compression.c 50.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
12
#include <linux/kthread.h>
C
Chris Mason 已提交
13 14 15 16 17
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
18
#include <linux/slab.h>
19
#include <linux/sched/mm.h>
20
#include <linux/log2.h>
21
#include <crypto/hash.h>
22
#include "misc.h"
C
Chris Mason 已提交
23 24 25 26 27 28 29 30 31
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
32
#include "subpage.h"
33
#include "zoned.h"
C
Chris Mason 已提交
34

35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
45 46
	default:
		break;
47 48 49 50 51
	}

	return NULL;
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
86 87 88 89 90 91 92
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
93
		 */
94
		*out_pages = 0;
95 96 97 98
		return -E2BIG;
	}
}

99 100
static int compression_decompress_bio(struct list_head *ws,
				      struct compressed_bio *cb)
101
{
102
	switch (cb->compress_type) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

137
static int btrfs_decompress_bio(struct compressed_bio *cb);
138

139
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 141 142
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
143
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144 145
}

146
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 148
				 u64 disk_start)
{
149
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
150
	const u32 csum_size = fs_info->csum_size;
151
	const u32 sectorsize = fs_info->sectorsize;
152
	struct page *page;
153
	unsigned int i;
154
	u8 csum[BTRFS_CSUM_SIZE];
155
	struct compressed_bio *cb = bio->bi_private;
156
	u8 *cb_sum = cb->sums;
157

158 159
	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
160 161 162
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
163 164
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
165 166
		page = cb->compressed_pages[i];

167 168 169 170 171 172 173
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
174
			int ret;
175

176 177 178
			ret = btrfs_check_sector_csum(fs_info, page, pg_offset,
						      csum, cb_sum);
			if (ret) {
179 180
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
181
				if (btrfs_bio(bio)->device)
182
					btrfs_dev_stat_inc_and_print(
183
						btrfs_bio(bio)->device,
184 185 186 187 188
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
189 190
		}
	}
191
	return 0;
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 *
 * Return true if there is no pending bio nor io.
 * Return false otherwise.
 */
static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	unsigned int bi_size = 0;
	bool last_io = false;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/*
	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
	 * Thus here we have to iterate through all segments to grab correct
	 * bio size.
	 */
	bio_for_each_segment_all(bvec, bio, iter_all)
		bi_size += bvec->bv_len;

	if (bio->bi_status)
217
		cb->status = bio->bi_status;
218 219 220 221

	ASSERT(bi_size && bi_size <= cb->compressed_len);
	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
					&cb->pending_sectors);
222 223 224 225 226 227 228
	/*
	 * Here we must wake up the possible error handler after all other
	 * operations on @cb finished, or we can race with
	 * finish_compressed_bio_*() which may free @cb.
	 */
	wake_up_var(cb);

229 230 231
	return last_io;
}

232
static void finish_compressed_bio_read(struct compressed_bio *cb)
233 234 235 236 237 238 239 240 241 242 243 244
{
	unsigned int index;
	struct page *page;

	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
245 246 247
	if (cb->status != BLK_STS_OK) {
		cb->orig_bio->bi_status = cb->status;
		bio_endio(cb->orig_bio);
248 249 250 251 252 253 254 255
	} else {
		struct bio_vec *bvec;
		struct bvec_iter_all iter_all;

		/*
		 * We have verified the checksum already, set page checked so
		 * the end_io handlers know about it
		 */
256
		ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}

		bio_endio(cb->orig_bio);
	}

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

C
Chris Mason 已提交
274 275 276 277 278 279 280 281 282 283
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
284
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
285 286 287
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
288
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
289
	int ret = 0;
C
Chris Mason 已提交
290

291
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
292 293
		goto out;

294 295 296 297
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
298
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
299 300
	cb->mirror_num = mirror;

301 302 303 304
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
305
	if (cb->status != BLK_STS_OK)
306 307
		goto csum_failed;

308
	inode = cb->inode;
309
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
310
				    bio->bi_iter.bi_sector << 9);
311 312 313
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
314 315 316
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
317 318
	ret = btrfs_decompress_bio(cb);

319
csum_failed:
C
Chris Mason 已提交
320
	if (ret)
321
		cb->status = errno_to_blk_status(ret);
322
	finish_compressed_bio_read(cb);
C
Chris Mason 已提交
323 324 325 326 327 328 329 330
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
331 332
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
333
{
334
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
335 336
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
337 338
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
339
	const int errno = blk_status_to_errno(cb->status);
C
Chris Mason 已提交
340 341 342
	int i;
	int ret;

343 344
	if (errno)
		mapping_set_error(inode->i_mapping, errno);
345

C
Chris Mason 已提交
346
	while (nr_pages > 0) {
C
Chris Mason 已提交
347
		ret = find_get_pages_contig(inode->i_mapping, index,
348 349
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
350 351 352 353 354 355
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
356
			if (errno)
357
				SetPageError(pages[i]);
358 359
			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
							 cb->start, cb->len);
360
			put_page(pages[i]);
C
Chris Mason 已提交
361 362 363 364 365 366 367
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

368
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
369
{
370
	struct inode *inode = cb->inode;
371
	unsigned int index;
C
Chris Mason 已提交
372

373 374 375
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
376
	 */
377
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
378
			cb->start, cb->start + cb->len - 1,
379
			cb->status == BLK_STS_OK);
C
Chris Mason 已提交
380

381 382
	if (cb->writeback)
		end_compressed_writeback(inode, cb);
383
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
384 385

	/*
386
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
387 388 389
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
390 391
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
392
		page->mapping = NULL;
393
		put_page(page);
C
Chris Mason 已提交
394 395
	}

396
	/* Finally free the cb struct */
C
Chris Mason 已提交
397 398
	kfree(cb->compressed_pages);
	kfree(cb);
399 400
}

401 402 403 404 405 406 407 408
static void btrfs_finish_compressed_write_work(struct work_struct *work)
{
	struct compressed_bio *cb =
		container_of(work, struct compressed_bio, write_end_work);

	finish_compressed_bio_write(cb);
}

409 410 411 412 413 414 415 416 417 418 419
/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
static void end_compressed_bio_write(struct bio *bio)
{
	struct compressed_bio *cb = bio->bi_private;

420 421
	if (dec_and_test_compressed_bio(cb, bio)) {
		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
422

423 424 425
		btrfs_record_physical_zoned(cb->inode, cb->start, bio);
		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
	}
C
Chris Mason 已提交
426 427 428
	bio_put(bio);
}

429
/*
430 431 432 433 434 435 436 437 438 439 440 441 442
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
443
 */
444 445


446
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
447 448
					unsigned int opf, bio_end_io_t endio_func,
					u64 *next_stripe_start)
449
{
450 451 452
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
453
	struct bio *bio;
454
	int ret;
455 456 457 458 459 460 461 462

	bio = btrfs_bio_alloc(BIO_MAX_VECS);

	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
	bio->bi_opf = opf;
	bio->bi_private = cb;
	bio->bi_end_io = endio_func;

463 464 465 466 467
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
468

469 470 471 472 473 474 475 476
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
477
	}
478 479
	*next_stripe_start = disk_bytenr + geom.len;

480 481 482
	return bio;
}

C
Chris Mason 已提交
483 484 485 486 487 488 489 490 491
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
492
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
493 494
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
495
				 struct page **compressed_pages,
496
				 unsigned int nr_pages,
497
				 unsigned int write_flags,
498 499
				 struct cgroup_subsys_state *blkcg_css,
				 bool writeback)
C
Chris Mason 已提交
500
{
501
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
502 503
	struct bio *bio = NULL;
	struct compressed_bio *cb;
504
	u64 cur_disk_bytenr = disk_start;
505
	u64 next_stripe_start;
506
	blk_status_t ret;
507
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
508 509
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
510

511 512
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
513
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
514
	if (!cb)
515
		return BLK_STS_RESOURCE;
516
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
517
	cb->status = BLK_STS_OK;
518
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
519 520
	cb->start = start;
	cb->len = len;
521
	cb->mirror_num = 0;
C
Chris Mason 已提交
522 523
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
524
	cb->writeback = writeback;
525
	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
C
Chris Mason 已提交
526 527
	cb->nr_pages = nr_pages;

528 529 530
	if (blkcg_css)
		kthread_associate_blkcg(blkcg_css);

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
				bio = NULL;
				goto finish_cb;
			}
549 550
			if (blkcg_css)
				bio->bi_opf |= REQ_CGROUP_PUNT;
551
		}
552
		/*
553 554
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
555
		 */
556
		ASSERT(cur_disk_bytenr != next_stripe_start);
C
Chris Mason 已提交
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
589
			if (!skip_sum) {
590
				ret = btrfs_csum_one_bio(inode, bio, start, true);
591 592
				if (ret)
					goto finish_cb;
593
			}
C
Chris Mason 已提交
594

595
			ASSERT(bio->bi_iter.bi_size);
596
			btrfs_submit_bio(fs_info, bio, 0);
597
			bio = NULL;
C
Chris Mason 已提交
598
		}
599
		cond_resched();
C
Chris Mason 已提交
600
	}
601 602
	if (blkcg_css)
		kthread_associate_blkcg(NULL);
C
Chris Mason 已提交
603 604

	return 0;
605

606
finish_cb:
607 608 609
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

610
	if (bio) {
611
		bio->bi_status = ret;
612 613
		bio_endio(bio);
	}
614 615 616
	/* Last byte of @cb is submitted, endio will free @cb */
	if (cur_disk_bytenr == disk_start + compressed_len)
		return ret;
C
Chris Mason 已提交
617

618 619 620
	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_start + compressed_len - cur_disk_bytenr) >>
			   fs_info->sectorsize_bits);
621 622 623 624 625 626 627 628
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_write(cb);
	return ret;
C
Chris Mason 已提交
629 630
}

631 632
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
633
	struct bio_vec *last = bio_last_bvec_all(bio);
634 635 636 637

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

638 639 640 641 642 643 644 645 646 647 648
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
649 650 651 652
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
653
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
654
	unsigned long end_index;
655
	u64 cur = bio_end_offset(cb->orig_bio);
656 657 658 659 660 661 662
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
663
	int sectors_missed = 0;
664 665 666 667 668 669 670

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

671 672 673 674 675 676 677 678 679 680
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

681
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
682

683 684 685 686
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
687

688
		if (pg_index > end_index)
689 690
			break;

691
		page = xa_load(&mapping->i_pages, pg_index);
692
		if (page && !xa_is_value(page)) {
693 694 695 696 697
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
698
				break;
699 700 701 702 703 704 705

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
706 707
		}

708 709
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
710 711 712
		if (!page)
			break;

713
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
714
			put_page(page);
715 716 717
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
718 719
		}

720 721 722 723 724 725 726
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

727 728
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
729
		read_lock(&em_tree->lock);
730
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
731
		read_unlock(&em_tree->lock);
732

733 734 735 736 737 738 739
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
740
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
741
			free_extent_map(em);
742
			unlock_extent(tree, cur, page_end);
743
			unlock_page(page);
744
			put_page(page);
745 746 747 748 749
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
750
			size_t zero_offset = offset_in_page(isize);
751 752 753

			if (zero_offset) {
				int zeros;
754
				zeros = PAGE_SIZE - zero_offset;
755
				memzero_page(page, zero_offset, zeros);
756 757 758
			}
		}

759 760 761 762
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
763
			unlock_page(page);
764
			put_page(page);
765 766
			break;
		}
767 768 769 770 771 772 773 774 775
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
776 777 778 779
	}
	return 0;
}

C
Chris Mason 已提交
780 781 782 783 784
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
785
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
786 787 788 789 790
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
791
void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
792
				  int mirror_num)
C
Chris Mason 已提交
793
{
794
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
795 796
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
797
	unsigned int compressed_len;
798 799 800 801
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
802
	u64 file_offset;
803 804
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
805
	struct extent_map *em;
806
	blk_status_t ret;
807 808
	int ret2;
	int i;
809
	u8 *sums;
C
Chris Mason 已提交
810 811 812

	em_tree = &BTRFS_I(inode)->extent_tree;

813 814 815
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
816
	/* we need the actual starting offset of this extent in the file */
817
	read_lock(&em_tree->lock);
818
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
819
	read_unlock(&em_tree->lock);
820 821 822 823
	if (!em) {
		ret = BLK_STS_IOERR;
		goto out;
	}
C
Chris Mason 已提交
824

825
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
826
	compressed_len = em->block_len;
827
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
828 829
	if (!cb) {
		ret = BLK_STS_RESOURCE;
830
		goto out;
831
	}
832

833
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
834
	cb->status = BLK_STS_OK;
C
Chris Mason 已提交
835
	cb->inode = inode;
836
	cb->mirror_num = mirror_num;
837
	sums = cb->sums;
C
Chris Mason 已提交
838

839
	cb->start = em->orig_start;
840 841
	em_len = em->len;
	em_start = em->start;
842

C
Christoph Hellwig 已提交
843
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
844
	cb->compressed_len = compressed_len;
845
	cb->compress_type = em->compress_type;
C
Chris Mason 已提交
846 847
	cb->orig_bio = bio;

848 849 850
	free_extent_map(em);
	em = NULL;

851 852
	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
853 854
	if (!cb->compressed_pages) {
		ret = BLK_STS_RESOURCE;
855
		goto fail;
856
	}
857

858 859 860 861
	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
	if (ret2) {
		ret = BLK_STS_RESOURCE;
		goto fail;
C
Chris Mason 已提交
862 863
	}

864
	add_ra_bio_pages(inode, em_start + em_len, cb);
865 866

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
867
	cb->len = bio->bi_iter.bi_size;
868

869 870 871 872 873 874 875
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
876

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
				ret = errno_to_blk_status(PTR_ERR(comp_bio));
				comp_bio = NULL;
				goto finish_cb;
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
903

904
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
905
		/*
906 907
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
908
		 */
909 910
		ASSERT(added == real_size);
		cur_disk_byte += added;
911

912 913 914
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
915

916 917 918
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
919

920
		if (submit) {
921 922
			unsigned int nr_sectors;

923
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
924 925
			if (ret)
				goto finish_cb;
926 927 928

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
929
			sums += fs_info->csum_size * nr_sectors;
930

931
			ASSERT(comp_bio->bi_iter.bi_size);
932
			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
933
			comp_bio = NULL;
C
Chris Mason 已提交
934 935
		}
	}
936
	return;
937

938 939 940 941 942 943
fail:
	if (cb->compressed_pages) {
		for (i = 0; i < cb->nr_pages; i++) {
			if (cb->compressed_pages[i])
				__free_page(cb->compressed_pages[i]);
		}
944
	}
945 946 947 948 949

	kfree(cb->compressed_pages);
	kfree(cb);
out:
	free_extent_map(em);
950 951
	bio->bi_status = ret;
	bio_endio(bio);
952
	return;
953 954 955 956 957
finish_cb:
	if (comp_bio) {
		comp_bio->bi_status = ret;
		bio_endio(comp_bio);
	}
958 959
	/* All bytes of @cb is submitted, endio will free @cb */
	if (cur_disk_byte == disk_bytenr + compressed_len)
960
		return;
961 962 963 964

	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_bytenr + compressed_len - cur_disk_byte) >>
			   fs_info->sectorsize_bits);
965 966 967 968 969 970
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish @cb manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
971
	finish_compressed_bio_read(cb);
C
Chris Mason 已提交
972
}
973

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
1009 1010

struct heuristic_ws {
1011 1012
	/* Partial copy of input data */
	u8 *sample;
1013
	u32 sample_size;
1014 1015
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
1016 1017
	/* Sorting buffer */
	struct bucket_item *bucket_b;
1018 1019 1020
	struct list_head list;
};

1021 1022
static struct workspace_manager heuristic_wsm;

1023 1024 1025 1026 1027 1028
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

1029 1030
	kvfree(workspace->sample);
	kfree(workspace->bucket);
1031
	kfree(workspace->bucket_b);
1032 1033 1034
	kfree(workspace);
}

1035
static struct list_head *alloc_heuristic_ws(unsigned int level)
1036 1037 1038 1039 1040 1041 1042
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

1043 1044 1045 1046 1047 1048 1049
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
1050

1051 1052 1053 1054
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

1055
	INIT_LIST_HEAD(&ws->list);
1056
	return &ws->list;
1057 1058 1059
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
1060 1061
}

1062
const struct btrfs_compress_op btrfs_heuristic_compress = {
1063
	.workspace_manager = &heuristic_wsm,
1064 1065
};

1066
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1067 1068
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
1069
	&btrfs_zlib_compress,
L
Li Zefan 已提交
1070
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
1071
	&btrfs_zstd_compress,
1072 1073
};

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1106
static void btrfs_init_workspace_manager(int type)
1107
{
1108
	struct workspace_manager *wsm;
1109
	struct list_head *workspace;
1110

1111
	wsm = btrfs_compress_op[type]->workspace_manager;
1112 1113 1114 1115
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1116

1117 1118 1119 1120
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1121
	workspace = alloc_workspace(type, 0);
1122 1123 1124 1125
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1126 1127 1128
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1129 1130 1131
	}
}

1132
static void btrfs_cleanup_workspace_manager(int type)
1133
{
1134
	struct workspace_manager *wsman;
1135 1136
	struct list_head *ws;

1137
	wsman = btrfs_compress_op[type]->workspace_manager;
1138 1139 1140
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1141
		free_workspace(type, ws);
1142
		atomic_dec(&wsman->total_ws);
1143 1144 1145 1146
	}
}

/*
1147 1148 1149 1150
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1151
 */
1152
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1153
{
1154
	struct workspace_manager *wsm;
1155 1156
	struct list_head *workspace;
	int cpus = num_online_cpus();
1157
	unsigned nofs_flag;
1158 1159 1160 1161 1162 1163
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1164
	wsm = btrfs_compress_op[type]->workspace_manager;
1165 1166 1167 1168 1169
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1170 1171

again:
1172 1173 1174
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1175
		list_del(workspace);
1176
		(*free_ws)--;
1177
		spin_unlock(ws_lock);
1178 1179 1180
		return workspace;

	}
1181
	if (atomic_read(total_ws) > cpus) {
1182 1183
		DEFINE_WAIT(wait);

1184 1185
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1186
		if (atomic_read(total_ws) > cpus && !*free_ws)
1187
			schedule();
1188
		finish_wait(ws_wait, &wait);
1189 1190
		goto again;
	}
1191
	atomic_inc(total_ws);
1192
	spin_unlock(ws_lock);
1193

1194 1195 1196 1197 1198 1199
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1200
	workspace = alloc_workspace(type, level);
1201 1202
	memalloc_nofs_restore(nofs_flag);

1203
	if (IS_ERR(workspace)) {
1204
		atomic_dec(total_ws);
1205
		wake_up(ws_wait);
1206 1207 1208 1209 1210 1211

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1212 1213 1214 1215
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1216
		 */
1217 1218 1219 1220 1221 1222
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1223
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1224 1225
			}
		}
1226
		goto again;
1227 1228 1229 1230
	}
	return workspace;
}

1231
static struct list_head *get_workspace(int type, int level)
1232
{
1233
	switch (type) {
1234
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1235
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1236
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1237 1238 1239 1240 1241 1242 1243 1244
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1245 1246
}

1247 1248 1249 1250
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1251
void btrfs_put_workspace(int type, struct list_head *ws)
1252
{
1253
	struct workspace_manager *wsm;
1254 1255 1256 1257 1258 1259
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1260
	wsm = btrfs_compress_op[type]->workspace_manager;
1261 1262 1263 1264 1265
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1266 1267

	spin_lock(ws_lock);
1268
	if (*free_ws <= num_online_cpus()) {
1269
		list_add(ws, idle_ws);
1270
		(*free_ws)++;
1271
		spin_unlock(ws_lock);
1272 1273
		goto wake;
	}
1274
	spin_unlock(ws_lock);
1275

1276
	free_workspace(type, ws);
1277
	atomic_dec(total_ws);
1278
wake:
1279
	cond_wake_up(ws_wait);
1280 1281
}

1282 1283
static void put_workspace(int type, struct list_head *ws)
{
1284
	switch (type) {
1285 1286 1287
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1288 1289 1290 1291 1292 1293 1294 1295
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1296 1297
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1314
/*
1315 1316
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1317
 *
1318 1319 1320 1321 1322
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1323 1324
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1325
 *
1326 1327
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1328 1329 1330
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1331 1332
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1333
 */
1334
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1335
			 u64 start, struct page **pages,
1336 1337
			 unsigned long *out_pages,
			 unsigned long *total_in,
1338
			 unsigned long *total_out)
1339
{
1340
	int type = btrfs_compress_type(type_level);
1341
	int level = btrfs_compress_level(type_level);
1342 1343 1344
	struct list_head *workspace;
	int ret;

1345
	level = btrfs_compress_set_level(type, level);
1346
	workspace = get_workspace(type, level);
1347 1348
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1349
	put_workspace(type, workspace);
1350 1351 1352
	return ret;
}

1353
static int btrfs_decompress_bio(struct compressed_bio *cb)
1354 1355 1356
{
	struct list_head *workspace;
	int ret;
1357
	int type = cb->compress_type;
1358

1359
	workspace = get_workspace(type, 0);
1360
	ret = compression_decompress_bio(workspace, cb);
1361
	put_workspace(type, workspace);
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1377
	workspace = get_workspace(type, 0);
1378 1379
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1380
	put_workspace(type, workspace);
1381

1382 1383 1384
	return ret;
}

1385 1386
void __init btrfs_init_compress(void)
{
1387 1388 1389 1390
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1391 1392
}

1393
void __cold btrfs_exit_compress(void)
1394
{
1395 1396 1397 1398
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1399
}
1400 1401

/*
1402
 * Copy decompressed data from working buffer to pages.
1403
 *
1404 1405 1406 1407 1408 1409
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1410
 *
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1430
 */
1431 1432
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1433
{
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1453

1454 1455 1456
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1457

1458 1459 1460 1461
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1462

1463
		/*
1464 1465
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1466
		 */
1467 1468 1469 1470
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		cur_offset += copy_len;
1471

1472 1473 1474 1475
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1476 1477 1478
	}
	return 1;
}
1479

1480 1481 1482
/*
 * Shannon Entropy calculation
 *
1483
 * Pure byte distribution analysis fails to determine compressibility of data.
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1547
 * Use 16 u32 counters for calculating new position in buf array
1548 1549 1550 1551 1552 1553
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1554
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1555
		       int num)
1556
{
1557 1558 1559 1560 1561 1562 1563 1564
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1565

1566 1567 1568 1569
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1570
	max_num = array[0].count;
1571
	for (i = 1; i < num; i++) {
1572
		buf_num = array[i].count;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1585
			buf_num = array[i].count;
1586 1587 1588 1589 1590 1591 1592 1593
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1594
			buf_num = array[i].count;
1595 1596 1597
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1598
			array_buf[new_addr] = array[i];
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1612
			buf_num = array_buf[i].count;
1613 1614 1615 1616 1617 1618 1619 1620
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1621
			buf_num = array_buf[i].count;
1622 1623 1624
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1625
			array[new_addr] = array_buf[i];
1626 1627 1628 1629
		}

		shift += RADIX_BASE;
	}
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1659
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1715 1716 1717 1718 1719 1720 1721 1722
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1753
		in_data = kmap_local_page(page);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1766
		kunmap_local(in_data);
1767 1768 1769 1770 1771 1772 1773 1774
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1792
	struct list_head *ws_list = get_workspace(0, 0);
1793
	struct heuristic_ws *ws;
1794 1795
	u32 i;
	u8 byte;
1796
	int ret = 0;
1797

1798 1799
	ws = list_entry(ws_list, struct heuristic_ws, list);

1800 1801
	heuristic_collect_sample(inode, start, end, ws);

1802 1803 1804 1805 1806
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1807 1808 1809 1810 1811
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1812 1813
	}

1814 1815 1816 1817 1818 1819
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1860
out:
1861
	put_workspace(0, ws_list);
1862 1863
	return ret;
}
1864

1865 1866 1867 1868 1869
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1870
{
1871 1872 1873 1874
	unsigned int level = 0;
	int ret;

	if (!type)
1875 1876
		return 0;

1877 1878 1879 1880 1881 1882
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1883 1884 1885 1886
	level = btrfs_compress_set_level(type, level);

	return level;
}