compression.c 41.8 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/bit_spinlock.h>
34
#include <linux/slab.h>
35
#include <linux/sched/mm.h>
36
#include <linux/log2.h>
C
Chris Mason 已提交
37 38 39 40 41 42 43 44 45 46
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

62
static int btrfs_decompress_bio(struct compressed_bio *cb);
63

64
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
65 66
				      unsigned long disk_size)
{
67
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
68

69
	return sizeof(struct compressed_bio) +
70
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
71 72
}

73
static int check_compressed_csum(struct btrfs_inode *inode,
74 75 76 77 78 79 80 81 82 83
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

84
	if (inode->flags & BTRFS_INODE_NODATASUM)
85 86 87 88 89 90
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

91
		kaddr = kmap_atomic(page);
92
		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
93
		btrfs_csum_final(csum, (u8 *)&csum);
94
		kunmap_atomic(kaddr);
95 96

		if (csum != *cb_sum) {
97
			btrfs_print_data_csum_error(inode, disk_start, csum,
98
					*cb_sum, cb->mirror_num);
99 100 101 102 103 104 105 106 107 108 109
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
110 111 112 113 114 115 116 117 118 119
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
120
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
121 122 123 124 125
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
126
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
127
	int ret = 0;
C
Chris Mason 已提交
128

129
	if (bio->bi_status)
C
Chris Mason 已提交
130 131 132 133 134
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
135
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
136 137
		goto out;

138 139 140 141 142 143 144 145
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

146 147 148 149 150 151 152
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

153
	inode = cb->inode;
154
	ret = check_compressed_csum(BTRFS_I(inode), cb,
155
				    (u64)bio->bi_iter.bi_sector << 9);
156 157 158
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
159 160 161
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
162 163
	ret = btrfs_decompress_bio(cb);

164
csum_failed:
C
Chris Mason 已提交
165 166 167 168 169 170 171 172
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
173
		put_page(page);
C
Chris Mason 已提交
174 175 176
	}

	/* do io completion on the original bio */
177
	if (cb->errors) {
C
Chris Mason 已提交
178
		bio_io_error(cb->orig_bio);
179
	} else {
180 181
		int i;
		struct bio_vec *bvec;
182 183 184 185 186

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
187
		ASSERT(!bio_flagged(bio, BIO_CLONED));
188
		bio_for_each_segment_all(bvec, cb->orig_bio, i)
189
			SetPageChecked(bvec->bv_page);
190

191
		bio_endio(cb->orig_bio);
192
	}
C
Chris Mason 已提交
193 194 195 196 197 198 199 200 201 202 203 204

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
205 206
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
207
{
208 209
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
210 211 212 213 214
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

215 216 217
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
218
	while (nr_pages > 0) {
C
Chris Mason 已提交
219
		ret = find_get_pages_contig(inode->i_mapping, index,
220 221
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
222 223 224 225 226 227
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
228 229
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
230
			end_page_writeback(pages[i]);
231
			put_page(pages[i]);
C
Chris Mason 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
247
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
248 249 250 251 252 253 254
{
	struct extent_io_tree *tree;
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

255
	if (bio->bi_status)
C
Chris Mason 已提交
256 257 258 259 260
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
261
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
262 263 264 265 266 267 268
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
	tree = &BTRFS_I(inode)->io_tree;
C
Chris Mason 已提交
269
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
C
Chris Mason 已提交
270 271 272
	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
					 cb->start,
					 cb->start + cb->len - 1,
273
					 NULL,
274 275
					 bio->bi_status ?
					 BLK_STS_OK : BLK_STS_NOTSUPP);
C
Chris Mason 已提交
276
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
277

278
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
279 280 281 282 283 284 285 286 287 288
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
289
		put_page(page);
C
Chris Mason 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
308
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
309 310 311
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
312 313
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
314
{
315
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
316 317 318 319
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
320
	int pg_index = 0;
C
Chris Mason 已提交
321 322 323
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
324
	blk_status_t ret;
325
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
326

327
	WARN_ON(start & ((u64)PAGE_SIZE - 1));
328
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
329
	if (!cb)
330
		return BLK_STS_RESOURCE;
331
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
332 333 334 335
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
336
	cb->mirror_num = 0;
C
Chris Mason 已提交
337 338 339 340 341
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

342
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
343

344
	bio = btrfs_bio_alloc(bdev, first_byte);
345
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
346 347
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
348
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
349 350 351

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
352
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
353 354
		int submit = 0;

355
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
356
		page->mapping = inode->i_mapping;
357
		if (bio->bi_iter.bi_size)
358
			submit = io_tree->ops->merge_bio_hook(page, 0,
359
							   PAGE_SIZE,
C
Chris Mason 已提交
360 361
							   bio, 0);

C
Chris Mason 已提交
362
		page->mapping = NULL;
363
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
364
		    PAGE_SIZE) {
C
Chris Mason 已提交
365 366
			bio_get(bio);

367 368 369 370 371 372
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
373
			refcount_inc(&cb->pending_bios);
374 375
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
376
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
377

378
			if (!skip_sum) {
379
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
380
				BUG_ON(ret); /* -ENOMEM */
381
			}
382

383
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
384
			if (ret) {
385
				bio->bi_status = ret;
386 387
				bio_endio(bio);
			}
C
Chris Mason 已提交
388 389 390

			bio_put(bio);

391
			bio = btrfs_bio_alloc(bdev, first_byte);
392
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
393 394
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
395
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
396
		}
397
		if (bytes_left < PAGE_SIZE) {
398
			btrfs_info(fs_info,
399
					"bytes left %lu compress len %lu nr %lu",
400 401
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
402 403
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
404
		cond_resched();
C
Chris Mason 已提交
405 406 407
	}
	bio_get(bio);

408
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
409
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
410

411
	if (!skip_sum) {
412
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
413
		BUG_ON(ret); /* -ENOMEM */
414
	}
415

416
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
417
	if (ret) {
418
		bio->bi_status = ret;
419 420
		bio_endio(bio);
	}
C
Chris Mason 已提交
421 422 423 424 425

	bio_put(bio);
	return 0;
}

426 427 428 429 430 431 432
static u64 bio_end_offset(struct bio *bio)
{
	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

433 434 435 436 437
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
438
	unsigned long pg_index;
439 440 441 442 443 444 445 446 447 448 449 450
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

451
	last_offset = bio_end_offset(cb->orig_bio);
452 453 454 455 456 457
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

458
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
459

C
Chris Mason 已提交
460
	while (last_offset < compressed_end) {
461
		pg_index = last_offset >> PAGE_SHIFT;
462

463
		if (pg_index > end_index)
464 465 466
			break;

		rcu_read_lock();
467
		page = radix_tree_lookup(&mapping->page_tree, pg_index);
468
		rcu_read_unlock();
469
		if (page && !radix_tree_exceptional_entry(page)) {
470 471 472 473 474 475
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

476 477
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
478 479 480
		if (!page)
			break;

481
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
482
			put_page(page);
483 484 485
			goto next;
		}

486
		end = last_offset + PAGE_SIZE - 1;
487 488 489 490 491 492
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
493
		lock_extent(tree, last_offset, end);
494
		read_lock(&em_tree->lock);
495
		em = lookup_extent_mapping(em_tree, last_offset,
496
					   PAGE_SIZE);
497
		read_unlock(&em_tree->lock);
498 499

		if (!em || last_offset < em->start ||
500
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
501
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
502
			free_extent_map(em);
503
			unlock_extent(tree, last_offset, end);
504
			unlock_page(page);
505
			put_page(page);
506 507 508 509 510 511
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
512
			size_t zero_offset = isize & (PAGE_SIZE - 1);
513 514 515

			if (zero_offset) {
				int zeros;
516
				zeros = PAGE_SIZE - zero_offset;
517
				userpage = kmap_atomic(page);
518 519
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
520
				kunmap_atomic(userpage);
521 522 523 524
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
525
				   PAGE_SIZE, 0);
526

527
		if (ret == PAGE_SIZE) {
528
			nr_pages++;
529
			put_page(page);
530
		} else {
531
			unlock_extent(tree, last_offset, end);
532
			unlock_page(page);
533
			put_page(page);
534 535 536
			break;
		}
next:
537
		last_offset += PAGE_SIZE;
538 539 540 541
	}
	return 0;
}

C
Chris Mason 已提交
542 543 544 545 546
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
547
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
548 549 550 551 552
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
553
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
554 555
				 int mirror_num, unsigned long bio_flags)
{
556
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
557 558 559 560 561
	struct extent_io_tree *tree;
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
562
	unsigned long pg_index;
C
Chris Mason 已提交
563 564 565
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
566
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
567 568
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
569
	struct extent_map *em;
570
	blk_status_t ret = BLK_STS_RESOURCE;
571
	int faili = 0;
572
	u32 *sums;
C
Chris Mason 已提交
573 574 575 576 577

	tree = &BTRFS_I(inode)->io_tree;
	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
578
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
579 580
	em = lookup_extent_mapping(em_tree,
				   page_offset(bio->bi_io_vec->bv_page),
581
				   PAGE_SIZE);
582
	read_unlock(&em_tree->lock);
583
	if (!em)
584
		return BLK_STS_IOERR;
C
Chris Mason 已提交
585

586
	compressed_len = em->block_len;
587
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
588 589 590
	if (!cb)
		goto out;

591
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
592 593
	cb->errors = 0;
	cb->inode = inode;
594 595
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
596

597
	cb->start = em->orig_start;
598 599
	em_len = em->len;
	em_start = em->start;
600

C
Chris Mason 已提交
601
	free_extent_map(em);
602
	em = NULL;
C
Chris Mason 已提交
603

C
Christoph Hellwig 已提交
604
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
605
	cb->compressed_len = compressed_len;
606
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
607 608
	cb->orig_bio = bio;

609
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
610
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
611
				       GFP_NOFS);
612 613 614
	if (!cb->compressed_pages)
		goto fail1;

615
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
616

617 618
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
619
							      __GFP_HIGHMEM);
620 621
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
622
			ret = BLK_STS_RESOURCE;
623
			goto fail2;
624
		}
C
Chris Mason 已提交
625
	}
626
	faili = nr_pages - 1;
C
Chris Mason 已提交
627 628
	cb->nr_pages = nr_pages;

629
	add_ra_bio_pages(inode, em_start + em_len, cb);
630 631

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
632
	cb->len = bio->bi_iter.bi_size;
633

634
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
M
Mike Christie 已提交
635
	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
C
Chris Mason 已提交
636 637
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
638
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
639

640
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
641 642
		int submit = 0;

643
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
644
		page->mapping = inode->i_mapping;
645
		page->index = em_start >> PAGE_SHIFT;
646

647
		if (comp_bio->bi_iter.bi_size)
648
			submit = tree->ops->merge_bio_hook(page, 0,
649
							PAGE_SIZE,
C
Chris Mason 已提交
650 651
							comp_bio, 0);

C
Chris Mason 已提交
652
		page->mapping = NULL;
653
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
654
		    PAGE_SIZE) {
C
Chris Mason 已提交
655 656
			bio_get(comp_bio);

657 658
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
659
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
660

661 662 663 664 665 666
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
667
			refcount_inc(&cb->pending_bios);
668

669
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
670 671
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
							    sums);
672
				BUG_ON(ret); /* -ENOMEM */
673
			}
674
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
675
					     fs_info->sectorsize);
676

677
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
678
			if (ret) {
679
				comp_bio->bi_status = ret;
680 681
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
682 683 684

			bio_put(comp_bio);

685
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
M
Mike Christie 已提交
686
			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
687 688 689
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

690
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
691
		}
692
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
693 694 695
	}
	bio_get(comp_bio);

696
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
697
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
698

699
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
700
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
701
		BUG_ON(ret); /* -ENOMEM */
702
	}
703

704
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
705
	if (ret) {
706
		comp_bio->bi_status = ret;
707 708
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
709 710 711

	bio_put(comp_bio);
	return 0;
712 713

fail2:
714 715 716 717
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
718 719 720 721 722 723 724

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
725
}
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
762 763

struct heuristic_ws {
764 765
	/* Partial copy of input data */
	u8 *sample;
766
	u32 sample_size;
767 768
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
769 770
	/* Sorting buffer */
	struct bucket_item *bucket_b;
771 772 773 774 775 776 777 778 779
	struct list_head list;
};

static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

780 781
	kvfree(workspace->sample);
	kfree(workspace->bucket);
782
	kfree(workspace->bucket_b);
783 784 785 786 787 788 789 790 791 792 793
	kfree(workspace);
}

static struct list_head *alloc_heuristic_ws(void)
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

794 795 796 797 798 799 800
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
801

802 803 804 805
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

806
	INIT_LIST_HEAD(&ws->list);
807
	return &ws->list;
808 809 810
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
811 812 813
}

struct workspaces_list {
814 815
	struct list_head idle_ws;
	spinlock_t ws_lock;
816 817 818 819 820
	/* Number of free workspaces */
	int free_ws;
	/* Total number of allocated workspaces */
	atomic_t total_ws;
	/* Waiters for a free workspace */
821
	wait_queue_head_t ws_wait;
822 823 824 825 826
};

static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];

static struct workspaces_list btrfs_heuristic_ws;
827

828
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
829
	&btrfs_zlib_compress,
L
Li Zefan 已提交
830
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
831
	&btrfs_zstd_compress,
832 833
};

834
void __init btrfs_init_compress(void)
835
{
836
	struct list_head *workspace;
837 838
	int i;

839 840 841 842
	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
843

844 845 846 847 848 849 850 851 852 853 854
	workspace = alloc_heuristic_ws();
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
	} else {
		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
		btrfs_heuristic_ws.free_ws = 1;
		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
	}

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
855 856
		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
857
		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
858
		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
859 860 861 862 863 864 865

		/*
		 * Preallocate one workspace for each compression type so
		 * we can guarantee forward progress in the worst case
		 */
		workspace = btrfs_compress_op[i]->alloc_workspace();
		if (IS_ERR(workspace)) {
866
			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
867 868 869 870 871
		} else {
			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
			btrfs_comp_ws[i].free_ws = 1;
			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
		}
872 873 874 875
	}
}

/*
876 877 878 879
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
880
 */
881
static struct list_head *__find_workspace(int type, bool heuristic)
882 883 884 885
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
	int idx = type - 1;
886
	unsigned nofs_flag;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
906 907

again:
908 909 910
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
911
		list_del(workspace);
912
		(*free_ws)--;
913
		spin_unlock(ws_lock);
914 915 916
		return workspace;

	}
917
	if (atomic_read(total_ws) > cpus) {
918 919
		DEFINE_WAIT(wait);

920 921
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
922
		if (atomic_read(total_ws) > cpus && !*free_ws)
923
			schedule();
924
		finish_wait(ws_wait, &wait);
925 926
		goto again;
	}
927
	atomic_inc(total_ws);
928
	spin_unlock(ws_lock);
929

930 931 932 933 934 935
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
936 937 938 939
	if (heuristic)
		workspace = alloc_heuristic_ws();
	else
		workspace = btrfs_compress_op[idx]->alloc_workspace();
940 941
	memalloc_nofs_restore(nofs_flag);

942
	if (IS_ERR(workspace)) {
943
		atomic_dec(total_ws);
944
		wake_up(ws_wait);
945 946 947 948 949 950

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
951 952 953 954
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
955
		 */
956 957 958 959 960 961
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
962
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
963 964
			}
		}
965
		goto again;
966 967 968 969
	}
	return workspace;
}

970 971 972 973 974
static struct list_head *find_workspace(int type)
{
	return __find_workspace(type, false);
}

975 976 977 978
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
979 980
static void __free_workspace(int type, struct list_head *workspace,
			     bool heuristic)
981 982
{
	int idx = type - 1;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
1002 1003

	spin_lock(ws_lock);
1004
	if (*free_ws <= num_online_cpus()) {
1005
		list_add(workspace, idle_ws);
1006
		(*free_ws)++;
1007
		spin_unlock(ws_lock);
1008 1009
		goto wake;
	}
1010
	spin_unlock(ws_lock);
1011

1012 1013 1014 1015
	if (heuristic)
		free_heuristic_ws(workspace);
	else
		btrfs_compress_op[idx]->free_workspace(workspace);
1016
	atomic_dec(total_ws);
1017
wake:
1018 1019 1020
	/*
	 * Make sure counter is updated before we wake up waiters.
	 */
1021
	smp_mb();
1022 1023
	if (waitqueue_active(ws_wait))
		wake_up(ws_wait);
1024 1025
}

1026 1027 1028 1029 1030
static void free_workspace(int type, struct list_head *ws)
{
	return __free_workspace(type, ws, false);
}

1031 1032 1033 1034 1035 1036 1037 1038
/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct list_head *workspace;
	int i;

1039 1040 1041 1042 1043 1044 1045
	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
		workspace = btrfs_heuristic_ws.idle_ws.next;
		list_del(workspace);
		free_heuristic_ws(workspace);
		atomic_dec(&btrfs_heuristic_ws.total_ws);
	}

1046
	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1047 1048
		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
			workspace = btrfs_comp_ws[i].idle_ws.next;
1049 1050
			list_del(workspace);
			btrfs_compress_op[i]->free_workspace(workspace);
1051
			atomic_dec(&btrfs_comp_ws[i].total_ws);
1052 1053 1054 1055 1056
		}
	}
}

/*
1057 1058
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1059
 *
1060 1061 1062 1063 1064
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1065 1066
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1067
 *
1068 1069
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1070 1071 1072
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1073 1074
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1075
 *
1076
 * @max_out tells us the max number of bytes that we're allowed to
1077 1078
 * stuff into pages
 */
1079
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1080
			 u64 start, struct page **pages,
1081 1082
			 unsigned long *out_pages,
			 unsigned long *total_in,
1083
			 unsigned long *total_out)
1084 1085 1086
{
	struct list_head *workspace;
	int ret;
1087
	int type = type_level & 0xF;
1088 1089 1090

	workspace = find_workspace(type);

1091
	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1092
	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1093
						      start, pages,
1094
						      out_pages,
1095
						      total_in, total_out);
1096 1097 1098 1099 1100 1101 1102 1103 1104
	free_workspace(type, workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1105
 * orig_bio contains the pages from the file that we want to decompress into
1106 1107 1108 1109 1110 1111 1112 1113
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1114
static int btrfs_decompress_bio(struct compressed_bio *cb)
1115 1116 1117
{
	struct list_head *workspace;
	int ret;
1118
	int type = cb->compress_type;
1119 1120

	workspace = find_workspace(type);
1121
	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1122
	free_workspace(type, workspace);
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);

	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
						  dest_page, start_byte,
						  srclen, destlen);

	free_workspace(type, workspace);
	return ret;
}

1148
void btrfs_exit_compress(void)
1149 1150 1151
{
	free_workspaces();
}
1152 1153 1154 1155 1156 1157 1158 1159

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1160
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1161
			      unsigned long total_out, u64 disk_start,
1162
			      struct bio *bio)
1163 1164 1165 1166
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1167
	unsigned long prev_start_byte;
1168 1169 1170
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1171
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1172 1173 1174 1175 1176

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1177
	start_byte = page_offset(bvec.bv_page) - disk_start;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1197 1198
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1199
		bytes = min(bytes, working_bytes);
1200 1201 1202

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1203
		kunmap_atomic(kaddr);
1204
		flush_dcache_page(bvec.bv_page);
1205 1206 1207 1208 1209 1210

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1211 1212 1213 1214
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1215
		prev_start_byte = start_byte;
1216
		start_byte = page_offset(bvec.bv_page) - disk_start;
1217

1218
		/*
1219 1220 1221 1222
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1223
		 */
1224 1225 1226 1227 1228 1229 1230
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1243 1244 1245 1246 1247
		}
	}

	return 1;
}
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Shannon Entropy calculation
 *
 * Pure byte distribution analysis fails to determine compressiability of data.
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
 * Use 16 u32 counters for calculating new possition in buf array
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 * @get4bits  - function to get 4 bits from number at specified offset
 */
1324 1325
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
		       int num,
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		       u8 (*get4bits)(u64 num, int shift))
{
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;

	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1341
	max_num = array[0].count;
1342
	for (i = 1; i < num; i++) {
1343
		buf_num = array[i].count;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1356
			buf_num = array[i].count;
1357 1358 1359 1360 1361 1362 1363 1364
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1365
			buf_num = array[i].count;
1366 1367 1368
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1369
			array_buf[new_addr] = array[i];
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1383
			buf_num = array_buf[i].count;
1384 1385 1386 1387 1388 1389 1390 1391
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1392
			buf_num = array_buf[i].count;
1393 1394 1395
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1396
			array[new_addr] = array_buf[i];
1397 1398 1399 1400
		}

		shift += RADIX_BASE;
	}
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1430
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE, get4bits);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1486 1487 1488 1489 1490 1491 1492 1493
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1563 1564
	struct list_head *ws_list = __find_workspace(0, true);
	struct heuristic_ws *ws;
1565 1566
	u32 i;
	u8 byte;
1567
	int ret = 0;
1568

1569 1570
	ws = list_entry(ws_list, struct heuristic_ws, list);

1571 1572
	heuristic_collect_sample(inode, start, end, ws);

1573 1574 1575 1576 1577
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1578 1579 1580 1581 1582
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1583 1584
	}

1585 1586 1587 1588 1589 1590
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1631
out:
1632
	__free_workspace(0, ws_list, true);
1633 1634
	return ret;
}
1635 1636 1637 1638 1639 1640

unsigned int btrfs_compress_str2level(const char *str)
{
	if (strncmp(str, "zlib", 4) != 0)
		return 0;

1641 1642 1643
	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
		return str[5] - '0';
1644

1645
	return BTRFS_ZLIB_DEFAULT_LEVEL;
1646
}