compression.c 47.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
31
#include "subpage.h"
32
#include "zoned.h"
C
Chris Mason 已提交
33

34 35 36 37 38 39 40 41 42 43
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
44 45
	default:
		break;
46 47 48 49 50
	}

	return NULL;
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
85 86 87 88 89 90 91
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
92
		 */
93
		*out_pages = 0;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

136
static int btrfs_decompress_bio(struct compressed_bio *cb);
137

138
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
139 140 141
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
142
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
143 144
}

145
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 147
				 u64 disk_start)
{
148
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
149
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150
	const u32 csum_size = fs_info->csum_size;
151
	const u32 sectorsize = fs_info->sectorsize;
152
	struct page *page;
153
	unsigned int i;
154
	char *kaddr;
155
	u8 csum[BTRFS_CSUM_SIZE];
156
	struct compressed_bio *cb = bio->bi_private;
157
	u8 *cb_sum = cb->sums;
158

159
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
160 161
		return 0;

162 163
	shash->tfm = fs_info->csum_shash;

164
	for (i = 0; i < cb->nr_pages; i++) {
165 166
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
167 168
		page = cb->compressed_pages[i];

169 170 171 172 173 174 175
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
176
			kaddr = page_address(page);
177 178 179 180 181 182
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
183
				if (btrfs_bio(bio)->device)
184
					btrfs_dev_stat_inc_and_print(
185
						btrfs_bio(bio)->device,
186 187 188 189 190
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
191 192
		}
	}
193
	return 0;
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/*
 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 *
 * Return true if there is no pending bio nor io.
 * Return false otherwise.
 */
static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	unsigned int bi_size = 0;
	bool last_io = false;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/*
	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
	 * Thus here we have to iterate through all segments to grab correct
	 * bio size.
	 */
	bio_for_each_segment_all(bvec, bio, iter_all)
		bi_size += bvec->bv_len;

	if (bio->bi_status)
		cb->errors = 1;

	ASSERT(bi_size && bi_size <= cb->compressed_len);
	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
					&cb->pending_sectors);
	atomic_dec(&cb->pending_bios);
225 226 227 228 229 230 231
	/*
	 * Here we must wake up the possible error handler after all other
	 * operations on @cb finished, or we can race with
	 * finish_compressed_bio_*() which may free @cb.
	 */
	wake_up_var(cb);

232 233 234
	return last_io;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
{
	unsigned int index;
	struct page *page;

	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
	if (cb->errors) {
		bio_io_error(cb->orig_bio);
	} else {
		struct bio_vec *bvec;
		struct bvec_iter_all iter_all;

		ASSERT(bio);
		ASSERT(!bio->bi_status);
		/*
		 * We have verified the checksum already, set page checked so
		 * the end_io handlers know about it
		 */
		ASSERT(!bio_flagged(bio, BIO_CLONED));
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}

		bio_endio(cb->orig_bio);
	}

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

C
Chris Mason 已提交
278 279 280 281 282 283 284 285 286 287
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
288
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
289 290 291
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
292
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
293
	int ret = 0;
C
Chris Mason 已提交
294

295
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
296 297
		goto out;

298 299 300 301
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
302
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
303 304
	cb->mirror_num = mirror;

305 306 307 308 309 310 311
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

312
	inode = cb->inode;
313
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
314
				    bio->bi_iter.bi_sector << 9);
315 316 317
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
318 319 320
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
321 322
	ret = btrfs_decompress_bio(cb);

323
csum_failed:
C
Chris Mason 已提交
324 325
	if (ret)
		cb->errors = 1;
326
	finish_compressed_bio_read(cb, bio);
C
Chris Mason 已提交
327 328 329 330 331 332 333 334
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
335 336
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
337
{
338 339
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
340 341 342 343 344
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

345 346 347
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
348
	while (nr_pages > 0) {
C
Chris Mason 已提交
349
		ret = find_get_pages_contig(inode->i_mapping, index,
350 351
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
352 353 354 355 356 357
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
358 359
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
360
			end_page_writeback(pages[i]);
361
			put_page(pages[i]);
C
Chris Mason 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
377
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
378 379 380 381
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
382
	unsigned int index;
C
Chris Mason 已提交
383

384
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
385 386 387 388 389 390
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
391
	btrfs_record_physical_zoned(inode, cb->start, bio);
392
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
393
			cb->start, cb->start + cb->len - 1,
394
			!cb->errors);
C
Chris Mason 已提交
395

396
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
397 398 399 400 401 402 403 404 405 406
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
407
		put_page(page);
C
Chris Mason 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
426
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
427 428
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
429
				 struct page **compressed_pages,
430
				 unsigned int nr_pages,
431 432
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
433
{
434
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
435 436 437
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
438
	int pg_index = 0;
C
Chris Mason 已提交
439 440
	struct page *page;
	u64 first_byte = disk_start;
441
	blk_status_t ret;
442
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
443 444
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
445

446
	WARN_ON(!PAGE_ALIGNED(start));
447
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
448
	if (!cb)
449
		return BLK_STS_RESOURCE;
450 451
	atomic_set(&cb->pending_bios, 0);
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
452
	cb->errors = 0;
453
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
454 455
	cb->start = start;
	cb->len = len;
456
	cb->mirror_num = 0;
C
Chris Mason 已提交
457 458 459 460 461
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

462
	bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
463
	bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
464
	bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
465 466
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
467

468
	if (use_append) {
469
		struct btrfs_device *device;
470

471 472
		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
		if (IS_ERR(device)) {
473 474 475 476 477
			kfree(cb);
			bio_put(bio);
			return BLK_STS_NOTSUPP;
		}

478
		bio_set_dev(bio, device->bdev);
479 480
	}

481 482
	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
483
		kthread_associate_blkcg(blkcg_css);
484
	}
C
Chris Mason 已提交
485 486 487

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
488
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
489
		int submit = 0;
490
		int len = 0;
491

492
		page = compressed_pages[pg_index];
493
		page->mapping = inode->vfs_inode.i_mapping;
494
		if (bio->bi_iter.bi_size)
495 496
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
497

498 499 500 501 502 503 504 505 506 507 508
		/*
		 * Page can only be added to bio if the current bio fits in
		 * stripe.
		 */
		if (!submit) {
			if (pg_index == 0 && use_append)
				len = bio_add_zone_append_page(bio, page,
							       PAGE_SIZE, 0);
			else
				len = bio_add_page(bio, page, PAGE_SIZE, 0);
		}
509

C
Chris Mason 已提交
510
		page->mapping = NULL;
511
		if (submit || len < PAGE_SIZE) {
512
			atomic_inc(&cb->pending_bios);
513 514
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
515
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
516

517
			if (!skip_sum) {
518
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
519
				BUG_ON(ret); /* -ENOMEM */
520
			}
521

522
			ret = btrfs_map_bio(fs_info, bio, 0);
523
			if (ret) {
524
				bio->bi_status = ret;
525 526
				bio_endio(bio);
			}
C
Chris Mason 已提交
527

528
			bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
529
			bio->bi_iter.bi_sector = first_byte >> SECTOR_SHIFT;
530
			bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
531 532
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
533
			if (blkcg_css)
534
				bio->bi_opf |= REQ_CGROUP_PUNT;
535 536 537 538
			/*
			 * Use bio_add_page() to ensure the bio has at least one
			 * page.
			 */
539
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
540
		}
541
		if (bytes_left < PAGE_SIZE) {
542
			btrfs_info(fs_info,
543
					"bytes left %lu compress len %u nr %u",
544 545
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
546 547
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
548
		cond_resched();
C
Chris Mason 已提交
549 550
	}

551
	atomic_inc(&cb->pending_bios);
552
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
553
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
554

555
	if (!skip_sum) {
556
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
557
		BUG_ON(ret); /* -ENOMEM */
558
	}
559

560
	ret = btrfs_map_bio(fs_info, bio, 0);
561
	if (ret) {
562
		bio->bi_status = ret;
563 564
		bio_endio(bio);
	}
C
Chris Mason 已提交
565

566 567 568
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
569 570 571
	return 0;
}

572 573
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
574
	struct bio_vec *last = bio_last_bvec_all(bio);
575 576 577 578

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

579 580 581 582 583 584 585 586 587 588 589
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
590 591 592 593
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
594
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
595
	unsigned long end_index;
596
	u64 cur = bio_end_offset(cb->orig_bio);
597 598 599 600 601 602 603
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
604
	int sectors_missed = 0;
605 606 607 608 609 610 611

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

612 613 614 615 616 617 618 619 620 621
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

622
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
623

624 625 626 627
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
628

629
		if (pg_index > end_index)
630 631
			break;

632
		page = xa_load(&mapping->i_pages, pg_index);
633
		if (page && !xa_is_value(page)) {
634 635 636 637 638
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
639
				break;
640 641 642 643 644 645 646

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
647 648
		}

649 650
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
651 652 653
		if (!page)
			break;

654
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
655
			put_page(page);
656 657 658
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
659 660
		}

661 662 663 664 665 666 667
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

668 669
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
670
		read_lock(&em_tree->lock);
671
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
672
		read_unlock(&em_tree->lock);
673

674 675 676 677 678 679 680
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
681
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
682
			free_extent_map(em);
683
			unlock_extent(tree, cur, page_end);
684
			unlock_page(page);
685
			put_page(page);
686 687 688 689 690
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
691
			size_t zero_offset = offset_in_page(isize);
692 693 694

			if (zero_offset) {
				int zeros;
695
				zeros = PAGE_SIZE - zero_offset;
696
				memzero_page(page, zero_offset, zeros);
697 698 699 700
				flush_dcache_page(page);
			}
		}

701 702 703 704
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
705
			unlock_page(page);
706
			put_page(page);
707 708
			break;
		}
709 710 711 712 713 714 715 716 717
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
718 719 720 721
	}
	return 0;
}

C
Chris Mason 已提交
722 723 724 725 726
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
727
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
728 729 730 731 732
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
733
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
734 735
				 int mirror_num, unsigned long bio_flags)
{
736
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
737 738
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
739 740 741
	unsigned int compressed_len;
	unsigned int nr_pages;
	unsigned int pg_index;
C
Chris Mason 已提交
742 743
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
744
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
745
	u64 file_offset;
746 747
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
748
	struct extent_map *em;
749
	blk_status_t ret = BLK_STS_RESOURCE;
750
	int faili = 0;
751
	u8 *sums;
C
Chris Mason 已提交
752 753 754

	em_tree = &BTRFS_I(inode)->extent_tree;

755 756 757
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
758
	/* we need the actual starting offset of this extent in the file */
759
	read_lock(&em_tree->lock);
760
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
761
	read_unlock(&em_tree->lock);
762
	if (!em)
763
		return BLK_STS_IOERR;
C
Chris Mason 已提交
764

765
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
766
	compressed_len = em->block_len;
767
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
768 769 770
	if (!cb)
		goto out;

771 772
	atomic_set(&cb->pending_bios, 0);
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
773 774
	cb->errors = 0;
	cb->inode = inode;
775
	cb->mirror_num = mirror_num;
776
	sums = cb->sums;
C
Chris Mason 已提交
777

778
	cb->start = em->orig_start;
779 780
	em_len = em->len;
	em_start = em->start;
781

C
Chris Mason 已提交
782
	free_extent_map(em);
783
	em = NULL;
C
Chris Mason 已提交
784

C
Christoph Hellwig 已提交
785
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
786
	cb->compressed_len = compressed_len;
787
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
788 789
	cb->orig_bio = bio;

790
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
791
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
792
				       GFP_NOFS);
793 794 795
	if (!cb->compressed_pages)
		goto fail1;

796
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
797
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
798 799
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
800
			ret = BLK_STS_RESOURCE;
801
			goto fail2;
802
		}
C
Chris Mason 已提交
803
	}
804
	faili = nr_pages - 1;
C
Chris Mason 已提交
805 806
	cb->nr_pages = nr_pages;

807
	add_ra_bio_pages(inode, em_start + em_len, cb);
808 809

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
810
	cb->len = bio->bi_iter.bi_size;
811

812
	comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
813
	comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
D
David Sterba 已提交
814
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
815 816 817
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;

818
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
819
		u32 pg_len = PAGE_SIZE;
820 821
		int submit = 0;

822 823 824 825 826 827 828 829 830 831 832
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

833
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
834
		page->mapping = inode->i_mapping;
835
		page->index = em_start >> PAGE_SHIFT;
836

837
		if (comp_bio->bi_iter.bi_size)
838
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
839
							  comp_bio, 0);
C
Chris Mason 已提交
840

C
Chris Mason 已提交
841
		page->mapping = NULL;
842
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
843 844
			unsigned int nr_sectors;

845
			atomic_inc(&cb->pending_bios);
846 847
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
848 849
			if (ret)
				goto finish_cb;
C
Chris Mason 已提交
850

851
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
852 853
			if (ret)
				goto finish_cb;
854 855 856

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
857
			sums += fs_info->csum_size * nr_sectors;
858

859
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
860 861
			if (ret)
				goto finish_cb;
C
Chris Mason 已提交
862

863
			comp_bio = btrfs_bio_alloc(BIO_MAX_VECS);
Q
Qu Wenruo 已提交
864
			comp_bio->bi_iter.bi_sector = cur_disk_byte >> SECTOR_SHIFT;
D
David Sterba 已提交
865
			comp_bio->bi_opf = REQ_OP_READ;
866 867 868
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

869
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
870
		}
871
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
872 873
	}

874
	atomic_inc(&cb->pending_bios);
875
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
876 877
	if (ret)
		goto last_bio;
C
Chris Mason 已提交
878

879
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
880 881
	if (ret)
		goto last_bio;
882

883
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
884 885
	if (ret)
		goto last_bio;
C
Chris Mason 已提交
886 887

	return 0;
888 889

fail2:
890 891 892 893
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
894 895 896 897 898 899 900

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
last_bio:
	comp_bio->bi_status = ret;
	/* This is the last bio, endio functions will free @cb */
	bio_endio(comp_bio);
	return ret;

finish_cb:
	if (comp_bio) {
		comp_bio->bi_status = ret;
		bio_endio(comp_bio);
	}
	wait_var_event(cb, atomic_read(&cb->pending_bios) == 0);
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish @cb manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_read(cb, NULL);
	return ret;
C
Chris Mason 已提交
921
}
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
958 959

struct heuristic_ws {
960 961
	/* Partial copy of input data */
	u8 *sample;
962
	u32 sample_size;
963 964
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
965 966
	/* Sorting buffer */
	struct bucket_item *bucket_b;
967 968 969
	struct list_head list;
};

970 971
static struct workspace_manager heuristic_wsm;

972 973 974 975 976 977
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

978 979
	kvfree(workspace->sample);
	kfree(workspace->bucket);
980
	kfree(workspace->bucket_b);
981 982 983
	kfree(workspace);
}

984
static struct list_head *alloc_heuristic_ws(unsigned int level)
985 986 987 988 989 990 991
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

992 993 994 995 996 997 998
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
999

1000 1001 1002 1003
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

1004
	INIT_LIST_HEAD(&ws->list);
1005
	return &ws->list;
1006 1007 1008
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
1009 1010
}

1011
const struct btrfs_compress_op btrfs_heuristic_compress = {
1012
	.workspace_manager = &heuristic_wsm,
1013 1014
};

1015
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1016 1017
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
1018
	&btrfs_zlib_compress,
L
Li Zefan 已提交
1019
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
1020
	&btrfs_zstd_compress,
1021 1022
};

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1055
static void btrfs_init_workspace_manager(int type)
1056
{
1057
	struct workspace_manager *wsm;
1058
	struct list_head *workspace;
1059

1060
	wsm = btrfs_compress_op[type]->workspace_manager;
1061 1062 1063 1064
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1065

1066 1067 1068 1069
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1070
	workspace = alloc_workspace(type, 0);
1071 1072 1073 1074
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1075 1076 1077
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1078 1079 1080
	}
}

1081
static void btrfs_cleanup_workspace_manager(int type)
1082
{
1083
	struct workspace_manager *wsman;
1084 1085
	struct list_head *ws;

1086
	wsman = btrfs_compress_op[type]->workspace_manager;
1087 1088 1089
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1090
		free_workspace(type, ws);
1091
		atomic_dec(&wsman->total_ws);
1092 1093 1094 1095
	}
}

/*
1096 1097 1098 1099
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1100
 */
1101
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1102
{
1103
	struct workspace_manager *wsm;
1104 1105
	struct list_head *workspace;
	int cpus = num_online_cpus();
1106
	unsigned nofs_flag;
1107 1108 1109 1110 1111 1112
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1113
	wsm = btrfs_compress_op[type]->workspace_manager;
1114 1115 1116 1117 1118
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1119 1120

again:
1121 1122 1123
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1124
		list_del(workspace);
1125
		(*free_ws)--;
1126
		spin_unlock(ws_lock);
1127 1128 1129
		return workspace;

	}
1130
	if (atomic_read(total_ws) > cpus) {
1131 1132
		DEFINE_WAIT(wait);

1133 1134
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1135
		if (atomic_read(total_ws) > cpus && !*free_ws)
1136
			schedule();
1137
		finish_wait(ws_wait, &wait);
1138 1139
		goto again;
	}
1140
	atomic_inc(total_ws);
1141
	spin_unlock(ws_lock);
1142

1143 1144 1145 1146 1147 1148
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1149
	workspace = alloc_workspace(type, level);
1150 1151
	memalloc_nofs_restore(nofs_flag);

1152
	if (IS_ERR(workspace)) {
1153
		atomic_dec(total_ws);
1154
		wake_up(ws_wait);
1155 1156 1157 1158 1159 1160

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1161 1162 1163 1164
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1165
		 */
1166 1167 1168 1169 1170 1171
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1172
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1173 1174
			}
		}
1175
		goto again;
1176 1177 1178 1179
	}
	return workspace;
}

1180
static struct list_head *get_workspace(int type, int level)
1181
{
1182
	switch (type) {
1183
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1184
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1185
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1186 1187 1188 1189 1190 1191 1192 1193
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1194 1195
}

1196 1197 1198 1199
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1200
void btrfs_put_workspace(int type, struct list_head *ws)
1201
{
1202
	struct workspace_manager *wsm;
1203 1204 1205 1206 1207 1208
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1209
	wsm = btrfs_compress_op[type]->workspace_manager;
1210 1211 1212 1213 1214
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1215 1216

	spin_lock(ws_lock);
1217
	if (*free_ws <= num_online_cpus()) {
1218
		list_add(ws, idle_ws);
1219
		(*free_ws)++;
1220
		spin_unlock(ws_lock);
1221 1222
		goto wake;
	}
1223
	spin_unlock(ws_lock);
1224

1225
	free_workspace(type, ws);
1226
	atomic_dec(total_ws);
1227
wake:
1228
	cond_wake_up(ws_wait);
1229 1230
}

1231 1232
static void put_workspace(int type, struct list_head *ws)
{
1233
	switch (type) {
1234 1235 1236
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1237 1238 1239 1240 1241 1242 1243 1244
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1245 1246
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1263
/*
1264 1265
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1266
 *
1267 1268 1269 1270 1271
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1272 1273
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1274
 *
1275 1276
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1277 1278 1279
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1280 1281
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1282
 */
1283
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1284
			 u64 start, struct page **pages,
1285 1286
			 unsigned long *out_pages,
			 unsigned long *total_in,
1287
			 unsigned long *total_out)
1288
{
1289
	int type = btrfs_compress_type(type_level);
1290
	int level = btrfs_compress_level(type_level);
1291 1292 1293
	struct list_head *workspace;
	int ret;

1294
	level = btrfs_compress_set_level(type, level);
1295
	workspace = get_workspace(type, level);
1296 1297
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1298
	put_workspace(type, workspace);
1299 1300 1301
	return ret;
}

1302
static int btrfs_decompress_bio(struct compressed_bio *cb)
1303 1304 1305
{
	struct list_head *workspace;
	int ret;
1306
	int type = cb->compress_type;
1307

1308
	workspace = get_workspace(type, 0);
1309
	ret = compression_decompress_bio(type, workspace, cb);
1310
	put_workspace(type, workspace);
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1326
	workspace = get_workspace(type, 0);
1327 1328
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1329
	put_workspace(type, workspace);
1330

1331 1332 1333
	return ret;
}

1334 1335
void __init btrfs_init_compress(void)
{
1336 1337 1338 1339
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1340 1341
}

1342
void __cold btrfs_exit_compress(void)
1343
{
1344 1345 1346 1347
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1348
}
1349 1350

/*
1351
 * Copy decompressed data from working buffer to pages.
1352
 *
1353 1354 1355 1356 1357 1358
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1359
 *
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1379
 */
1380 1381
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1382
{
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1402

1403 1404 1405
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1406

1407 1408 1409 1410
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1411

1412
		/*
1413 1414
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1415
		 */
1416 1417 1418 1419 1420
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		flush_dcache_page(bvec.bv_page);
		cur_offset += copy_len;
1421

1422 1423 1424 1425
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1426 1427 1428
	}
	return 1;
}
1429

1430 1431 1432
/*
 * Shannon Entropy calculation
 *
1433
 * Pure byte distribution analysis fails to determine compressibility of data.
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1497
 * Use 16 u32 counters for calculating new position in buf array
1498 1499 1500 1501 1502 1503
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1504
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1505
		       int num)
1506
{
1507 1508 1509 1510 1511 1512 1513 1514
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1515

1516 1517 1518 1519
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1520
	max_num = array[0].count;
1521
	for (i = 1; i < num; i++) {
1522
		buf_num = array[i].count;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1535
			buf_num = array[i].count;
1536 1537 1538 1539 1540 1541 1542 1543
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1544
			buf_num = array[i].count;
1545 1546 1547
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1548
			array_buf[new_addr] = array[i];
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1562
			buf_num = array_buf[i].count;
1563 1564 1565 1566 1567 1568 1569 1570
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1571
			buf_num = array_buf[i].count;
1572 1573 1574
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1575
			array[new_addr] = array_buf[i];
1576 1577 1578 1579
		}

		shift += RADIX_BASE;
	}
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1609
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1665 1666 1667 1668 1669 1670 1671 1672
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1703
		in_data = kmap_local_page(page);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1716
		kunmap_local(in_data);
1717 1718 1719 1720 1721 1722 1723 1724
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1742
	struct list_head *ws_list = get_workspace(0, 0);
1743
	struct heuristic_ws *ws;
1744 1745
	u32 i;
	u8 byte;
1746
	int ret = 0;
1747

1748 1749
	ws = list_entry(ws_list, struct heuristic_ws, list);

1750 1751
	heuristic_collect_sample(inode, start, end, ws);

1752 1753 1754 1755 1756
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1757 1758 1759 1760 1761
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1762 1763
	}

1764 1765 1766 1767 1768 1769
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1810
out:
1811
	put_workspace(0, ws_list);
1812 1813
	return ret;
}
1814

1815 1816 1817 1818 1819
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1820
{
1821 1822 1823 1824
	unsigned int level = 0;
	int ret;

	if (!type)
1825 1826
		return 0;

1827 1828 1829 1830 1831 1832
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1833 1834 1835 1836
	level = btrfs_compress_set_level(type, level);

	return level;
}