compression.c 44.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

32 33 34 35 36 37 38 39 40 41
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
42 43
	default:
		break;
44 45 46 47 48
	}

	return NULL;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
83 84 85 86 87 88 89
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
90
		 */
91
		*out_pages = 0;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

134
static int btrfs_decompress_bio(struct compressed_bio *cb);
135

136
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
137 138 139
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
140
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
141 142
}

143
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
144 145
				 u64 disk_start)
{
146
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
147
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
148
	const u32 csum_size = fs_info->csum_size;
149
	const u32 sectorsize = fs_info->sectorsize;
150 151 152
	struct page *page;
	unsigned long i;
	char *kaddr;
153
	u8 csum[BTRFS_CSUM_SIZE];
154
	struct compressed_bio *cb = bio->bi_private;
155
	u8 *cb_sum = cb->sums;
156

157
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
158 159
		return 0;

160 161
	shash->tfm = fs_info->csum_shash;

162
	for (i = 0; i < cb->nr_pages; i++) {
163 164
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
165 166
		page = cb->compressed_pages[i];

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
			kaddr = kmap_atomic(page);
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);
			kunmap_atomic(kaddr);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
				if (btrfs_io_bio(bio)->device)
					btrfs_dev_stat_inc_and_print(
						btrfs_io_bio(bio)->device,
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
190 191
		}
	}
192
	return 0;
193 194
}

C
Chris Mason 已提交
195 196 197 198 199 200 201 202 203 204
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
205
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
206 207 208 209 210
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
211
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
212
	int ret = 0;
C
Chris Mason 已提交
213

214
	if (bio->bi_status)
C
Chris Mason 已提交
215 216 217 218 219
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
220
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
221 222
		goto out;

223 224 225 226 227 228 229
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

230 231 232 233 234 235 236
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

237
	inode = cb->inode;
238
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
239
				    bio->bi_iter.bi_sector << 9);
240 241 242
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
243 244 245
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
246 247
	ret = btrfs_decompress_bio(cb);

248
csum_failed:
C
Chris Mason 已提交
249 250 251 252 253 254 255 256
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
257
		put_page(page);
C
Chris Mason 已提交
258 259 260
	}

	/* do io completion on the original bio */
261
	if (cb->errors) {
C
Chris Mason 已提交
262
		bio_io_error(cb->orig_bio);
263
	} else {
264
		struct bio_vec *bvec;
265
		struct bvec_iter_all iter_all;
266 267 268 269 270

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
271
		ASSERT(!bio_flagged(bio, BIO_CLONED));
272
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
273
			SetPageChecked(bvec->bv_page);
274

275
		bio_endio(cb->orig_bio);
276
	}
C
Chris Mason 已提交
277 278 279 280 281 282 283 284 285 286 287 288

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
289 290
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
291
{
292 293
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
294 295 296 297 298
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

299 300 301
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
302
	while (nr_pages > 0) {
C
Chris Mason 已提交
303
		ret = find_get_pages_contig(inode->i_mapping, index,
304 305
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
306 307 308 309 310 311
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
312 313
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
314
			end_page_writeback(pages[i]);
315
			put_page(pages[i]);
C
Chris Mason 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
331
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
332 333 334 335 336 337
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

338
	if (bio->bi_status)
C
Chris Mason 已提交
339 340 341 342 343
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
344
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
345 346 347 348 349 350
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
351
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
352
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
353
			cb->start, cb->start + cb->len - 1,
354
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
355
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
356

357
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
358 359 360 361 362 363 364 365 366 367
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
368
		put_page(page);
C
Chris Mason 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
387
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
C
Chris Mason 已提交
388 389 390
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
391
				 unsigned long nr_pages,
392 393
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
394
{
395
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
396 397 398
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
399
	int pg_index = 0;
C
Chris Mason 已提交
400 401
	struct page *page;
	u64 first_byte = disk_start;
402
	blk_status_t ret;
403
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
404

405
	WARN_ON(!PAGE_ALIGNED(start));
406
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
407
	if (!cb)
408
		return BLK_STS_RESOURCE;
409
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
410
	cb->errors = 0;
411
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
412 413
	cb->start = start;
	cb->len = len;
414
	cb->mirror_num = 0;
C
Chris Mason 已提交
415 416 417 418 419
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

420
	bio = btrfs_bio_alloc(first_byte);
421
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
422 423
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
424 425 426

	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
427
		kthread_associate_blkcg(blkcg_css);
428
	}
429
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
430 431 432

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
433
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
434 435
		int submit = 0;

436
		page = compressed_pages[pg_index];
437
		page->mapping = inode->vfs_inode.i_mapping;
438
		if (bio->bi_iter.bi_size)
439 440
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
441

C
Chris Mason 已提交
442
		page->mapping = NULL;
443
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
444
		    PAGE_SIZE) {
445 446 447 448 449 450
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
451
			refcount_inc(&cb->pending_bios);
452 453
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
454
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
455

456
			if (!skip_sum) {
457
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
458
				BUG_ON(ret); /* -ENOMEM */
459
			}
460

461
			ret = btrfs_map_bio(fs_info, bio, 0);
462
			if (ret) {
463
				bio->bi_status = ret;
464 465
				bio_endio(bio);
			}
C
Chris Mason 已提交
466

467
			bio = btrfs_bio_alloc(first_byte);
468
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
469 470
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
471
			if (blkcg_css)
472
				bio->bi_opf |= REQ_CGROUP_PUNT;
473
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
474
		}
475
		if (bytes_left < PAGE_SIZE) {
476
			btrfs_info(fs_info,
477
					"bytes left %lu compress len %lu nr %lu",
478 479
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
480 481
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
482
		cond_resched();
C
Chris Mason 已提交
483 484
	}

485
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
486
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
487

488
	if (!skip_sum) {
489
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
490
		BUG_ON(ret); /* -ENOMEM */
491
	}
492

493
	ret = btrfs_map_bio(fs_info, bio, 0);
494
	if (ret) {
495
		bio->bi_status = ret;
496 497
		bio_endio(bio);
	}
C
Chris Mason 已提交
498

499 500 501
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
502 503 504
	return 0;
}

505 506
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
507
	struct bio_vec *last = bio_last_bvec_all(bio);
508 509 510 511

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

512 513 514 515 516
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
517
	unsigned long pg_index;
518 519 520 521 522 523 524 525 526 527 528 529
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

530
	last_offset = bio_end_offset(cb->orig_bio);
531 532 533 534 535 536
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

537
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
538

C
Chris Mason 已提交
539
	while (last_offset < compressed_end) {
540
		pg_index = last_offset >> PAGE_SHIFT;
541

542
		if (pg_index > end_index)
543 544
			break;

545
		page = xa_load(&mapping->i_pages, pg_index);
546
		if (page && !xa_is_value(page)) {
547 548 549 550 551 552
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

553 554
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
555 556 557
		if (!page)
			break;

558
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
559
			put_page(page);
560 561 562 563 564 565 566 567
			goto next;
		}

		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
568 569 570 571 572 573 574 575
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

		end = last_offset + PAGE_SIZE - 1;
576
		lock_extent(tree, last_offset, end);
577
		read_lock(&em_tree->lock);
578
		em = lookup_extent_mapping(em_tree, last_offset,
579
					   PAGE_SIZE);
580
		read_unlock(&em_tree->lock);
581 582

		if (!em || last_offset < em->start ||
583
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
584
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
585
			free_extent_map(em);
586
			unlock_extent(tree, last_offset, end);
587
			unlock_page(page);
588
			put_page(page);
589 590 591 592 593 594
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
595
			size_t zero_offset = offset_in_page(isize);
596 597 598

			if (zero_offset) {
				int zeros;
599
				zeros = PAGE_SIZE - zero_offset;
600
				userpage = kmap_atomic(page);
601 602
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
603
				kunmap_atomic(userpage);
604 605 606 607
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
608
				   PAGE_SIZE, 0);
609

610
		if (ret == PAGE_SIZE) {
611
			nr_pages++;
612
			put_page(page);
613
		} else {
614
			unlock_extent(tree, last_offset, end);
615
			unlock_page(page);
616
			put_page(page);
617 618 619
			break;
		}
next:
620
		last_offset += PAGE_SIZE;
621 622 623 624
	}
	return 0;
}

C
Chris Mason 已提交
625 626 627 628 629
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
630
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
631 632 633 634 635
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
636
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
637 638
				 int mirror_num, unsigned long bio_flags)
{
639
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
640 641 642 643
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
644
	unsigned long pg_index;
C
Chris Mason 已提交
645 646
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
647
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
648 649
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
650
	struct extent_map *em;
651
	blk_status_t ret = BLK_STS_RESOURCE;
652
	int faili = 0;
653
	u8 *sums;
C
Chris Mason 已提交
654 655 656 657

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
658
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
659
	em = lookup_extent_mapping(em_tree,
660
				   page_offset(bio_first_page_all(bio)),
661
				   fs_info->sectorsize);
662
	read_unlock(&em_tree->lock);
663
	if (!em)
664
		return BLK_STS_IOERR;
C
Chris Mason 已提交
665

666
	compressed_len = em->block_len;
667
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
668 669 670
	if (!cb)
		goto out;

671
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
672 673
	cb->errors = 0;
	cb->inode = inode;
674
	cb->mirror_num = mirror_num;
675
	sums = cb->sums;
C
Chris Mason 已提交
676

677
	cb->start = em->orig_start;
678 679
	em_len = em->len;
	em_start = em->start;
680

C
Chris Mason 已提交
681
	free_extent_map(em);
682
	em = NULL;
C
Chris Mason 已提交
683

C
Christoph Hellwig 已提交
684
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
685
	cb->compressed_len = compressed_len;
686
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
687 688
	cb->orig_bio = bio;

689
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
690
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
691
				       GFP_NOFS);
692 693 694
	if (!cb->compressed_pages)
		goto fail1;

695 696
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
697
							      __GFP_HIGHMEM);
698 699
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
700
			ret = BLK_STS_RESOURCE;
701
			goto fail2;
702
		}
C
Chris Mason 已提交
703
	}
704
	faili = nr_pages - 1;
C
Chris Mason 已提交
705 706
	cb->nr_pages = nr_pages;

707
	add_ra_bio_pages(inode, em_start + em_len, cb);
708 709

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
710
	cb->len = bio->bi_iter.bi_size;
711

712
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
713
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
714 715
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
716
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
717

718
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
719
		u32 pg_len = PAGE_SIZE;
720 721
		int submit = 0;

722 723 724 725 726 727 728 729 730 731 732
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

733
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
734
		page->mapping = inode->i_mapping;
735
		page->index = em_start >> PAGE_SHIFT;
736

737
		if (comp_bio->bi_iter.bi_size)
738
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
739
							  comp_bio, 0);
C
Chris Mason 已提交
740

C
Chris Mason 已提交
741
		page->mapping = NULL;
742
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
743 744
			unsigned int nr_sectors;

745 746
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
747
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
748

749 750 751 752 753 754
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
755
			refcount_inc(&cb->pending_bios);
756

757
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
758
			BUG_ON(ret); /* -ENOMEM */
759 760 761

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
762
			sums += fs_info->csum_size * nr_sectors;
763

764
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
765
			if (ret) {
766
				comp_bio->bi_status = ret;
767 768
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
769

770
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
771
			comp_bio->bi_opf = REQ_OP_READ;
772 773 774
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

775
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
776
		}
777
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
778 779
	}

780
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
781
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
782

783
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
784
	BUG_ON(ret); /* -ENOMEM */
785

786
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
787
	if (ret) {
788
		comp_bio->bi_status = ret;
789 790
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
791 792

	return 0;
793 794

fail2:
795 796 797 798
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
799 800 801 802 803 804 805

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
806
}
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
843 844

struct heuristic_ws {
845 846
	/* Partial copy of input data */
	u8 *sample;
847
	u32 sample_size;
848 849
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
850 851
	/* Sorting buffer */
	struct bucket_item *bucket_b;
852 853 854
	struct list_head list;
};

855 856
static struct workspace_manager heuristic_wsm;

857 858 859 860 861 862
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

863 864
	kvfree(workspace->sample);
	kfree(workspace->bucket);
865
	kfree(workspace->bucket_b);
866 867 868
	kfree(workspace);
}

869
static struct list_head *alloc_heuristic_ws(unsigned int level)
870 871 872 873 874 875 876
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

877 878 879 880 881 882 883
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
884

885 886 887 888
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

889
	INIT_LIST_HEAD(&ws->list);
890
	return &ws->list;
891 892 893
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
894 895
}

896
const struct btrfs_compress_op btrfs_heuristic_compress = {
897
	.workspace_manager = &heuristic_wsm,
898 899
};

900
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
901 902
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
903
	&btrfs_zlib_compress,
L
Li Zefan 已提交
904
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
905
	&btrfs_zstd_compress,
906 907
};

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

940
static void btrfs_init_workspace_manager(int type)
941
{
942
	struct workspace_manager *wsm;
943
	struct list_head *workspace;
944

945
	wsm = btrfs_compress_op[type]->workspace_manager;
946 947 948 949
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
950

951 952 953 954
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
955
	workspace = alloc_workspace(type, 0);
956 957 958 959
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
960 961 962
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
963 964 965
	}
}

966
static void btrfs_cleanup_workspace_manager(int type)
967
{
968
	struct workspace_manager *wsman;
969 970
	struct list_head *ws;

971
	wsman = btrfs_compress_op[type]->workspace_manager;
972 973 974
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
975
		free_workspace(type, ws);
976
		atomic_dec(&wsman->total_ws);
977 978 979 980
	}
}

/*
981 982 983 984
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
985
 */
986
struct list_head *btrfs_get_workspace(int type, unsigned int level)
987
{
988
	struct workspace_manager *wsm;
989 990
	struct list_head *workspace;
	int cpus = num_online_cpus();
991
	unsigned nofs_flag;
992 993 994 995 996 997
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

998
	wsm = btrfs_compress_op[type]->workspace_manager;
999 1000 1001 1002 1003
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1004 1005

again:
1006 1007 1008
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1009
		list_del(workspace);
1010
		(*free_ws)--;
1011
		spin_unlock(ws_lock);
1012 1013 1014
		return workspace;

	}
1015
	if (atomic_read(total_ws) > cpus) {
1016 1017
		DEFINE_WAIT(wait);

1018 1019
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1020
		if (atomic_read(total_ws) > cpus && !*free_ws)
1021
			schedule();
1022
		finish_wait(ws_wait, &wait);
1023 1024
		goto again;
	}
1025
	atomic_inc(total_ws);
1026
	spin_unlock(ws_lock);
1027

1028 1029 1030 1031 1032 1033
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1034
	workspace = alloc_workspace(type, level);
1035 1036
	memalloc_nofs_restore(nofs_flag);

1037
	if (IS_ERR(workspace)) {
1038
		atomic_dec(total_ws);
1039
		wake_up(ws_wait);
1040 1041 1042 1043 1044 1045

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1046 1047 1048 1049
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1050
		 */
1051 1052 1053 1054 1055 1056
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1057
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1058 1059
			}
		}
1060
		goto again;
1061 1062 1063 1064
	}
	return workspace;
}

1065
static struct list_head *get_workspace(int type, int level)
1066
{
1067
	switch (type) {
1068
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1069
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1070
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1071 1072 1073 1074 1075 1076 1077 1078
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1079 1080
}

1081 1082 1083 1084
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1085
void btrfs_put_workspace(int type, struct list_head *ws)
1086
{
1087
	struct workspace_manager *wsm;
1088 1089 1090 1091 1092 1093
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1094
	wsm = btrfs_compress_op[type]->workspace_manager;
1095 1096 1097 1098 1099
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1100 1101

	spin_lock(ws_lock);
1102
	if (*free_ws <= num_online_cpus()) {
1103
		list_add(ws, idle_ws);
1104
		(*free_ws)++;
1105
		spin_unlock(ws_lock);
1106 1107
		goto wake;
	}
1108
	spin_unlock(ws_lock);
1109

1110
	free_workspace(type, ws);
1111
	atomic_dec(total_ws);
1112
wake:
1113
	cond_wake_up(ws_wait);
1114 1115
}

1116 1117
static void put_workspace(int type, struct list_head *ws)
{
1118
	switch (type) {
1119 1120 1121
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1122 1123 1124 1125 1126 1127 1128 1129
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1148
/*
1149 1150
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1151
 *
1152 1153 1154 1155 1156
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1157 1158
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1159
 *
1160 1161
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1162 1163 1164
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1165 1166
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1167
 *
1168
 * @max_out tells us the max number of bytes that we're allowed to
1169 1170
 * stuff into pages
 */
1171
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1172
			 u64 start, struct page **pages,
1173 1174
			 unsigned long *out_pages,
			 unsigned long *total_in,
1175
			 unsigned long *total_out)
1176
{
1177
	int type = btrfs_compress_type(type_level);
1178
	int level = btrfs_compress_level(type_level);
1179 1180 1181
	struct list_head *workspace;
	int ret;

1182
	level = btrfs_compress_set_level(type, level);
1183
	workspace = get_workspace(type, level);
1184 1185
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1186
	put_workspace(type, workspace);
1187 1188 1189 1190 1191 1192 1193 1194
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1195
 * orig_bio contains the pages from the file that we want to decompress into
1196 1197 1198 1199 1200 1201 1202 1203
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1204
static int btrfs_decompress_bio(struct compressed_bio *cb)
1205 1206 1207
{
	struct list_head *workspace;
	int ret;
1208
	int type = cb->compress_type;
1209

1210
	workspace = get_workspace(type, 0);
1211
	ret = compression_decompress_bio(type, workspace, cb);
1212
	put_workspace(type, workspace);
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1228
	workspace = get_workspace(type, 0);
1229 1230
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1231
	put_workspace(type, workspace);
1232

1233 1234 1235
	return ret;
}

1236 1237
void __init btrfs_init_compress(void)
{
1238 1239 1240 1241
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1242 1243
}

1244
void __cold btrfs_exit_compress(void)
1245
{
1246 1247 1248 1249
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1250
}
1251 1252 1253 1254 1255 1256 1257 1258

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1259
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1260
			      unsigned long total_out, u64 disk_start,
1261
			      struct bio *bio)
1262 1263 1264 1265
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1266
	unsigned long prev_start_byte;
1267 1268
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
1269
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1270 1271 1272 1273 1274

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1275
	start_byte = page_offset(bvec.bv_page) - disk_start;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1295
		bytes = min_t(unsigned long, bvec.bv_len,
1296
				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1297
		bytes = min(bytes, working_bytes);
1298

1299 1300
		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
			       bytes);
1301
		flush_dcache_page(bvec.bv_page);
1302 1303 1304 1305 1306 1307

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1308 1309 1310 1311
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1312
		prev_start_byte = start_byte;
1313
		start_byte = page_offset(bvec.bv_page) - disk_start;
1314

1315
		/*
1316 1317 1318 1319
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1320
		 */
1321 1322 1323 1324 1325 1326 1327
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1340 1341 1342 1343 1344
		}
	}

	return 1;
}
1345

1346 1347 1348
/*
 * Shannon Entropy calculation
 *
1349
 * Pure byte distribution analysis fails to determine compressibility of data.
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1413
 * Use 16 u32 counters for calculating new position in buf array
1414 1415 1416 1417 1418 1419
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1420
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1421
		       int num)
1422
{
1423 1424 1425 1426 1427 1428 1429 1430
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1431

1432 1433 1434 1435
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1436
	max_num = array[0].count;
1437
	for (i = 1; i < num; i++) {
1438
		buf_num = array[i].count;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1451
			buf_num = array[i].count;
1452 1453 1454 1455 1456 1457 1458 1459
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1460
			buf_num = array[i].count;
1461 1462 1463
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1464
			array_buf[new_addr] = array[i];
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1478
			buf_num = array_buf[i].count;
1479 1480 1481 1482 1483 1484 1485 1486
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1487
			buf_num = array_buf[i].count;
1488 1489 1490
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1491
			array[new_addr] = array_buf[i];
1492 1493 1494 1495
		}

		shift += RADIX_BASE;
	}
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1525
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1581 1582 1583 1584 1585 1586 1587 1588
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1619
		in_data = kmap_local_page(page);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1632
		kunmap_local(in_data);
1633 1634 1635 1636 1637 1638 1639 1640
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1658
	struct list_head *ws_list = get_workspace(0, 0);
1659
	struct heuristic_ws *ws;
1660 1661
	u32 i;
	u8 byte;
1662
	int ret = 0;
1663

1664 1665
	ws = list_entry(ws_list, struct heuristic_ws, list);

1666 1667
	heuristic_collect_sample(inode, start, end, ws);

1668 1669 1670 1671 1672
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1673 1674 1675 1676 1677
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1678 1679
	}

1680 1681 1682 1683 1684 1685
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1726
out:
1727
	put_workspace(0, ws_list);
1728 1729
	return ret;
}
1730

1731 1732 1733 1734 1735
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1736
{
1737 1738 1739 1740
	unsigned int level = 0;
	int ret;

	if (!type)
1741 1742
		return 0;

1743 1744 1745 1746 1747 1748
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1749 1750 1751 1752
	level = btrfs_compress_set_level(type, level);

	return level;
}