compression.c 34.2 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/bit_spinlock.h>
34
#include <linux/slab.h>
35
#include <linux/sched/mm.h>
C
Chris Mason 已提交
36 37 38 39 40 41 42 43 44 45
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

46
static int btrfs_decompress_bio(struct compressed_bio *cb);
47

48
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
49 50
				      unsigned long disk_size)
{
51
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
52

53
	return sizeof(struct compressed_bio) +
54
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
55 56
}

57
static int check_compressed_csum(struct btrfs_inode *inode,
58 59 60 61 62 63 64 65 66 67
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

68
	if (inode->flags & BTRFS_INODE_NODATASUM)
69 70 71 72 73 74
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

75
		kaddr = kmap_atomic(page);
76
		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
77
		btrfs_csum_final(csum, (u8 *)&csum);
78
		kunmap_atomic(kaddr);
79 80

		if (csum != *cb_sum) {
81
			btrfs_print_data_csum_error(inode, disk_start, csum,
82
					*cb_sum, cb->mirror_num);
83 84 85 86 87 88 89 90 91 92 93
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
94 95 96 97 98 99 100 101 102 103
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
104
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
105 106 107 108 109
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
110
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
111
	int ret = 0;
C
Chris Mason 已提交
112

113
	if (bio->bi_status)
C
Chris Mason 已提交
114 115 116 117 118
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
119
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
120 121
		goto out;

122 123 124 125 126 127 128 129
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

130 131 132 133 134 135 136
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

137
	inode = cb->inode;
138
	ret = check_compressed_csum(BTRFS_I(inode), cb,
139
				    (u64)bio->bi_iter.bi_sector << 9);
140 141 142
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
143 144 145
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
146 147
	ret = btrfs_decompress_bio(cb);

148
csum_failed:
C
Chris Mason 已提交
149 150 151 152 153 154 155 156
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
157
		put_page(page);
C
Chris Mason 已提交
158 159 160
	}

	/* do io completion on the original bio */
161
	if (cb->errors) {
C
Chris Mason 已提交
162
		bio_io_error(cb->orig_bio);
163
	} else {
164 165
		int i;
		struct bio_vec *bvec;
166 167 168 169 170

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
171
		ASSERT(!bio_flagged(bio, BIO_CLONED));
172
		bio_for_each_segment_all(bvec, cb->orig_bio, i)
173
			SetPageChecked(bvec->bv_page);
174

175
		bio_endio(cb->orig_bio);
176
	}
C
Chris Mason 已提交
177 178 179 180 181 182 183 184 185 186 187 188

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
189 190
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
191
{
192 193
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
194 195 196 197 198
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

199 200 201
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
202
	while (nr_pages > 0) {
C
Chris Mason 已提交
203
		ret = find_get_pages_contig(inode->i_mapping, index,
204 205
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
206 207 208 209 210 211
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
212 213
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
214
			end_page_writeback(pages[i]);
215
			put_page(pages[i]);
C
Chris Mason 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
231
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
232 233 234 235 236 237 238
{
	struct extent_io_tree *tree;
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

239
	if (bio->bi_status)
C
Chris Mason 已提交
240 241 242 243 244
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
245
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
246 247 248 249 250 251 252
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
	tree = &BTRFS_I(inode)->io_tree;
C
Chris Mason 已提交
253
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
C
Chris Mason 已提交
254 255 256
	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
					 cb->start,
					 cb->start + cb->len - 1,
257
					 NULL,
258 259
					 bio->bi_status ?
					 BLK_STS_OK : BLK_STS_NOTSUPP);
C
Chris Mason 已提交
260
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
261

262
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
263 264 265 266 267 268 269 270 271 272
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
273
		put_page(page);
C
Chris Mason 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
292
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
293 294 295 296 297
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
				 unsigned long nr_pages)
{
298
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
299 300 301 302
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
303
	int pg_index = 0;
C
Chris Mason 已提交
304 305 306
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
307
	blk_status_t ret;
308
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
309

310
	WARN_ON(start & ((u64)PAGE_SIZE - 1));
311
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
312
	if (!cb)
313
		return BLK_STS_RESOURCE;
314
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
315 316 317 318
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
319
	cb->mirror_num = 0;
C
Chris Mason 已提交
320 321 322 323 324
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

325
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
326

327
	bio = btrfs_bio_alloc(bdev, first_byte);
M
Mike Christie 已提交
328
	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
C
Chris Mason 已提交
329 330
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
331
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
332 333 334

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
335
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
336 337
		int submit = 0;

338
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
339
		page->mapping = inode->i_mapping;
340
		if (bio->bi_iter.bi_size)
341
			submit = io_tree->ops->merge_bio_hook(page, 0,
342
							   PAGE_SIZE,
C
Chris Mason 已提交
343 344
							   bio, 0);

C
Chris Mason 已提交
345
		page->mapping = NULL;
346
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
347
		    PAGE_SIZE) {
C
Chris Mason 已提交
348 349
			bio_get(bio);

350 351 352 353 354 355
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
356
			refcount_inc(&cb->pending_bios);
357 358
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
359
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
360

361
			if (!skip_sum) {
362
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
363
				BUG_ON(ret); /* -ENOMEM */
364
			}
365

366
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
367
			if (ret) {
368
				bio->bi_status = ret;
369 370
				bio_endio(bio);
			}
C
Chris Mason 已提交
371 372 373

			bio_put(bio);

374
			bio = btrfs_bio_alloc(bdev, first_byte);
M
Mike Christie 已提交
375
			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
C
Chris Mason 已提交
376 377
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
378
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
379
		}
380
		if (bytes_left < PAGE_SIZE) {
381
			btrfs_info(fs_info,
382
					"bytes left %lu compress len %lu nr %lu",
383 384
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
385 386
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
387
		cond_resched();
C
Chris Mason 已提交
388 389 390
	}
	bio_get(bio);

391
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
392
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
393

394
	if (!skip_sum) {
395
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
396
		BUG_ON(ret); /* -ENOMEM */
397
	}
398

399
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
400
	if (ret) {
401
		bio->bi_status = ret;
402 403
		bio_endio(bio);
	}
C
Chris Mason 已提交
404 405 406 407 408

	bio_put(bio);
	return 0;
}

409 410 411 412 413 414 415
static u64 bio_end_offset(struct bio *bio)
{
	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

416 417 418 419 420
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
421
	unsigned long pg_index;
422 423 424 425 426 427 428 429 430 431 432 433
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

434
	last_offset = bio_end_offset(cb->orig_bio);
435 436 437 438 439 440
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

441
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
442

C
Chris Mason 已提交
443
	while (last_offset < compressed_end) {
444
		pg_index = last_offset >> PAGE_SHIFT;
445

446
		if (pg_index > end_index)
447 448 449
			break;

		rcu_read_lock();
450
		page = radix_tree_lookup(&mapping->page_tree, pg_index);
451
		rcu_read_unlock();
452
		if (page && !radix_tree_exceptional_entry(page)) {
453 454 455 456 457 458
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

459 460
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
461 462 463
		if (!page)
			break;

464
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
465
			put_page(page);
466 467 468
			goto next;
		}

469
		end = last_offset + PAGE_SIZE - 1;
470 471 472 473 474 475
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
476
		lock_extent(tree, last_offset, end);
477
		read_lock(&em_tree->lock);
478
		em = lookup_extent_mapping(em_tree, last_offset,
479
					   PAGE_SIZE);
480
		read_unlock(&em_tree->lock);
481 482

		if (!em || last_offset < em->start ||
483
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
484
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
485
			free_extent_map(em);
486
			unlock_extent(tree, last_offset, end);
487
			unlock_page(page);
488
			put_page(page);
489 490 491 492 493 494
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
495
			size_t zero_offset = isize & (PAGE_SIZE - 1);
496 497 498

			if (zero_offset) {
				int zeros;
499
				zeros = PAGE_SIZE - zero_offset;
500
				userpage = kmap_atomic(page);
501 502
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
503
				kunmap_atomic(userpage);
504 505 506 507
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
508
				   PAGE_SIZE, 0);
509

510
		if (ret == PAGE_SIZE) {
511
			nr_pages++;
512
			put_page(page);
513
		} else {
514
			unlock_extent(tree, last_offset, end);
515
			unlock_page(page);
516
			put_page(page);
517 518 519
			break;
		}
next:
520
		last_offset += PAGE_SIZE;
521 522 523 524
	}
	return 0;
}

C
Chris Mason 已提交
525 526 527 528 529
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
530
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
531 532 533 534 535
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
536
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
537 538
				 int mirror_num, unsigned long bio_flags)
{
539
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
540 541 542 543 544
	struct extent_io_tree *tree;
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
545
	unsigned long pg_index;
C
Chris Mason 已提交
546 547 548
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
549
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
550 551
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
552
	struct extent_map *em;
553
	blk_status_t ret = BLK_STS_RESOURCE;
554
	int faili = 0;
555
	u32 *sums;
C
Chris Mason 已提交
556 557 558 559 560

	tree = &BTRFS_I(inode)->io_tree;
	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
561
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
562 563
	em = lookup_extent_mapping(em_tree,
				   page_offset(bio->bi_io_vec->bv_page),
564
				   PAGE_SIZE);
565
	read_unlock(&em_tree->lock);
566
	if (!em)
567
		return BLK_STS_IOERR;
C
Chris Mason 已提交
568

569
	compressed_len = em->block_len;
570
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
571 572 573
	if (!cb)
		goto out;

574
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
575 576
	cb->errors = 0;
	cb->inode = inode;
577 578
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
579

580
	cb->start = em->orig_start;
581 582
	em_len = em->len;
	em_start = em->start;
583

C
Chris Mason 已提交
584
	free_extent_map(em);
585
	em = NULL;
C
Chris Mason 已提交
586

C
Christoph Hellwig 已提交
587
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
588
	cb->compressed_len = compressed_len;
589
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
590 591
	cb->orig_bio = bio;

592
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
593
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
594
				       GFP_NOFS);
595 596 597
	if (!cb->compressed_pages)
		goto fail1;

598
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
599

600 601
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
602
							      __GFP_HIGHMEM);
603 604
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
605
			ret = BLK_STS_RESOURCE;
606
			goto fail2;
607
		}
C
Chris Mason 已提交
608
	}
609
	faili = nr_pages - 1;
C
Chris Mason 已提交
610 611
	cb->nr_pages = nr_pages;

612
	add_ra_bio_pages(inode, em_start + em_len, cb);
613 614

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
615
	cb->len = bio->bi_iter.bi_size;
616

617
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
M
Mike Christie 已提交
618
	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
C
Chris Mason 已提交
619 620
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
621
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
622

623
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
624 625
		int submit = 0;

626
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
627
		page->mapping = inode->i_mapping;
628
		page->index = em_start >> PAGE_SHIFT;
629

630
		if (comp_bio->bi_iter.bi_size)
631
			submit = tree->ops->merge_bio_hook(page, 0,
632
							PAGE_SIZE,
C
Chris Mason 已提交
633 634
							comp_bio, 0);

C
Chris Mason 已提交
635
		page->mapping = NULL;
636
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
637
		    PAGE_SIZE) {
C
Chris Mason 已提交
638 639
			bio_get(comp_bio);

640 641
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
642
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
643

644 645 646 647 648 649
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
650
			refcount_inc(&cb->pending_bios);
651

652
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
653 654
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
							    sums);
655
				BUG_ON(ret); /* -ENOMEM */
656
			}
657
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
658
					     fs_info->sectorsize);
659

660
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
661
			if (ret) {
662
				comp_bio->bi_status = ret;
663 664
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
665 666 667

			bio_put(comp_bio);

668
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
M
Mike Christie 已提交
669
			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
670 671 672
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

673
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
674
		}
675
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
676 677 678
	}
	bio_get(comp_bio);

679
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
680
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
681

682
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
683
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
684
		BUG_ON(ret); /* -ENOMEM */
685
	}
686

687
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
688
	if (ret) {
689
		comp_bio->bi_status = ret;
690 691
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
692 693 694

	bio_put(comp_bio);
	return 0;
695 696

fail2:
697 698 699 700
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
701 702 703 704 705 706 707

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
708
}
709

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
745 746

struct heuristic_ws {
747 748
	/* Partial copy of input data */
	u8 *sample;
749
	u32 sample_size;
750 751
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
752 753 754 755 756 757 758 759 760
	struct list_head list;
};

static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

761 762
	kvfree(workspace->sample);
	kfree(workspace->bucket);
763 764 765 766 767 768 769 770 771 772 773
	kfree(workspace);
}

static struct list_head *alloc_heuristic_ws(void)
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

774 775 776 777 778 779 780
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
781

782
	INIT_LIST_HEAD(&ws->list);
783
	return &ws->list;
784 785 786
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
787 788 789
}

struct workspaces_list {
790 791
	struct list_head idle_ws;
	spinlock_t ws_lock;
792 793 794 795 796
	/* Number of free workspaces */
	int free_ws;
	/* Total number of allocated workspaces */
	atomic_t total_ws;
	/* Waiters for a free workspace */
797
	wait_queue_head_t ws_wait;
798 799 800 801 802
};

static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];

static struct workspaces_list btrfs_heuristic_ws;
803

804
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
805
	&btrfs_zlib_compress,
L
Li Zefan 已提交
806
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
807
	&btrfs_zstd_compress,
808 809
};

810
void __init btrfs_init_compress(void)
811
{
812
	struct list_head *workspace;
813 814
	int i;

815 816 817 818
	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
819

820 821 822 823 824 825 826 827 828 829 830
	workspace = alloc_heuristic_ws();
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
	} else {
		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
		btrfs_heuristic_ws.free_ws = 1;
		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
	}

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
831 832
		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
833
		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
834
		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
835 836 837 838 839 840 841

		/*
		 * Preallocate one workspace for each compression type so
		 * we can guarantee forward progress in the worst case
		 */
		workspace = btrfs_compress_op[i]->alloc_workspace();
		if (IS_ERR(workspace)) {
842
			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
843 844 845 846 847
		} else {
			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
			btrfs_comp_ws[i].free_ws = 1;
			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
		}
848 849 850 851
	}
}

/*
852 853 854 855
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
856
 */
857
static struct list_head *__find_workspace(int type, bool heuristic)
858 859 860 861
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
	int idx = type - 1;
862
	unsigned nofs_flag;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
882 883

again:
884 885 886
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
887
		list_del(workspace);
888
		(*free_ws)--;
889
		spin_unlock(ws_lock);
890 891 892
		return workspace;

	}
893
	if (atomic_read(total_ws) > cpus) {
894 895
		DEFINE_WAIT(wait);

896 897
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
898
		if (atomic_read(total_ws) > cpus && !*free_ws)
899
			schedule();
900
		finish_wait(ws_wait, &wait);
901 902
		goto again;
	}
903
	atomic_inc(total_ws);
904
	spin_unlock(ws_lock);
905

906 907 908 909 910 911
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
912 913 914 915
	if (heuristic)
		workspace = alloc_heuristic_ws();
	else
		workspace = btrfs_compress_op[idx]->alloc_workspace();
916 917
	memalloc_nofs_restore(nofs_flag);

918
	if (IS_ERR(workspace)) {
919
		atomic_dec(total_ws);
920
		wake_up(ws_wait);
921 922 923 924 925 926

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
927 928 929 930
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
931
		 */
932 933 934 935 936 937
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
938
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
939 940
			}
		}
941
		goto again;
942 943 944 945
	}
	return workspace;
}

946 947 948 949 950
static struct list_head *find_workspace(int type)
{
	return __find_workspace(type, false);
}

951 952 953 954
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
955 956
static void __free_workspace(int type, struct list_head *workspace,
			     bool heuristic)
957 958
{
	int idx = type - 1;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
978 979

	spin_lock(ws_lock);
980
	if (*free_ws <= num_online_cpus()) {
981
		list_add(workspace, idle_ws);
982
		(*free_ws)++;
983
		spin_unlock(ws_lock);
984 985
		goto wake;
	}
986
	spin_unlock(ws_lock);
987

988 989 990 991
	if (heuristic)
		free_heuristic_ws(workspace);
	else
		btrfs_compress_op[idx]->free_workspace(workspace);
992
	atomic_dec(total_ws);
993
wake:
994 995 996
	/*
	 * Make sure counter is updated before we wake up waiters.
	 */
997
	smp_mb();
998 999
	if (waitqueue_active(ws_wait))
		wake_up(ws_wait);
1000 1001
}

1002 1003 1004 1005 1006
static void free_workspace(int type, struct list_head *ws)
{
	return __free_workspace(type, ws, false);
}

1007 1008 1009 1010 1011 1012 1013 1014
/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct list_head *workspace;
	int i;

1015 1016 1017 1018 1019 1020 1021
	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
		workspace = btrfs_heuristic_ws.idle_ws.next;
		list_del(workspace);
		free_heuristic_ws(workspace);
		atomic_dec(&btrfs_heuristic_ws.total_ws);
	}

1022
	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1023 1024
		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
			workspace = btrfs_comp_ws[i].idle_ws.next;
1025 1026
			list_del(workspace);
			btrfs_compress_op[i]->free_workspace(workspace);
1027
			atomic_dec(&btrfs_comp_ws[i].total_ws);
1028 1029 1030 1031 1032
		}
	}
}

/*
1033 1034
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1035
 *
1036 1037 1038 1039 1040
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1041 1042
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1043
 *
1044 1045
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1046 1047 1048
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1049 1050
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1051
 *
1052
 * @max_out tells us the max number of bytes that we're allowed to
1053 1054
 * stuff into pages
 */
1055
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1056
			 u64 start, struct page **pages,
1057 1058
			 unsigned long *out_pages,
			 unsigned long *total_in,
1059
			 unsigned long *total_out)
1060 1061 1062
{
	struct list_head *workspace;
	int ret;
1063
	int type = type_level & 0xF;
1064 1065 1066

	workspace = find_workspace(type);

1067
	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1068
	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1069
						      start, pages,
1070
						      out_pages,
1071
						      total_in, total_out);
1072 1073 1074 1075 1076 1077 1078 1079 1080
	free_workspace(type, workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1081
 * orig_bio contains the pages from the file that we want to decompress into
1082 1083 1084 1085 1086 1087 1088 1089
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1090
static int btrfs_decompress_bio(struct compressed_bio *cb)
1091 1092 1093
{
	struct list_head *workspace;
	int ret;
1094
	int type = cb->compress_type;
1095 1096

	workspace = find_workspace(type);
1097
	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1098
	free_workspace(type, workspace);
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);

	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
						  dest_page, start_byte,
						  srclen, destlen);

	free_workspace(type, workspace);
	return ret;
}

1124
void btrfs_exit_compress(void)
1125 1126 1127
{
	free_workspaces();
}
1128 1129 1130 1131 1132 1133 1134 1135

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1136
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1137
			      unsigned long total_out, u64 disk_start,
1138
			      struct bio *bio)
1139 1140 1141 1142
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1143
	unsigned long prev_start_byte;
1144 1145 1146
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1147
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1148 1149 1150 1151 1152

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1153
	start_byte = page_offset(bvec.bv_page) - disk_start;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1173 1174
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1175
		bytes = min(bytes, working_bytes);
1176 1177 1178

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1179
		kunmap_atomic(kaddr);
1180
		flush_dcache_page(bvec.bv_page);
1181 1182 1183 1184 1185 1186

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1187 1188 1189 1190
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1191
		prev_start_byte = start_byte;
1192
		start_byte = page_offset(bvec.bv_page) - disk_start;
1193

1194
		/*
1195 1196 1197 1198
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1199
		 */
1200 1201 1202 1203 1204 1205 1206
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1219 1220 1221 1222 1223
		}
	}

	return 1;
}
1224

1225 1226 1227 1228 1229 1230 1231 1232
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1302 1303
	struct list_head *ws_list = __find_workspace(0, true);
	struct heuristic_ws *ws;
1304 1305
	u32 i;
	u8 byte;
1306 1307
	int ret = 1;

1308 1309
	ws = list_entry(ws_list, struct heuristic_ws, list);

1310 1311
	heuristic_collect_sample(inode, start, end, ws);

1312 1313 1314 1315 1316
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1317 1318 1319 1320 1321
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1322 1323
	}

1324
out:
1325
	__free_workspace(0, ws_list, true);
1326 1327
	return ret;
}
1328 1329 1330 1331 1332 1333

unsigned int btrfs_compress_str2level(const char *str)
{
	if (strncmp(str, "zlib", 4) != 0)
		return 0;

1334 1335 1336
	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
		return str[5] - '0';
1337 1338 1339

	return 0;
}