
static void btrfs_cleanup_workspace_manager(int type)
1147
{
1148
	struct workspace_manager *wsman;
1149 1150
	struct list_head *ws;

1151
	wsman = btrfs_compress_op[type]->workspace_manager;
1152 1153 1154
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1155
		free_workspace(type, ws);
1156
		atomic_dec(&wsman->total_ws);
1157 1158 1159 1160
	}
}

/*
1161 1162 1163 1164
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1165
 */
1166
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1167
{
1168
	struct workspace_manager *wsm;
1169 1170
	struct list_head *workspace;
	int cpus = num_online_cpus();
1171
	unsigned nofs_flag;
1172 1173 1174 1175 1176 1177
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1178
	wsm = btrfs_compress_op[type]->workspace_manager;
1179 1180 1181 1182 1183
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1184 1185

again:
1186 1187 1188
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1189
		list_del(workspace);
1190
		(*free_ws)--;
1191
		spin_unlock(ws_lock);
1192 1193 1194
		return workspace;

	}
1195
	if (atomic_read(total_ws) > cpus) {
1196 1197
		DEFINE_WAIT(wait);

1198 1199
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1200
		if (atomic_read(total_ws) > cpus && !*free_ws)
1201
			schedule();
1202
		finish_wait(ws_wait, &wait);
1203 1204
		goto again;
	}
1205
	atomic_inc(total_ws);
1206
	spin_unlock(ws_lock);
1207

1208 1209 1210 1211 1212 1213
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1214
	workspace = alloc_workspace(type, level);
1215 1216
	memalloc_nofs_restore(nofs_flag);

1217
	if (IS_ERR(workspace)) {
1218
		atomic_dec(total_ws);
1219
		wake_up(ws_wait);
1220 1221 1222 1223 1224 1225

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1226 1227 1228 1229
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1230
		 */
1231 1232 1233 1234 1235 1236
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1237
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1238 1239
			}
		}
1240
		goto again;
1241 1242 1243 1244
	}
	return workspace;
}

1245
static struct list_head *get_workspace(int type, int level)
1246
{
1247
	switch (type) {
1248
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1249
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1250
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1251 1252 1253 1254 1255 1256 1257 1258
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1259 1260
}

1261 1262 1263 1264
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1265
void btrfs_put_workspace(int type, struct list_head *ws)
1266
{
1267
	struct workspace_manager *wsm;
1268 1269 1270 1271 1272 1273
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1274
	wsm = btrfs_compress_op[type]->workspace_manager;
1275 1276 1277 1278 1279
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1280 1281

	spin_lock(ws_lock);
1282
	if (*free_ws <= num_online_cpus()) {
1283
		list_add(ws, idle_ws);
1284
		(*free_ws)++;
1285
		spin_unlock(ws_lock);
1286 1287
		goto wake;
	}
1288
	spin_unlock(ws_lock);
1289

1290
	free_workspace(type, ws);
1291
	atomic_dec(total_ws);
1292
wake:
1293
	cond_wake_up(ws_wait);
1294 1295
}

1296 1297
static void put_workspace(int type, struct list_head *ws)
{
1298
	switch (type) {
1299 1300 1301
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1302 1303 1304 1305 1306 1307 1308 1309
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1328
/*
1329 1330
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1331
 *
1332 1333 1334 1335 1336
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1337 1338
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1339
 *
1340 1341
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1342 1343 1344
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1345 1346
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1347
 */
1348
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1349
			 u64 start, struct page **pages,
1350 1351
			 unsigned long *out_pages,
			 unsigned long *total_in,
1352
			 unsigned long *total_out)
1353
{
1354
	int type = btrfs_compress_type(type_level);
1355
	int level = btrfs_compress_level(type_level);
1356 1357 1358
	struct list_head *workspace;
	int ret;

1359
	level = btrfs_compress_set_level(type, level);
1360
	workspace = get_workspace(type, level);
1361 1362
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1363
	put_workspace(type, workspace);
1364 1365 1366
	return ret;
}

1367
static int btrfs_decompress_bio(struct compressed_bio *cb)
1368 1369 1370
{
	struct list_head *workspace;
	int ret;
1371
	int type = cb->compress_type;
1372

1373
	workspace = get_workspace(type, 0);
1374
	ret = compression_decompress_bio(workspace, cb);
1375
	put_workspace(type, workspace);
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1391
	workspace = get_workspace(type, 0);
1392 1393
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1394
	put_workspace(type, workspace);
1395

1396 1397 1398
	return ret;
}

1399 1400
void __init btrfs_init_compress(void)
{
1401 1402 1403 1404
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1405 1406
}

1407
void __cold btrfs_exit_compress(void)
1408
{
1409 1410 1411 1412
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1413
}
1414 1415

/*
1416
 * Copy decompressed data from working buffer to pages.
1417
 *
1418 1419 1420 1421 1422 1423
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1424
 *
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1444
 */
1445 1446
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1447
{
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1467

1468 1469 1470
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1471

1472 1473 1474 1475
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1476

1477
		/*
1478 1479
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1480
		 */
1481 1482 1483 1484 1485
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		flush_dcache_page(bvec.bv_page);
		cur_offset += copy_len;
1486

1487 1488 1489 1490
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1491 1492 1493
	}
	return 1;
}
1494

1495 1496 1497
/*
 * Shannon Entropy calculation
 *
1498
 * Pure byte distribution analysis fails to determine compressibility of data.
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1562
 * Use 16 u32 counters for calculating new position in buf array
1563 1564 1565 1566 1567 1568
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1569
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1570
		       int num)
1571
{
1572 1573 1574 1575 1576 1577 1578 1579
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1580

1581 1582 1583 1584
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1585
	max_num = array[0].count;
1586
	for (i = 1; i < num; i++) {
1587
		buf_num = array[i].count;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1600
			buf_num = array[i].count;
1601 1602 1603 1604 1605 1606 1607 1608
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1609
			buf_num = array[i].count;
1610 1611 1612
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1613
			array_buf[new_addr] = array[i];
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1627
			buf_num = array_buf[i].count;
1628 1629 1630 1631 1632 1633 1634 1635
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1636
			buf_num = array_buf[i].count;
1637 1638 1639
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1640
			array[new_addr] = array_buf[i];
1641 1642 1643 1644
		}

		shift += RADIX_BASE;
	}
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1674
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1730 1731 1732 1733 1734 1735 1736 1737
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1768
		in_data = kmap_local_page(page);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1781
		kunmap_local(in_data);
1782 1783 1784 1785 1786 1787 1788 1789
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1807
	struct list_head *ws_list = get_workspace(0, 0);
1808
	struct heuristic_ws *ws;
1809 1810
	u32 i;
	u8 byte;
1811
	int ret = 0;
1812

1813 1814
	ws = list_entry(ws_list, struct heuristic_ws, list);

1815 1816
	heuristic_collect_sample(inode, start, end, ws);

1817 1818 1819 1820 1821
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1822 1823 1824 1825 1826
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1827 1828
	}

1829 1830 1831 1832 1833 1834
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1875
out:
1876
	put_workspace(0, ws_list);
1877 1878
	return ret;
}
1879

1880 1881 1882 1883 1884
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1885
{
1886 1887 1888 1889
	unsigned int level = 0;
	int ret;

	if (!type)
1890 1891
		return 0;

1892 1893 1894 1895 1896 1897
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1898 1899 1900 1901
	level = btrfs_compress_set_level(type, level);

	return level;
}